
Accelerating Minimum Cost Polygon Triangulation

Code with the TRACO Compiler

Marek Palkowski, Wlodzimierz Bielecki

West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

Email: mpalkowski@wi.zut.edu.pl, wbielecki@wi.zut.edu.pl

Abstract—In this paper, we present automatic loop tiling
and parallelization for the minimum cost polygon triangulation
(MCPT) task. For this purpose, we use the authorial source-
to-source TRACO compiler. MCPT is a recursive algorithm
encountering each subproblem many times in different branches
of its recursion tree. The most intensive computing part is a
triple nested polyhedral program loop nest filling a cost table
using the MCPT recursive. First, the code is tiled by means of
the transitive closure of a dependence graph. TRACO allows
for tiling of the innermost loop nest that is not possible by
means of other closely related compilers. We tile only the two
innermost loops and apply skewing to serialize the outermost
one and parallelize the innermost ones. An experimental study
carried out on multi-core computers demonstrates considerable
speed-up of tiled code, which overcomes that obtained for code
generated with the closely related PLuTo compiler based on the
affine transformations framework.

I. INTRODUCTION

The cost of moving data from main memory can be

higher than the cost of computation on modern multi-core

platforms. This disparity between communication and com-

putation prompts to design algorithms for better locality and

parallelism. Loop nest tiling allows for both coarsening code

parallelism and improving its locality that leads to increasing

parallel code performance. Widely-known tiling techniques

based on the polyhedral model1 use linear or affine transfor-

mations of program loop nests [2], [3], [4], [5], [6].

Dynamic programming (DP) is typically applied to op-

timization problems. In such problems, there can be many

possible solutions and we wish to find a solution with the

optimal (minimum or maximum) value. Computing intensive

DP tasks like minimal cost polygon triangularization can be

presented as loop nests within the polyhedral model, however,

they involve non-uniform dependences. This limits many op-

timization techniques such as permutation, diamond tiling [7],

or index set splitting [8] to improve cache efficiency.

State-of-the-art automatic optimizing compilers, such as

PLuTo [2], have provided empirical confirmation of the suc-

cess of polyhedral-based optimization. PLuTo and similar

optimizing compilers apply the affine transformation frame-

work (ATF), which has demonstrated considerable success in

generating high-performance parallel codes in particular for

1The polyhedral model is a mathematical formalism for analyzing, par-
allelizing, and transforming program loop nests whose all bounds and all
conditions are affine expressions in the loop iterators and symbolic constants
called parameters [1].

stencils. However, in general, this framework is not able to

tile all loops in dynamic programming code [9], [10].

In this paper, we use an alternative approach based on the

transitive closure of dependence graphs, which allows us to tile

bands of non-permutable loops [11] and extract parallelism

when affine transformations miss it [11]. This approach is

implemented in the TRACO [12] compiler.

TRACO does not find and use any affine function to trans-

form the loop nest. It is based on the Iteration Space Slicing

Framework introduced by Pugh and Rosser [13] and applies

the transitive closure of a dependence graph to carry out

corrections of original rectangular tiles so that all dependences

available in the original loop nest are preserved under the

lexicographic order of target tiles. The transitive closure of

a graph G is a graph where there is an edge between vertices

if they are connected directly or indirectly in the graph G.

In this paper, we show that such a technique enables tiling

for all MCPT loops in opposite to affine transformation algo-

rithms implemented in PLuTo. We discuss the performance of

parallel tiled MCPT code generated by TRACO and executed

on modern multi-core processors and compare it with that of

PLuTo tiled code.

II. MINIMAL COST POLYGON TRIANGULATION

A polygon is a piecewise linear closed curve in the plane.

A convex polygon has interior angles that are each strictly

less than 180○. A triangulation of a polygon is a set of chords

of the polygon that divide the polygon into disjoint triangles

(polygons with 3 sides).

In the optimal (polygon) triangulation problem, we are

given a convex polygon and a weight function defined on

triangles formed by sides and chords. The problem is to find

a triangulation that minimizes the sum of the weights of the

triangles in the triangulation.

Let cost w(i, j, k) denote the length of the perimeter of

△vivjvk = ∣vivj ∣ + ∣vjvk ∣ + ∣vkvi∣. Then minimal cost polygon

triangulation is as follows,

c[i][j] =
⎧⎪⎪
⎨
⎪⎪⎩

0 j < i + 2,

max
i<k<j
(c[i][k] + c(k][j] +w(i, j, k)) otherwise.

