
Abstract—This study links business requirements and adapt-

ability of existing software systems. Organizations expect flexi-

bility of IT with regard to business requirements. We hypothe-

size that the flexibility of business requirements is difficult in

IT systems, because of software dependencies in the way do-

main knowledge is implemented. In this paper, we, therefore,

explore how Business requirements have been implemented in

the source code of three open source healthcare systems. Out-

comes suggest that a tight interdependency of business termi-

nology and functionality in source code hides business require-

ments from view and thereby hinders IT flexibility on higher

levels.

I. INTRODUCTION

CHOLARS investigate strategic alignment of business

and information technology (IT) for more than three

decades within the information systems (IS) community.

Recently, the importance of the role of flexible IT infrastruc-

tures for strategic alignment has been demonstrated anew

for deployment, innovation, and evolution of IT systems in

firms that operate in turbulent industries, including

healthcare [1-4]. In the software architecture domain,

software adaptability is seen as a quality attribute of

software in general. Thereby meaning, for instance, the ap-

plicability of technological innovations or new technical fea-

tures. Software adaptability is not explicitly aimed at

changes in the business domain [5-7]. Expectations of the

business do value general adaptability of systems, but also

assume adaptability regarding business requirements. This

current study focuses on changes in the business domain and

business requirements and its consequences for software.

We examine adaptability of IT systems regarding business

terminology and business requirements.

S

II. IT FLEXIBILITY IN ENTERPRISE ARCHITECTURE

Although Enterprise architecture methods such as TO-

GAF focus on high-level business requirements, in the Busi-

ness architecture, they are meant to show relations between

high-level requirements and supporting architectures. We

use definitions of TOGAF, because TOGAF aims at describ-

ing all levels of the IT infrastructure. TOGAF describes the

supporting IT as data architecture, application architecture,

and technology architecture. The definition of architecture in

this paper follows TOGAF’s: ‘‘The fundamental

organization of a system, embodied in its components, their

relationships to each other and the environment, and the

principles governing its design and evolution.’’ Based on

ISO/IEC 42010 according to TOGAF.

III. RELATED RESEARCH ON SOFTWARE EVOLUTION

Adaptability of software in empirical research can be

positioned in the domain of research of Evolution of soft-

ware. Within this domain, we notice that the evolution of

business requirements is only marginally addressed.

Lehman strongly influences the research field of software

evolution. The Laws of software evolution have been stated

and evaluated during more than a decade of research [9, 10].

Research in this field has made no explicit distinction be-

tween the evolution of systems based on requirements in

general, and evolution of systems based on new business re-

quirements.

Numerous studies have emphasized the complexity of

source code changes after the initial system has been real-

ized, for example, see [11-13]. Studies that examine the

relation of source code to IS architectures have a different

focus than this research. They, e.g., aim at developing

frameworks for software architecture evolution knowledge

[14], or frameworks for classifying architecture-centric

software evolution research [15], or on automatically

updating architecture documents based on software

changes [16].

IV. AXIOMATIC DESIGN AND CONCEPTUAL INDEPENDENCE

To present our point of view, we start by explaining the

theoretical basis for adaptable and flexible low-level soft-

ware components in an IT architecture. The theoretical

views focus specifically on the adaptability of business re-

quirements instead of on adaptability of software in general.

The theoretical principles of Conceptual independence (CI),

and the independence of functional requirements such as de-

scribed in Axiomatic design (AD) [17-19] will be

researched in this study in real-life software.

We report on a code mining study of open source code for

Healthcare organizations for electronic health record systems

Unintended effects of dependencies in source code

on the flexibility of IT in organizations

Debbie Tarenskeen
HAN University of Applied

Sciences, Arnhem, The

Netherlands

Email: debbie.tarenskeen@han.nl

Rogier van de Wetering
Open University, Heerlen, The

Netherlands

Email:

Rogier.vandeWetering@ou.nl

René Bakker
HAN University of Applied

Sciences, Arnhem, The

Netherlands

Email: Rene.Bakker@han.nl

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 87–94

DOI: 10.15439/2018F93

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 87

(EHR), to examine the way business terminology is applied.

Then we will argue that there is a direct link of adaptability

on the source code level to IT flexibility as expected by the

Business architects.

V. RESEARCH QUESTIONS

We explore three selected open source software systems

to find out if a separation of business terminology and

application code has been effectuated, to create flexibility in

the source code (CI). Hence, our first question concerns

description of the software systems by the developers:

RQ1: Are indications of CI found in the documentation?

