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Abstract—Passeport Vacances is an offer for school-aged chil-
dren to discover a set of activities during holidays. For more than
30 years, it has been an established social function in several
countries, including Germany and Switzerland. Proposed activ-
ities might occur several times during the Passeport Vacances.
The assignment of activities to children is computed in order to
maximize the children’s preferences, as well as to balance each
child’s incurred cost, toward an equity goal. There are several
sets of constraints associated with the assignment problem: no
overlapping activities assigned to the same child, minimal and
maximal ages per activity, minimum number of children for
opening an activity, maximal size of a group for each activity, no
similar activities assigned to the same child, no already assigned
‘lifetime’-activity per child, and at most one activity per period
and per child. We propose a binary linear programming model
that describes the assignment problem, report CPU computation
issues regarding the model implementation, and report numerical
results based on a state-of-the-art MIP solver. Tests where
conducted with real data from the 2016 edition of Passeport
Vacances in Morges.

I. INTRODUCTION

P
ASSEPORT Vacances is an offer for school-aged children
to discover a set of activities during holidays. For more

than 30 years, it has been an established social function in
several countries, including Germany and Switzerland. Pro-
posed activities might occur several times during the Passeport
Vacances. Some weeks before the start of Passeport Vacances,
children are asked to choose at most four activities per day
and to give a ranking to the selected activities for each day,
from 1 for the most attractive one, to 4 for the least attractive
one. Each child receives a personal identificator and has to
give his birthdate, as well as other useful information such
as phone number, address, etc. The assignment of children to
activities is computed in order to maximize the preferences
specified by the children, as well as to balance the incurred
cost by each child, toward an equity goal. There are several
sets of constraints associated with the assignment problem: no
overlapping activities assigned to the same child, minimal and
maximal ages per activity, minimum number of children for
opening an activity, maximal size of a group for each activity,
no similar activities assigned to the same child, no already
assigned ‘lifetime’- activity per child, and at most one activity
per period and per child. During a given horizon of time,
generally between 5 and 14 days, Passeport Vacances offers a
set of activities to children during holidays. This holiday time

is divided into periods, most often days or half-days. Before
PV actually takes place, children are asked to select a few
activities per period, often 4 selections ranked by preference.
After closing this selection phase, the assignment process can
begin.

Many areas are interested in load balancing: for example,
to balance the workloads of teaching assistants [1], students
[2], or professors [3] or for socioeconomic variation between
schools [4]. This balancing is often done by minimizing the
deviation to the mean value or, as proposed by Domenech and
Lusa [5] and De La Torre, Lusa and Mateo [3], combined
to the maximum relative deviation. However, the different
measures of deviation are not linear and need to be adapted.
Ünal and Uysal [2] proposed a linearisation of the 4 norms
L0, L1, Linf , and Lmax by adding variables. The balancing
objective is often one of several goals of the problem. Different
ways to combine multiple goals have been proposed in the
literature. In the purpose of assigning students to projects,
Pan, Chu, Han, Guangyue, and Huang [6] proposed a goal
programming model. Another well-known method consists of
making a mixed integer linear programming (MILP) model as
a weighted sum of the different objectives. The weights can be
adapted to privilege one or another goal, but many studies have
focused on finding a Pareto optimal solution: a solution where
all objectives could not be improved without deteriorating the
others. A small literature review and a method to find the
Pareto front was proposed by Kim and De Weck [7]. In order
to propose a convenient and powerful model, we chose to use
a weighted sum of the different goals with fixed weights.