(1)

Possible values of c[i][j] fall into two cases. If j < i+2 then

the polygon with vertices vi . . . vj has fewer than 3 vertices,

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 111–114

DOI: 10.15439/2018F8

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 111

✁✂
�
✄

☎

✆

✝✞

✟✠ ✡☛

☞✌

✍✎

✏✑

✒ ✓ ✔ ✕

✖✗ ✘✙

✚✛

✜✢

✣✤

✥✦ ✧★

✩✪

✫✬

✭✮

✯✰✱ ✲✳✴

✵✶✷ ✸✹✺

Fig. 1. The example of minimal cost polygon triangulation

and no triangulation is possible, so an appropriate minimum

triangulation cost is 0, otherwise there is one or more choices

of k where i < k < j. To list all triangles, we have to traceback

using a history recorded in a separate array of the best vertex

to do recursive triangulations at each step.

The memory complexity of the defined cost matrix is

O(n2). The time complexity of a direct implementation of

this algorithm is O(n3).
Figures 1a and 1b present two choices of given polygon

triangulation (except mirror ones). There is a surprising cor-

respondence between the triangulation of a polygon and the

parenthesization of an expression. This correspondence is best

explained using trees, see Figure 1c. A full parenthesization

of an expression corresponds to a full binary tree, sometimes

called the parse tree of an expression. Each leaf of a parse

tree is labeled by one of the polygon sides. The root of a tree

is a side between the first and last vertices. The parse tree

for the parenthesized product is defined with the expression

((BC)(DE)). The triangulation of the polygon with the

parse tree overlaid is depicted in Figure 1d (assuming that

triangulation presented in Figure 1a has the minimal cost).

Summing up, minimal cost polygon triangulation corre-

sponds to dynamic programming tasks like chain matrix

multiplication or an optimal binary search tree.

III. LOOP TILING AND PARALLELIZATION OF MCPT CODE

To find the minimal cost for cell c[i][j], previous cells are

scanned in the corresponding row and column. This is typical

for dynamic programming tasks such as Nussinov’s algorithm

[14]. The MCPT algorithm is also within nonserial polyadic

dynamic programming (NPDP). The term nonserial polyadic

stands for another family of dynamic programming (DP) with

nonuniform data dependences (some elements of dependence

distance vector are not constant), which is more difficult to be

optimized.

Our idea to form valid target tiles is different from that based

on affine transformations. First, we apply the transitive closure

of the dependence graph representing all the dependences

available in the loop nest, to check whether the original tiles

are valid. A valid tile with identifier II does not include

any dependence destination whose corresponding dependence

source belongs to a tile whose identifier is greater than II .

If there exist invalid tiles, we correct them with transferring

invalid destinations to the tiles including the corresponding

sources [11]. It is worth noting that there is no cycle in the

corresponding inter-tile dependence graph and any paralleliza-

tion technique can be applied.

Listing 1 presents polyhedral affine loop nest calculating

the cost table of polygon triangulation defined using formula

(Eq. 1). It is worth noting that the table is filled in a diagonal

fashion, i.e., from diagonal elements to element [0][n-1].

The loop nest can be tiled by both PLuTo and TRACO,

however, only TRACO allows us to tile all the three loops of

the nest. We discovered empirically that the best tile size is

[1x128x16], i.e., the first loop has not be tiled. The second loop

is parallel, it does not carry any dependence because cells are

scanned in a diagonal fashion [14]. Listing 2 presents the tiled

parallel OpenMP code generated by TRACO. The compiler

automatically detects that the second loop enumerating tiles

does nor carry any dependence.

Such a code cannot be generated by means of PLuTo

because it is able to tile only the two outermost loops, the

innermost loop remains untiled. For tiled code generated by

PLuTo, we empirically discover that the best tile size is

[8x8x1], PLuTo code can be found at https://sourceforge.net/

p/traco/code/HEAD/tree/trunk/examples/trian.c.

IV. EXPERIMENTAL STUDY

This section presents the results of the comparison of

TRACO and PLuTo tiled code performance. To carry out

experiments, we have used a computer with the following

features: Intel Xeon CPU E5-2699 v2, 3.6GHz, 18 cores,

36 Threads, 45 MB Cache, 16 GB RAM. We examined

parallel code performance also using a coprocessor Intel Xeon

Phi 7120P (16GB, 1.238 GHz, 61 cores, 30.5 MB Cache).

Programs were compiled with the Intel C Compiler (icc 15.0.2)

and optimized at the -O3 level.

Table 1 presents execution times (in seconds) for various

numbers of random points of polygon vertexes. Figure 2

depicts the speed-up and efficiency of the tiled programs.