Then, we question the interdependency of the data model

and the application source code. We implicitly assume that

the data in the database model will represent the data that

will be persistently stored.

RQ2: Does code demonstrate interdependency of table

names and source code?

Next, we want to examine the flexibility of the specific

healthcare terminology in the software system, based on CI.

Thus, we define:

RQ3: Is CI applied in the software application?

Next, for AD functional requirements are primary. So we

define:

RQ4: Does the source code of the system show different

components that are related to separate Functional

requirements?

The remainder of this paper is structured as follows. First,

we highlight the theoretical aspects relevant to this study.

Next, we present our methods section which is followed by

the results section. We then discuss our findings and end

with concluding remarks and some suggestions for future

research.

VI. THEORETICAL BACKGROUND

A. Axiomatic design

The principles of AD are explained by Suh [19]. He

explains how a design method should account for the

independence of functional requirements and a low

information density in different design parameters of the

system. He calls these characteristics the Independence

axiom and the Information axiom. The systems he describes

are industrial systems, but he emphasizes that these

principles can be applied to IT [20]. We interpret design

parameters as design components of an IT system. The

objective of AD is to realize systems that are flexible and

understandable. With AD, the designs are iteratively

developed and have the domain of customer needs, demands

and requirements as a point of departure. From customer

needs, functional requirements are inferred. In the design, the

functional requirements are formulated independently from

each other and can be changed in the design without

affecting the rest of the design. The principle of

Independence of functional requirements is at the fundament

of AD and can be compared to patterns in software

engineering [21], such as separation of concerns. However,

realizing independent functional requirements is not a

priority in software engineering [22].

B. Conceptual independence

We advocate CI, the decoupling of healthcare terminology

and domain models from software code to be able to alter

healthcare terminology or domain models flexibly. We

ground this choice on previous case studies that argue that

AD principles are hard to implement in software systems,

because of the interdependence of data models and the

behavior of the system [23]. The interdependency of data

models and application code has been extensively studied in

IS research [24-27].

McGinnes points to the interdependence of data models

and software application code as Conceptual dependence. He

advises the decoupling of the data model and application

functionality, meaning the behavior of the application [18].

McGinnes defines the Conceptual model as the structure of

the information that is used in the business. Comparing the

Conceptual model to the Domain model in UML, we find

that in UML often behavior is added to the classes in the

Domain, this is not the case in McGinnes’ Conceptual
model.

McGinnes adds behavior to Concepts by ordering

Concepts in Archetypical categories, that applications can

access. The applications have a responsibility to interpret the

Archetypical categories. The applications add the behavior

based on the specific Archetypical category. For instance, for

“Location” the application knows that the instances of this
category can be presented on a map.

C. Relation of Conceptual model to model-driven

development

McGinnes describes the conceptual model as a (business)

data structure that is used by the application. The meta-

model, of the conceptual model, is fixed, the content is

variable. These structures are comparable to MDD described

by the OMG, Object management Group [28]. There are four

levels of models, each function as a meta-level of the lower

level. These levels are M0 to M3. McGinnes positions the

conceptual model itself on level M1 as data.

We will address the meaning of these levels briefly.

 Fig. 1 Diagram of Modeling levels of OMG

88 COMMUNICATION PAPERS. POZNAŃ, 2018

The M1 level is the most important and most discussed

modeling level in practice of software engineering. It shows

categories or classes and the associations between them. The

content consists of terms, for example, Person, Product,

Order. The level is comparable with table names in

RDBMSs. The model M0, on the lowest level, contains the

instances of categories M1 stored. It is comparable to

records in RDBMSs or instances of objects in programming

languages. See Figure 1, published in a whitepaper

explaining the different levels of Modeling of OMG [29].

The M2 level contains the description of model elements

in a modeling approach; this is the meta-level of the

description of, e.g., UML-models. The highest level (M3)

contains a description of all (possible) modeling approaches.

It is intended for comparing different modeling approaches

[29].

The description of McGinnes of the model is at the M2

level, the model that concerns business concept types is an

M1 level-model [30]. In this paper, we will not explore the

similarities of OMG and McGinnes further. We think the

challenge in system development lies in separating

Conceptual models from behavior.

We argue based on ideas behind Conceptual dependence

that CI is a prerequisite to being able to separate the different

functional requirements from each other in the behavior part

of the application [23].