This paper reports our mathematical model, implemented in
the Julia language and solved with a Mixed Integer Program-
ming solver. State-of-the-art solvers are able to pre-compute
the MIP model before launching the Simplex algorithm, so that
redundant constraints are dropped, and also, as a consequence,
some variables are fixed. Although this generally saves quite a
lot of computation time, it is sometimes recommended to avoid
part of this step by changing a straightforward implementation
with a more data-focused model. The goal is to reduce the
time needed to build the model, which could seriously increase
the total CPU computing time. We explain in this report our
verification and the way we handled the model construction.
We then report experimental results and give some insight on
the resulting computing time.
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TABLE I
ACTIVITY

idactivity unique identificator

nboccurrence number of occurrences during the considered horizon

pricefixed fixed price

pricechild price per child

life binary indicator about the status of ‘lifetime’

minchild minimum number of children per occurrence to open

the activity

maxchild maximal number of children per occurrence

minage minimal age to perform the activity

maxage maximal age to perform the activity

similarity identificator of similar activities

II. PROBLEM DESCRIPTION

A. Data

Data was stored in a PostgreSQL database. It is therefore
presented as a set of tables with their fields.

Table I specifies the activities proposed during the consid-
ered PV horizon.

• Field ‘fixedprice’ is the fixed cost that PV has to pay
for each occurrence of the activity that occurs, whereas
‘pricechild’ is the variable cost per child that PV has
to pay. Those costs can be considered in the following
way: a balanced cost between children of the same age
category is appreciated, so that a fair assignment of
children to activities can be done.

• The ‘life’ field indicates if an activity has to be considered
as a lifetime activity, which means that if a child has
already been assigned to that activity in some past PV,
he can no longer be assigned to this activity. Its value is
TRUE for a lifetime activity, and FALSE otherwise.

• Field ‘minchild’ indicates the minimum number of chil-
dren to open an occurrence of an activity. In other words,
if there are not enough children for a specific occur-
rence, then this occurrence is cancelled. Field ‘maxchild’
restricts the size of the group for an occurrence of the
activity.

• Fields "minage" and "maxage" are respectively limita-
tions on the minimal age and maximal age for doing an
activity.

• Field ‘similarity’ indicates similar activities. For example,
activity A = visit to the zoo Alpha and activity B = visit to
the zoo Beta are considered similar and therefore belong
to the same similarity group. The goal of this field is to
avoid similar activities being assigned to a same child.
Modalities of the ‘similarity’ field are natural numbers.

Table II contains the occurrences of the activities. The
fields ‘next’ and ‘previous’ get the value of ‘idoccurrence’
for activities that only need one occurrence to be done. For
activities requiring consecutive occurrences, like a several
days internship within a company, the ‘next’ field refers to
the next occurrence, unless it is the last one; in this case,
it contains the same value as ‘idoccurrence’. The ‘previous’

TABLE II
OCCURRENCE

idoccurrence unique identificator

idactivity associated activity

occurrencebegin begin date and time of the occurrence

occurrenceend end date and time of the occurrence

inactive binary indicator variable

next next occurrence in case of multi-occurrence activity

previous previous occurrence in case of multi-occurence activity

TABLE III
CHILD

idchild unique identificator

birthdate birthdate

field is similarly defined. Cancelled occurrences are referred
to with the ‘inactive’ field, whose value is TRUE for inactive
occurrences and FALSE otherwise.

Table III contains the characteristics of children. Note that
all personal information, such as first name, family name,
phone number, etc., were not provided since they are useless
for the optimization process. The day of each birth date
has been modified to the first day of the month in order to
anonymize the data and their IDs have been changed.

Table IV represents k-tuples of children, indicating groups of
children willing to participate together, for each of the assigned
activities. This is generally useful in case of children belonging
to a same family, or friends willing to share activities.

Note that this not only refers to binomes, but also k-
nomes (i.e. several children with the same set of assigned
occurrences) can be constituted.

Table V indicates ranked preferences given by the children.
Each child ranks at most k (k=4 in this data-set) activities per
day of the PV, 1 being the preferred activity, up to k being
the kth preferred activity.