Analyzing the results obtained, we may conclude that the

TRACO code performance overcomes that of the PLuTo one.

For one and two threads, super-linear speed-up is observed.

Tiling of the innermost loop allows us to achieve the minimal

execution time even without using all threads available on the

computer used for experiments. Although PLuTo code seems

to be more scalable regarding the number of threads, poor

locality limits its speed-up on the modern multi-core machine

used for experiments.

112 COMMUNICATION PAPERS. POZNAŃ, 2018

Listing 1. Serial loop nest implementing minimum cost polygon triangulation.

1 f o r (gap = 0 ; gap < N; gap ++){
2 f o r (j = gap ; j < N; j ++){ / / i = j − gap

3 i f (gap < 2) / / p o lyg o n v i . . . v j has f e w e r th a n 3 v e r t i c e s ,

4 t a b l e [j −gap] [j] = 0 ;

5 e l s e {
6 t a b l e [j −gap] [j] = INT MAX;

7 f o r (k = j −gap +1 ; k < j ; k ++){
8 t a b l e [j −gap] [j] = MIN(t a b l e [j −gap] [j] , t a b l e [j −gap] [k] + ⤦

Ç t a b l e [k] [j] + c o s t (j −gap , j , k)) ;

9 } } } }

Listing 2. Parallel tiled loop nest implementing minimum cost polygon triangulation.

1 f o r (c1 = 0 ; c1 < N; c1 += 1) / / t i l e s o f gap (s e r i a l)

2 # pragma omp p a r a l l e l f o r

3 f o r (c3 = 0 ; c3 <= (N − c1 − 1) / 1 2 8 ; c3 += 1) { / / t i l e s o f j (p a r a l l e l)

4 i f (c1 >= 2) {
5 f o r (c4 = 1 ; c4 <= 2 ; c4 += 1) {
6 i f (c4 == 2) {
7 f o r (c5 = 0 ; c5 <= f l o o r d (c1 − 2 , 1 6) ; c5 += 1) / / t i l e s o f k (s e r i a l)

8 f o r (c9 = c1 + 128 * c3 ; c9 <= min (N−1 , c1 + 128 * c3 + 127) ; c9 += 1)

9 f o r (c11 = −c1 + 16 * c5 + c9 + 1 ; c11 <= min (c9 − 1 , −c1 + 16 * ⤦
Ç c5 + c9 + 1 6) ; c11 += 1)

10 t a b l e [c9−c1] [c9] = MIN(t a b l e [c9−c1] [c9] , t a b l e [c9−c1] [c11] + ⤦
Ç t a b l e [c11] [c9] + c o s t [c9−c1] [c9] [c11]) ;

11 } e l s e

12 f o r (c9 = c1 + 128 * c3 ; c9 <= min (N − 1 , c1 + 128 * c3 + 127) ; c9 += 1)

13 t a b l e [c9−c1] [c9] = INT MAX;

14 }
15 } e l s e

16 f o r (c9 = c1 + 128 * c3 ; c9 <= min (N − 1 , c1 + 128 * c3 + 127) ; c9 += 1)

17 t a b l e [c9−c1] [c9] = 0 ;

18 }

V. CONCLUSION

In this paper, we presented the usage of the TRACO

compiler, implementing optimizing loop nest algorithms based

on the transitive closure of dependence graphs, to the dynamic

programming of minimal cost polygon triangulation. Results

of experiments demonstrate that the speed-up of parallel

tiled code generated by TRACO is higher than that of code

generated by means of the state-of-the-art PLuTo compiler.

Tiling the innermost loop of the examined loop nest allows us

to considerably accelerate NDPD programs.

In future, we plan to study arbitrarily shaped tiling based on

transitive closure aimed at generating more flexible code for

affine loop nests typical for a code of dynamic programming

code.

REFERENCES

[1] W. Kelly and W. Pugh, “A framework for unifying reordering transfor-
mations,” Univ. of Maryland Institute for Advanced Computer Studies
Report No. UMIACS-TR-92-126.1, College Park, MD, USA, Tech.
Rep., 1993.

[2] U. Bondhugula et al., “A practical automatic polyhedral paral-
lelizer and locality optimizer,” SIGPLAN Not., vol. 43, no. 6,
pp. 101–113, Jun. 2008. doi: 10.1145/1379022.1375595 Http://pluto-
compiler.sourceforge.net/.

[3] M. Griebl, “Automatic parallelization of loop programs for distributed
memory architectures,” 2004.

[4] F. Irigoin and R. Triolet, “Supernode partitioning,” in Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, ser. POPL ’88. New York, NY, USA: ACM, 1988. doi:
10.1145/73560.73588. ISBN 0-89791-252-7 pp. 319–329.