D. Ampersand as illustration

We first, will describe a prototype system called

Ampersand2, based on a requirements specification language

with relational semantics to illustrate the feasibility of

implementing principles in source code [31]. Ampersand

relies on model-driven development (MDD) to generate

systems entirely defined by its domain model and business

rules.

E. Ampersand applies CI and relation algebra for AD

We will explain the workings of Ampersand to

demonstrate that flexibility of business functional

requirements is feasible on source code level. This example

is added for technical readers to explain the low-level code

involved in separating business terms from application code.

It also demonstrates with low-level code that a possibility to

separate the business requirements from each other can be

accomplished. The system Ampersand has separated the

conceptual model from behavior. It, therefore, conforms to

CI. It is based on relation algebra and has a mathematical

structure [31, 32]. The conceptual model in Ampersand

consists of concepts and relations between concepts. All

information about concepts and relations is described in an

Ampersand script (typically a .txt file). There is no extra

2 Named after the ampersand symbol (&). According to Michels et al.

the name refers to getting the best from both business and IT, i.e., achieving

results from theory and practice alike, and realizing the desired results

effectively and more efficiently than ever before.

information of the business hidden in the software system.

Behavior is described and defined in invariant (or

declarative) business rules. The behavior is only applicable

to the concepts and relations in the script. A script contains

one Context that is entirely separate from other Contexts that

can be defined in Ampersand. Ampersand applies rules as a

way to connect the conceptual model structure to behavior.

Rules can also be defined to check the consistency of data.

Ampersand applies Rule checking behavior to define the

software behavior. Rule checking is applied to Concepts and

Relations in the Ampersand model. Examples from rules in

healthcare can be: Diagnoses must have a relation to a

Medical doctor, Diagnoses must have a date, a Patient

cannot receive medication without the consent of the MD.

Each rule must be independent of the other rules in

Ampersand, and therefore, behavior can be defined

according to independent business functions.

F. Ampersand Runtime

The Ampersand Runtime can read, parse the script and

import the Conceptual model, data, and rules. The script

contains models on level M1 and M0. After reading this, a

Rule engine checks business rules and signals violations. It

operates on any script that conforms to the syntax and

constraints of the Ampersand approach (On level M2).

G. Example Ampersand script

The following description of the Ampersand script is the

model in natural language on level M2 of the OMG. Here we

describe constraints and model elements (categories) that can

be present in the script.

The first term in the Ampersand script is the word:

CONTEXT. It signals the beginning of the script.

ENDCONTEXT signals the ending. Then a PATTERN is

presented consisting of CONCEPTS and RELATIONS.

After the pattern, the word ENDPATTERN closes this

part, and in the script, PROCESSs can be defined regarding

Ampersand RULES.

Summarizing, we can state that Ampersand follows the

principles of CI by providing flexibility for the structure and

naming of the data model. There are two different methods

for keeping the conceptual model separate from the

application code in Ampersand. First, the Ampersand

Runtime works directly with the script and does not know

about the domain in the script. Second, the script can be used

for MDD. The Ampersand system conforms to the

Independence axiom of AD, at least as far as functional

requirements are concerned that can be defined in rules.

We have explained the workings of Ampersand in detail

to demonstrate that flexibility of business functional

requirements is feasible on source code level.

DEBORAH TARENSKEEN ET AL.: UNINTENDED EFFECTS OF DEPENDENCIES IN SOURCE CODE ON THE FLEXIBILITY OF IT IN ORGANIZATIONS 89

VII. RESEARCH METHOD

A. Data collection procedure

We report the outcomes of code analysis of three systems.

Two of these systems are frequently used in international

health practice. The third system implements the standard of

openEHR; a development we see more often these days. The

latter claims to support different kinds of models for medical

data. The research data are downloaded systems from

GitHub. These were run locally to assess runtime

dependencies and check if the source code is complete.

Then, we have analyzed the documentation and the source

code. We classified source code in types, the source code for

libraries, the source code for initializing the database,

source code for user interface frameworks and source code

for business and other functionality in the software system.

Only the last type of files have been examined in RQ2.

Since the idea of the paper is to evaluate open source

systems in healthcare for application of CI and AD, we have

searched for open source systems with an active community.

The systems have been included in the references (websites

and date) [33-36]. All of these are web applications that were

run by us with an apache or tomcat server. Cabolabs is

written in grails, openEMR in PHP and openMRS in java.