Table VI expresses already-assigned ‘lifetime’ activities to
children. This is a history of past PV assignments. A child

TABLE IV
KNOME

idchild1 first child

idchild2 second child

TABLE V
PREFERENCE

idpreference unique identificator

idchild child identificator

idoccurrence occurrence identificator

choice choice rank of the occurrence
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TABLE VI
LIFETIME

idchild child identificator

idactivity activity identificator

idlifetime unique identificator

idchild child identificator

idactivity activity identificator

idpreference preference identificator

TABLE VII
PERIOD

idperiod unique identificator

periodbegin beginning of the period

periodend end of the period

maxassigned maximum number of occurrences for this period

who already received a specific lifetime activity in the past
PV cannot again obtain this activity.

Table VII represents periods on which restrictions
might apply. This means that during a specific period of
time ‘idperiod’, beginning at ‘periodbegin’ and ending at
‘periodend’, a maximum of ‘maxassigned’ occurrences can
be assigned to the same child.

B. Data preparation

In order to facilitate the model generation, we modified
raw data by adding computed tables, adding some columns
to existing tables, or reducing unnecessary information.

Passeport Vacances partitions the time horizon into periods,
which are most often days but sometimes half-days. Children
are then asked to fill a formula to express their preferences
about activities. They must do this for each period.

We computed the incompatibility graph of preferences,
which represents overlapping occurrences that appear in the
selected activities by a same child.

Based on these inequalities, we created a new table called
incompatible that contains all incompatible preferences, one
for each edge of the incompatibility graph.

TABLE VIII
INCOMPATIBLE

idincompatible unique identificator

idpref1 first preference identificator

idpref2 second preference identificator

III. MATHEMATICAL MODEL

We use the notation proposed in Table IX.
There is a set O of occurrences, because an activity can be

organised several times during the whole Passeport Vacances
period. Therefore, several occurrences might correspond to a
same activity. A preference p ∈ P refers to a child’s choice
for an occurrence. The sets A, T, C, I, L, MAt, and Cp are

TABLE IX
NOTATIONS

P Set of preferences

A Set of activities

O Set of occurrences

T Set of periods

C Set of child

Cp Choice’s value for the preference p

I Set of inactive preferences

L Set of forbidden preferences

PCp Price per child for each preference

PFp Fixed price by activity

MAt Maximum number of assignations during period t

S Set of similarity labels

self explanatory. The cost for the organizers is composed of
a fixed cost that remains the same regardless of the number
of children and a price per child. Set PCp represents the fixed
cost, whereas PFp represents the variable cost. Each activity
is part of a group of similar activities with the same reference.
Similar activities are given a same label. This set of labels is
noted S.

We modelled this problem as an integer problem, in which
the objective function and the constraints are linearly defined.

A. Variables

A solution to the considered problem is a set of pairwise
associations between a child and an occurrence. We considered
each of these pairwise associations to get either a true value
if the child is assigned to the occurrence, and false if not.
We therefore defined a set of variables that describes valid
assignment of an occurrence and a child:

xi =

{

1 if preference i is selected
0 otherwise

where i ∈ P .
A variable is associated to each element of the table prefer-

ence. Therefore, xi true means that the associated occurrence
of an activity is assigned to the associated child. In other
words, this is equivalent to defining the following two-indexes
variables, but reduces the number of variables, as a preference
exists only if a child chose an occurrence.

xij =

{

1 if child i gets occurrence j
0 otherwise

where i ∈ C, j ∈ O. For example, for a child choosing 4
occurrences between 10 possible occurrences, it will need 10
variables for the two-indexes variables, while only 4 variables
are needed for the single-indexed model.
We also defined auxiliary variables that indicate if an oc-
currence is open or not. This was necessary since some
occurrences can only be open if there is a minimum number
of children to do the activity.

yj =

{

1 if occurrence j is open
0 otherwise
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where j ∈ O.

B. Constraints

We considered all constraints as hard constraints.

1) Forbid assignment to cancelled occurrences.
This constraint is formalised with the assignment to
a null value for each preference set to a cancelled
occurrence. For efficiency reasons, it is advised to sum
all such cases to zero.