[5] A. Lim, G. I. Cheong, and M. S. Lam, “An affine partitioning algo-
rithm to maximize parallelism and minimize communication,” in In

Proceedings of the 13th ACM SIGARCH International Conference on

Supercomputing. ACM Press, 1999. doi: 10.1145/305138.305197 pp.
228–237.

[6] J. Xue, “On tiling as a loop transformation,” 1997.
[7] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling: Tiling

techniques to maximize parallelism for stencil computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp.
1285–1298, May 2017. doi: 10.1109/tpds.2016.2615094

[8] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine
loop nests,” ACM Trans. Program. Lang. Syst., vol. 38, no. 3, pp. 12:1–
12:32, Apr. 2016. doi: 10.1145/2896389

MAREK PAŁKOWSKI, WLODZIMIERZ BIELECKI: ACCELERATING MINIMUM COST POLYGON TRIANGULATION CODE 113

TABLE I
EXECUTION TIME (IN SECONDS) OF THE ORIGINAL, TRACO AND PLUTO TILED CODES IMPLEMENTING MCPT.

N
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

Orig. TRACO PLuTo TRACO PLuTo TRACO PLuTo TRACO PLuTo TRACO PLuTo TRACO PLuTo

1000 2.22 1.17 1.75 0.85 1.30 0.68 1.15 0.67 01.08 0.61 0.98 0.58 0.78

1500 7.14 3.21 6.42 2.37 4.71 2.25 3.48 1.97 2.75 2.16 2.66 2.31 2.75
2000 16.78 7.19 15.42 5.58 9.67 4.61 7.89 4.75 6.98 4.76 5.91 4.78 6.33
2500 34.93 14.14 33.40 9.97 20.98 10.73 17.96 10.42 15.14 10.25 13.24 11.03 11.55
3000 62.06 24.61 63.54 16.94 42.09 16.32 32.31 17.92 28.88 17.73 21.16 17.23 20.99

5000 524.04 197.48 465.38 94.37 266.62 83.28 186.24 87.54 137.11 75.67 118.73 87.02 96.29

4

3.2

2.4

1.6

0.8

0

S
p

ee
d

-u
p

N=1000

0

1

2

3

4

N=1500

0

1

2

3

4

N=2000

1 2 4 8 16 32
0

0.8

1.6

2.4

3.2

4

Threads

S
p

ee
d

-u
p

N=2500

1 2 4 8 16 32
0

0.8

1.6

2.4

3.2

4

Threads

N=3000

1 2 4 8 16 32
0

1.5

3

4.5

6

7.5

Threads

N=5000

2

1.6

1.2

0.8

0.4

0 0

0.6

1.2

1.8

2.4

0

0.6

1.2

1.8

2.4

E
ffi

ci
en

cy
0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

0

0.6

1.2

1.8

2.4

3

E
ffi

ci
en

cy

Traco (Speed-up) PLuTo (Speed-up) Traco (Efficiency) PLuTo (Efficiency)

Fig. 2. Speed-up and efficiency of the TRACO and PLuTo codes.

[9] D. G. Wonnacott and M. M. Strout, “On the scalability of loop tiling
techniques,” in Proceedings of the 3rd International Workshop on
Polyhedral Compilation Techniques (IMPACT), January 2013.

[10] R. T. Mullapudi and U. Bondhugula, “Tiling for dynamic scheduling,”
in Proceedings of the 4th International Workshop on Polyhedral Com-

pilation Techniques, Vienna, Austria, Jan. 2014.
[11] W. Bielecki and M. Palkowski, “Tiling of arbitrarily nested loops by

means of the transitive closure of dependence graphs,” International

Journal of Applied Mathematics and Computer Science (AMCS), vol.
Vol. 26, no. 4, pp. 919–939, December 2016. doi: 10.1515/amcs-2016-

0065
[12] ——, “A parallelizing and optimizing compiler - traco,” 2013. [Online].

Available: http://traco.sourceforge.net
[13] W. Pugh and E. Rosser, “Iteration space slicing and its application to

communication optimization,” in International Conference on Supercom-

puting, 1997. doi: 10.1145/263580.263637 pp. 221–228.
[14] M. Palkowski and W. Bielecki, “Parallel tiled Nussinov RNA folding

loop nest generated using both dependence graph transitive closure and
loop skewing,” BMC Bioinformatics, vol. 18, no. 1, p. 290, 2017. doi:
10.1186/s12859-017-1707-8

114 COMMUNICATION PAPERS. POZNAŃ, 2018