All could operate with a MySQL database. The cabolabs

openEHR download consists of 1351 files with 48 different

extensions. The openEMR consisted of 12118 files with 130

extensions. The openMRS software has two downloads, the

standalone consists of 723 files with 56 extensions. Because

we also wanted to analyze the java code, we have also

downloaded the core of openMRS with 1623 files with 40

different extensions.

B. A multistep approach

For each system, we applied a multistep approach

including the following action: (1) running the systems

locally, (2) analyzing all relevant and available

documentation, (3) analyzing the directory structure, (4)

extracting the data model from the MySQL database, (5)

analyzing specific healthcare terms (see chapter VIII), (6)

analyzing if database tables are hardcoded or generated for

the particular system and (7) selecting of source code with

(business) functionality (manually).

We incorporate specific methodological considerations

and action (per research question) into the results sections.

VIII. SEPARATE ANALYSIS OF HEALTHCARE TERMS

We wanted to assess if application code depended upon

hardcoded names in software code derived from healthcare.

In the source code distinguishing between names that refer to

healthcare terms and names that are necessary to follow the

technical program flow, is difficult. Since we do not have

expertise on healthcare terminology, but we wanted to signal

the terms that were healthcare terms, we have asked

independent reviewers and one healthcare professional

(psychiatrist) to review the names of database tables and list

the names derived from or partly related to healthcare.

We have asked four reviewers that are not researchers or in

any way related to the case studies. We have asked them to

evaluate every table name in the three databases.

The scores of the healthcare professional have been

registered separately also. For every open source program,

there were two scores: the percentage of table names that

three of the four reviewers labeled as healthcare related.

Moreover, the separate score of the healthcare professional.

In Table I we find the number and percentage of table

names with recognizable healthcare terminology parts. The

healthcare professional classified more names as healthcare

related than the other persons, but all the table names that the

3 out of 4 persons listed were a subset of the names that the

healthcare professional listed. We are now able to assess

interconnectedness of application code to hardcoded

healthcare terms.

IX. RESULTS CONCEPTUAL INDEPENDENCE AND AXIOMATIC

DESIGN IN SOURCE CODE

A. Conceptual independence in the documentation

This section addresses RQ1. We have extensively read the

associated documentation and searched for indications that

the system is adaptable based on healthcare terminology.

Through our analyses, and also based on our review of the

Information model of openEHR (on

http://www.openehr.org/), we conclude that openEHR

indicates CI. A quote from documentation of openEHR

confirms this view [37]: “Your EHR system does not need to

know a priori about any of the clinical data it will process,

such as vital signs, diagnoses or orders. Models for those

things are developed separately. Models for data sets and

forms are also developed separately, and UI form

components are generated from these definitions.”

TABLE I.

EVALUATION OF HEALTHCARE RELATED TERMS IN TABLE

 openEHR
openEM

R
openMRS

Number of

tables
 59 212 148

Number of

tables with

Health care

related

names

According

to 3 of 4

reviewers

1 30 16

According

to Health

care

professional

2 62 50

Proportion

of tables

with Health

care related

names

According

to 3 of 4

reviewers

0,02 0,14 0,11

According

to Health

care

professional

0,03 0,29 0,34

90 COMMUNICATION PAPERS. POZNAŃ, 2018

The data structure is said to be very flexible and can

support transformations to other healthcare terminology

standards.

In openEMR, there exists no reference to a model, but we

find a description of the Database structure [38]. There is

some variability for the conceptual model, by which we

mean, the user can define categories in one table. Thus,

openEMR is partly flexible concerning terminology, but not

concerning models of healthcare data. Finally, openMRS

shows signs of CI and AD. To highlight this particular view,

we quote from the wiki documentation of openMRS [39]:

“At the heart of OpenMRS is a concept dictionary. This

dictionary, much like a typical dictionary, defines all of the

unique concepts (both questions and answers) used

throughout the system.”

The software itself, openMRS, in essence, is constructed

to support ‘modules.’ Implementations can modify the

behavior of the system to meet local requirements using

these modules. Because changes can be added to the

Conceptual model, it is not necessary for everyone having to

agree on a single approach.

B. Interdependency of table names and source code

We now report the results of for RQ2. These results

consist of totals of code mining results.

We have defined two indications of the interdependency

of code and data, i.e., I) hardcoded use of table names in the

source code of more than 80 percent of the tables and II)

hardcoded use of table names in the source code of more

than 80 percent of the source code.

We did not find the expected first indication in every system.