∑

p∈I

xp = 0 (1)

2) Do not assign two incompatible occurrences to the
same child.

xa + xb ≤ 1 ∀(a, b) ∈ Incompatible (2)

3) Maximal number of activities per child and per period.
This constraint avoids assigning too many activities dur-
ing the same period to a child, even if their occurrences
do not overlap.
Let’s define, for each child c and each period t, the
subset CPc,t of preferences for which the occurrences
begin during period t. This subset CPc,t contains the
preferences expressed by child c for activities occuring
during period t.

∑

p∈CPct

xp ≤ MAt (3)

∀(c, t) : c ∈ C, t ∈ T

4) At most 1 activity from a set of similar activities.
Let’s define for each child c and each similar value s
the subset SPc,s of preferences with the same similarity
label s for child c.

∑

p∈SPc,s

xp ≤ 1 (4)

∀(c, s) : c ∈ C, s ∈ S

5) Forbid reassignement to previously assigned ‘lifetime’
activities.
The constraint consists in assigning a null value to each
such preference.

∑

p∈L

xp = 0 (5)

6) Minimal age to perform an activity.
Let’s define the set BA ⊂ P of preferences indexes for
which the child’s age is below the minimum required
age. We therefore forbid such assignments.

∑

p∈BA

xp = 0 (6)

7) Maximal age to perform an activity.
Let’s define the set AA ⊂ P of preferences indexes for

which the child’s age is above the maximum age. We
therefore forbid such assignments.

∑

p∈AA

xp = 0 (7)

8) Knome: group of children performing the same set of
activities.
This constraint is split into two parts. In the first part, if
members of a knome have chosen different occurrences,
then each of them can not be accepted and therefore
corresponding assignments get a value of zero. Let’s
define Dp ∈ {0, 1} with value 1 if the corresponding
occurrence is not chosen by the other member(s) of the
knome, and value 0 otherwise.

∑

p∈P

Dp · xp = 0 (8)

In the second part, the chosen occurrences should be
either both accepted or both rejected; therefore, the
corresponding variables must be equal.

xi = xj (9)

∀(i, j) ∈ Knome

9) Maximum number of children per occurrence.
Let’s define for each occurrence o the subset POo of
preferences that applies on occurrence o, and Mo the
constant value ‘maxchild’ that indicates the maximal
size of the assigned children’s group. The following
constraints specify the maximum size of the occurrence,
and forbid assignement if the occurrence is not open.

∑

p∈POp

xp ≤ Mo · yo (10)

∀o ∈ O

10) Minimum number of children per occurrence to open it.
Let’s consider again for each occurrence o the subset
POo of preferences that applies on occurrence o. Define
mo as the constant value ‘minchild’ that indicates the
minimal size of the assigned children’s group. The con-
straint specifies that either the occurrence is performed
by a minimum number of children, or it is not open.

∑

p∈POp

xp ≥ mo · yo (11)

∀o ∈ O

11) Multi-occurrences activities.
This constraint is split into two parts. In the first part, an
assignment gets a value of zero if it belongs to a multi-
occurrences activity for which not all necessary occur-
rences have been chosen. In other words, incomplete
activities can not be assigned to children. Let’s define a
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new set IV , with value 1 if such a case happens, and
value 0 otherwise.

∑

p∈P

IVp · xp = 0 (12)

In the second part, all occurrences belonging to the
same multi-occurrence activity should be either all
accepted or all rejected; therefore, the corresponding
variables have to be equal. Let’s define PN as the set
of corresponding preferences of successive occurrences.

xp = xPNp
(13)

∀p ∈ P

C. Objective function:

Several models exist to achieve the goals: maximizing
the choices of the kids and minimizing the cost differences
between the children. This could be solved via goal pro-
gramming, via looking for a pareto optimal solution, or via
converting the problem into a mono-objective one. In order to
maximize the preferences of each child while minimizing the
gap between the cost of each child, the function to maximize
was defined as a pondered sum of the total deviation from the
mean cost per child.