We would have expected the use of all the tables in the

source code. If table names are missing, they are not used.

Since the named applications are the only applications that

use the database tables, this needs further investigation.

The second indication has been signaled in the source

code files. If names of database tables in source files are

hardcoded, then any particular change in table names implies

changes in the source code. With table names spread over

different files, then changes in table names lead to changes in

multiple maybe interdependent files, leading to unpredictable

behavior of the software application.

Why would a table name change? If ideas about the

Conceptual model change or if other functionality needs

other data concepts or maybe extra attributes (columns in

tables) then the table names and columns will change.

Adaptations of concepts and table names or columns are

frequent in the evolution of code [25]. In this empirical study

of Qiu, it was found that adding tables, columns and

changing names of tables and columns frequently appear.

We focus here, specifically, on the names that are healthcare

related, because we signal a relation between business terms

and source code files.

Our method can be described in the following way: we

have extracted all table names from the applied database

management system and have counted the number of times

these names are hardcoded in software source code. We have

calculated the percentage of database table names that were

found in the source code files. We have counted the number

of source code files that access database table names

directly, or use Class names that are derived from table

names, for instance by removing the dash. In Figure 2 the

relations of the source code files to table names are visually

presented. We also have calculated the percentage of source

code files, that access table names directly.

Counting will demonstrate the relation.

Fig. 2 The existence of relations between source code and table names

Concerning openEHR, 46% of table names have been

found in the programming code, but only two of those are

marked as Healthcare related. The names are doctor-proxy

and patient-proxy, but no table names are related to medical

knowledge. The groovy files with table names accounted for

99% of 176 files, but these were not marked as Healthcare

related, exception above. In groovy files, 69% class names

have been found, that are derived from table names. Groovy

files with these class names accounted for 69% of the groovy

files.

In the openEMR download, 82% of table names are found

hardcoded in PHP-code. Including 29 of 30 with Healthcare-

related table names. In the PHP-files 94% of 5401 files have

access to hard-coded table names.

In the openMRS-core download, we have found 57% of

table names are hardcoded in java-source code. Including

almost all table names (14 of the 16), that have been marked

Healthcare related. In the Java-files in the openMRS-core,

100% of 1019 files access hardcoded table names.

Based on the second indication, we find an extensive

interdependency between source code and database table

names in all three systems.

X. IS CONCEPTUAL INDEPENDENCE APPLIED IN THE SOFTWARE

APPLICATION?

This paragraph reports results for RQ3. The indications

below are derived from characteristics of CI:

• Indication: No hardcoded use of healthcare-related table

names in the source code.

• Indication: A presence of a separate structured model for

healthcare terms, in the source code for generating

database tables.

• Indication: A presence of a separate structured model for

healthcare terms, in a separate file.

DEBORAH TARENSKEEN ET AL.: UNINTENDED EFFECTS OF DEPENDENCIES IN SOURCE CODE ON THE FLEXIBILITY OF IT IN ORGANIZATIONS 91

We expect that when the healthcare-related table names

are found in source code files, then changes in healthcare

terminology directly affect the source code.

So for the first indication of RQ3, we have to mark

database table names that have a direct reference to the

medical terminology in the system. For this indication, we

had first to classify all table names in “Unknown name” and
“Healthcare terminology name.” See Chapter VIII. Then we

searched for occurrences of healthcare-related table names in

source code files. Two systems: openEMR and openMRS,

applied hardcoded healthcare-related table names in the

source code.

The other two indications, above, are meant to

demonstrate a separation of the conceptual model and the

application code, as is a characteristic of CI. In detail, we

have found that openEMR and openMRS have applied

frameworks for separating business domain terms (the

Conceptual model) and business logic from the rest of the

application code. The frameworks used are Zend for

openEMR and Hibernate for java in openMRS. These

frameworks and the related source code of the systems have

been analyzed. The frameworks use script code for defining

the (Business) Conceptual model. They do not separate the

Conceptual model from the behavior of the software.

Therefore these do not comply with CI. The frameworks aid

the developers with building and partly generating source

code. Hibernate helps developers in separating database

management systems from source code but does not aid in

decoupling business terminology from source code. The

framework script code then becomes part of the source code.

We cannot directly extract the applied Conceptual models.

The software of openEHR contains separable Conceptual

models apart from application logic. We confirm the

existence of separate Conceptual models because we also

find “parsers” and “indexers” in the source code.