1) Preferences maximisation
Let nbc be the number of choices that each child can
express for each period. This means that the preferred
occurrence gets the choice value 1, and the least pre-
ferred occurrence within the period gets a choice value
of at most nbc (a child might wish to select fewer
occurrences per period than nbc).
To mitigate disparities between preferences, we applied
a power function to the preference weights and hence
maximized the following zpref function:

zpref =
∑

p∈P

xp · 2
(nbc−Cp) (14)

Without this power function, two sets of choices
{1,1,1,4} and {2,2,2,1} would have the same assignation
score of 9, although with this power function, the first
one would receive a score of 25 and the second one a
score of 20, favouring the assignation to the first choices.

2) Cost balancing

a) Cost minimization
Each activity has its own cost paid by the orga-
nizers. Children, however, pay the same price for
the whole duration of Passeport Vacances, whether
they get a helicopter flight or a museum visit.
This means that the cost paid by the children does
not depend on the assignment to activities and as
there may be significant cost differences between

activities. The organizers would like to balance
fairly the true cost between the children.

zprice1 =
∑

p∈P

xp · PCp +
∑

p∈Op

yo · PFp (15)

b) Deviation cost minimization
The first fairness proposition minimizes the total
cost of the organisation. The goal is now to min-
imize the deviation from the mean cost per child
as follows:

zprice2 =
∑

c∈C

|
zprice1
| C |

· cst− costc | (16)

Where Nchild is the total number of children,
cst is a constant fixed to 1.2 to allow a small
margin to the average, and costc, representing the
total assignment cost of each child, id defined as
follows:

costc =
∑

p∈PRc

xp · PCp +
xp · PFp

∑

p1∈Op
xp1

(17)

∀c ∈ C

Where PRc is the set of all the preferences of child
c.
The second part of this sum is not linear. We
approximated this sum by dividing by the maxi-
mum allowed number of children for the preference
(MCp) as follows:

costc =
∑

p∈PRc

xp · PCp +
xp · PFp

MCp

(18)

The linearization of the absolute value is a well-
known technique (see for example Ünal et Uysal
[2]). Adding two real variables, c− representing
the lack and c+ representing the surplus, we can
rewrite as follows:

zprice
| C |

· cst− costc = c+c − c−c (19)

for c ∈ C

And the following constraints:

c+j ≥ 0 for j ∈ C (20)

c−j ≥ 0 for j ∈ C (21)

Finally, we chose to minimize only the cost above
the average cost. The idea here is not to privilege
a child with low cost assignment (c−[c]), but to
penalize the costs more highly (c+[c]).

zprice =
∑

c∈C

c+c (22)

Therefore, the objective function is defined as

z = wpref · zpref − wprice · zprice (23)
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TABLE X
SUMMARY OF THE OBJECTIVES FUNCTIONS

wpref wpice zprice z

Preference maximization 1 0 - (14)
Cost minimization 2 1 (15) (23)

Deviation cost minimization 2 1 (22) (23)

TABLE XI
AMOUNT OF DATA USED TO TEST THE METHODS

634 Child 16621 preferences
1121 activity 50 knomes

532 occurrences 3 periods

The following weights have been defined in the purpose of
fixing the importance of each objective by normalizing each
one between 0 and 1 and multiplying by a factor to weight
each objective relatively.

wpref = 2/
∑

p∈P

xp · 2
(nbc−Cp) (24)

wcost = 1/
∑

p∈P

PCp +
∑

o∈O

PFo (25)

We chose to fix the importance of the preference maximization
as 2 times that of the cost balancing.

Table X summarizes our three distinct objective functions:
preference maximization, which focuses only on the maxi-
mization of the preferences; cost minimization that maximizes
the preferences and minimizes the costs; and deviation cost
minimization that maximizes the preferences and minimizes
the deviation from the mean cost.