For the last indication, we have counted the number of

times table names can be found in one file, to search for

indications of a definition file for the Conceptual model. In

openEHR, we found the “opt-file” and “adl-file,”, in which

the M1 model is included as data. They comply with the M2

model of openEHR. Therefore it can be used for separating

the Conceptual model from the behavior of the software.

In the openMRS source, the liquibase tool is applied for

updating tables based on changes in the database for new

modules. With the liquibase functionality updates on

database structure and data can be automated with

liquibase.xml-files. The M1 model is input as xml-data, but

no M2 model can be found.

In openEMR, only an .sql file was found that contained 188

of the 212 tables. The healthcare related terms are not

included as data but are hardcoded in sql. It cannot be used

as an M1 model, because changing it will break the source

code and no M2 model can be found.

Concluding: In the source code of Cabolabs openEHR

server system all three indications have been found. Several

files with the Conceptual model and its instances (M1 and

M0) have been signaled. These files with extensions .adl and

.opt can be reused by other openEHR standard based

systems. Cabolabs openEHR-server applies CI.

In the other systems frameworks such as Hibernate and

Zend have been used, for partly separating the model from

the application code. Further, the frameworks do not

distinguish business terms from application code classes.

The consequence is that the current application of

frameworks involves code programmers for adaptation of

business logic and business terminology.

XI. AXIOMATIC DESIGN APPLIED IN SOURCE CODE

In this paragraph, a report of RQ4 is given. For AD,

functional requirements are primary. In AD it is required that

the software system can be divided into components that are

related to functional requirements. Systems based on AD

will be adaptable based on changing functional requirements

because business IT architects can pinpoint specific source

files where changes are necessary.

RQ4 will lead to demarcation lines in the Runtime

components or demarcation lines in the source code, which

has different independent functional requirements.

• Indication: Existence of directory structures in the source

code that show Functional requirements

• Indication: Existence of runtime modules that can be

added and deleted for Functional requirements behavior

that is executed

The indications for Axiomatic design will be studied in detail

in future research. In this overall check of the source code, it

is found that openMRS contains a directory structure for

separate modules. We find complementary functionality in

the openMRS runtime application because modules with

Business functionality can be turned off and on. With the

openEHR server software, tooling is under construction that

can generate User interfaces based on the opt-files.

Moreover, thus separation of high-level functional

requirements can be realized.

XII. CONCLUSION AND DISCUSSIONS

In this study, we have explored the adaptability of source

code concerning the business requirements and changes in

the business domain terminology. Interdependency of the

data model and the application code can make systems hard

to change, this is seen in the literature and in our

investigation of open source healthcare systems.

However, the dependency of the application source code

on healthcare terms can be avoided by separating these terms

in a separate model as input for the application. We

demonstrate this with the Ampersand prototype, where

indications for CI and AD can be located in the source code.

92 COMMUNICATION PAPERS. POZNAŃ, 2018

We have explored how business terms and business

functionality appear in application source code in three open

source systems actively used in healthcare. We have shown

that CI, separating the business terms from the application

software, can be applied and is applied in openEHR and

partly in openMRS. AD has not been studied extensively in

this case, but indications for AD are found in openMRS.

We conclude that because of the extensive

interdependence of the data model and application source

code in openEMR and openMRS, business terminology

becomes part of the source code and cannot be adapted

without radically changing the source code. So we conclude

that in these systems the flexibility of business terminology is

obstructed if the business terminology is not explicitly

separated from the application source code.

Despite this studies contributions, there are several

limitations that future research should address. The

researchers remark that an alternative to separating the

conceptual model from application source code would be to

use tooling for source code editing based on business

requirements. Moreover, currently, some indications for this

kind of tools were present in the source code that is

examined. Frameworks help to separate the Conceptual

model from the application code, but in the end, Conceptual

models become an integrated part of the source code. When

the Conceptual model is included in the source code, then it

will depend on professional skills or discipline of the

programmer(s), to check that the Conceptual model will stay

separated from application code. Since frameworks do not

distinguish health care terms from software application

classes, medical expertise is necessary to locate these.

In this paper, we have only studied software architecture

for a limited number of applications and components.

Therefore it can be questioned if a full-scale application of

this principle can be implemented in enterprise architectures.

We are currently researching the design and implementation

of a separate (conceptual model-layer) data layer in a large

scale healthcare IT architecture.

REFERENCES

[1] J. C. Henderson and H. Venkatraman "Strategic alignment:

Leveraging information technology for transforming organizations,"

Ibm Systems Journal, 1, (1993), 32, pp. 472-484, doi:

10.1147/sj.382.0472

[2] R. Van de Wetering, P. Mikalef and A. Pateli "A strategic alignment

model for IT flexibility and dynamic capabilities: toward an

assessment tool," Proceedings of the 25th European Conference on

Information Systems (ECIS), Guimarães, Portugal(2017), pp. 1468-

1485, doi:

[3] R. van de Wetering, P. Mikalef and R. Helms "Driving organizational

sustainability-oriented innovation capabilities: a complex adaptive

systems perspective," Current Opinion in Environmental

Sustainability(2017), 28, pp. 71-79, doi:

http://dx.doi.org/10.1016/j.cosust.2017.08.006.

[4] R. van de Wetering, J. Versendaal and P. Walraven "Examining the

relationship between a hospital’s IT infrastructure capability and
digital capabilities: a resource-based perspective, doi:

[5] L. Bass, P. Clements and R. Kazman Software architecture in

practice. Addison-Wesley Professional, Upper Saddle River, NJ,

2012.

[6] F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.

Nord and J. Stafford Documenting Software Architectures: Views and

Beyond. Addison-Wesley Professional, 2011.

[7] J. Tyree and A. Akerman "Architecture decisions: Demystifying

architecture," Ieee Software, 2, (2005), 22, pp. 19-+, doi:

10.1109/ms.2005.27.

[8] TheOpenGroup TOGAF Version 9.1 Evaluation copy. The Open

Group, 2011.

[9] M. M. Lehman "Laws of software evolution revisited," European

Workshop on Software Process Technology(1996), pp. 108-124, doi:

https://doi.org/10.1007/BFb0017737.

[10] I. Herraiz, D. Rodriguez, G. Robles and J. M. Gonzalez-Barahona

"The evolution of the laws of software evolution: A discussion based

on a systematic literature review," ACM Computing Surveys (CSUR),

2, (2013), 46, pp. 28, doi: 10.1145/2543581.2543595.

[11] N. Ajienka, A. Capiluppi and S. Counsell. "Managing Hidden

Dependencies in OO Software: a Study Based on Open Source

Projects." In Proceedings of the Empirical Software Engineering and

Measurement (ESEM), 2017 ACM/IEEE International Symposium

on, IEEE, 2017, pp. 141-150, doi: 10.1109/ESEM.2017.21.

[12] H. Kagdi, M. L. Collard and J. I. Maletic "A survey and taxonomy of

approaches for mining software repositories in the context of software

evolution," Journal of Software: Evolution and Process, 2, (2007), 19,

pp. 77-131, doi: 10.1002/smr.344.

[13] H. Kagdi and D. Poshyvanyk "Who can help me with this change

request?," Program Comprehension, 2009. ICPC'09. IEEE 17th

International Conference on(2009), pp. 273-277, doi:

10.1109/ICPC.2009.5090056.

[14] A. Ahmad, P. Jamshidi and C. Pahl "A framework for acquisition and

application of software architecture evolution knowledge: 14," ACM

SIGSOFT Software Engineering Notes, 5, (2013), 38, pp. 1-7, doi:

10.1145/2507288.2507301.

[15] P. Jamshidi, M. Ghafari, A. Ahmad and C. Pahl. "A framework for

classifying and comparing architecture-centric software evolution

research." In Proceedings of the Software Maintenance and

Reengineering (CSMR), 2013 17th European Conference on, IEEE,

2013, pp. 305-314, doi:

[16] T. Haitzer, E. Navarro and U. Zdun "Reconciling software

architecture and source code in support of software evolution," J Syst

Softw(2017), 123, pp. 119-144, doi:

https://doi.org/10.1016/j.jss.2016.10.012.

[17] S. McGinnes. "The Problem of Conceptual Incompatibility." In

Proceedings of the International Conference on Availability,

Reliability, and Security, Springer, 2011, pp. 69-81, doi:

[18] S. McGinnes and E. Kapros "Conceptual independence: A design

principle for the construction of adaptive information systems,"

Information Systems(2015), 47, pp. 33-50, doi:

https://doi.org/10.1016/j.is.2014.06.001.

[19] N. P. Suh Axiomatic Design: Advances and Applications (The Oxford

Series on Advanced Manufacturing). Oxford University Press, New

York Oxford, 2001.