IV. RESOLUTION

The implementation of our exact LP model was done via
the open source Julia 0.6.2 language [8], [9] and the MIP
solver Gurobi 0.3.3 [10]. Tests were carried out on a 3.2 GHz
Intel Core i5 CPU computer with 4 GB RAM, running 64-bit
Ubuntu 16.04 LTS. Julia is defined as a "high-level, high-
performance dynamic programming language for numerical
computing" [11]. It allows, among other things, distributed
parallel execution and shows a very good performance com-
pared to the C language. Gurobi is a state-of-the-art MIP
solver. The amount of data for this real-world problem is
presented in Table XI. Compared to the currently used 20-year
old software, based on an iterative heuristic, time to solve the
problem was drastically reduced from 11 hours to less than 5
minutes on similar single core computers.

V. EVALUATION

To evaluate the balancing, both methods, minimization of
the total cost and minimization of the deviation from the
mean cost, were tested with real data and compared to the
solution obtained from an objective function without any
fairness component.

Unsurprisingly, the cost minimization method obtains the
smallest mean price, but does not improve the value of the

Fig. 1. Comparison of cost’s repartition between children

standard deviation or the coefficient of variation compared
to the preference maximization. Moreover, cost minimization
decreases the total number of assignments, which goes against
the desired goal. The second balancing form, deviation cost
minimization, has a more equitable repartition of the costs
between children. The standard deviation is reduced by 18%
for the group of older children and by 25% for the younger
group, which has the smallest coefficient of variation. The
number of assignments is slightly higher, at the price of a
small decrease in children’s preferences. We also note that
adding new variables for the approximation of the absolute
value penalizes the performance, as shown in Table XIV,
but it still remains reasonable in this context. Table XII and
Figure 1 present a summary of the obtained solutions. Column
cv corresponds to the coefficient of variation and column
threshold refers to outliers detection (i.e. a threshold value
beyond which a cost is considered as an outlier). Finally, Table
XIII presents the number of assignments by order of choice’s
priority: in a fair solution, fewer first choices are assigned to
children, replaced by second or third choices.

VI. CONCLUSION

This article presents the modelization of a real-world as-
signment problem in which the objective is to assign children
to activities they chose respecting as much as possible their
preference order without violating the different constraints.
The second part of the study focuses on the desire to balance
the costs fairly between children, as they all pay the same
subscription cost to Passeport Vacances. Two methods are
proposed, which take into account the costs and are compared
with the solution without cost balancing. The cost’s mini-
mization deteriorates the quality of the assignment without
decreasing the inequality between each children, while the
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TABLE XII
SUMMARY OF THE ASSIGNATION SOLUTION FOR EACH METHOD

Age category Mean cost Std cost Nb child Threshold cv

Preference maximization
1 49.60 29.37 570 131.83 0.59

2 65.32 25.40 51 136.45 0.39

Cost minimization
1 48.31 29.39 570 130.60 0.61

2 62.43 25.93 51 135.05 0.42

Deviation cost minimization
1 49.83 24.17 570 117.51 0.49

2 65.31 18.87 51 118.16 0.29

TABLE XIII
NUMBER OF ASSIGNATION, ORDERED BY CHOICE’S PRIORITY FOR EACH OF THE 3 METHODS

Choices Nbr of assignations Nbr of assignation Nrb of assignations

Preference maximization Cost minimization Deviation cost minimization

1 3372 3375 3369

2 1014 1011 1028

3 414 392 416

4 173 156 172

total 4973 4934 4985

TABLE XIV
TIME OF RESOLUTION FOR EACH MODELS

Time of assignation Time of assignation Time of assignations

Preference maximization Cost minimization Deviation cost minimization

2 minutes and 7 seconds 2 minutes and 7 seconds 3 minutes and 27 seconds

minimization of the deviation from the mean price gets closer
to the desired goal, but increases the computational time
because of the increase in the number of variables. Improving
cost balancing without exploding the number of variables or
computational time, by means of valid inequalities, is one
possible future research direction.
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