[20] N. P. Suh "Fundamentals of Design and Deployment of Large

Complex Systems: OLEV, MH, and Mixalloy," Journal of Integrated

Design & Process Science, 3, (2012), 16, pp. 7-28, doi: 10.3233/jid-

2012-0001.

[21] C. Larman Applying UML and patterns : an introduction to object-

oriented analysis and design and iterative development. Prentice Hall

PTR Upper Saddle River, N.J., 2005.

[22] F. Buschmann, K. Henney and D. Schmidt Pattern-oriented Software

Architecture: on patterns and pattern language. John wiley & sons,

2007.

[23] D. Tarenskeen and R. Bakker. "Applying Axiomatic design and

Conceptual independence in the domain of IT systems." In

Proceedings of the ICAD 2017 International Conference on

Axiomatic Design, Iasi Romania, 2017, doi:

https://doi.org/10.1051/matecconf/201712701006.

[24] A. Aryani, F. Perin, M. Lungu, A. N. Mahmood and O. Nierstrasz.

"Can we predict dependencies using domain information?." In

Proceedings of the Reverse Engineering (WCRE), 2011 18th Working

DEBORAH TARENSKEEN ET AL.: UNINTENDED EFFECTS OF DEPENDENCIES IN SOURCE CODE ON THE FLEXIBILITY OF IT IN ORGANIZATIONS 93

Conference on, IEEE, 2011, pp. 55-64, doi: http://

doi.ieeecomputersociety.org/10.1109/WCRE.2011.17.

[25] D. Qiu, B. Li and Z. Su. "An empirical analysis of the co-evolution of

schema and code in database applications." In Proceedings of the

Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ACM, 2013, pp. 125-135, doi:

10.1145/2491411.2491431.

[26] A. Cleve, M. Gobert, L. Meurice, J. Maes and J. Weber

"Understanding database schema evolution: A case study," Sci.

Comput. Program.(2015), 97, pp. 113-121, doi:

https://doi.org/10.1016/j.scico.2013.11.025.

[27] T. Mens, L. Meurice, M. Goeminne, C. Nagy, A. Decan and A. Cleve

"Analyzing the Evolution of Database Usage in Data-Intensive

Software Systems, October 14, 2017, (2017), 2017, doi: [28]

[28] I. Object Management Group Meta Object FacilityTM (MOFTM)

Core 2.5.1. 2016. http://www.omg.org/spec/MOF/. Retrieved October

9, 2017, Accessed in 2017.

[29] I. Object Management Group Meta-Modeling and the OMG Meta

Object Facility (MOF) . 2017. www.omg.org/ocup-2/documents/

Meta-ModelingAndtheMOF.pdf. Retrieved October 9, 2017, Accessed

in 2017.

[30] J. Bézivin and O. Gerbé. "Towards a precise definition of the

OMG/MDA framework." In Proceedings of the Automated Software

Engineering. (ASE 2001). 16th Annual International IEEE, 2001, pp.

273-280, doi: 10.1109/ASE.2001.989813.

[31] G. Michels, S. Joosten, J. van der Woude and S. Joosten.

"Ampersand." In Proceedings of the International Conference on

Relational and Algebraic Methods in Computer Science, Springer

Verlag, 2011, pp. 280-293, doi: DOI https://doi.org/10.1007/978-3-

642-21070-9_21.

[32] G. Michels, S. Joosten, J. v. d. Woude and S. Joosten. "Ampersand

applying relation algebra in practice." In Proceedings of the

Proceedings of the 12th international conference on Relational and

algebraic methods in computer science, Rotterdam, The Netherlands,

Springer-Verlag, 2011, pp. 280-293

[33] P. Pazos openEHR cabolabs server-v0.9. 2017. https://github.com/

ppazos/cabolabs-ehrserver. Retrieved 03/05/2017, Accessed in 2017.

[34] openEMR openEMR-v5.0.0. 2017. https://github.com/openmrs/

openmrs-standalone. Retrieved 03/03/2017, Accessed in 2017.

[35] openMRS openMRS Core-v4.0.0. 2017.

https://github.com/openmrs/openmrs-core. Retrieved 03/04/2017,

Accessed in 2017.

[36] openMRS openMRS Standalone 2.5. 2017. https://github.com/

openmrs/openmrs-standalone. Retrieved 03/03/2017, Accessed in

2017.

[37] What is openEHR? 2017. http://www.openehr.org/what_is_openehr#.

Retrieved October 14, 2017, Accessed in 2017.

[38] openEMR Database structure openEMR. 2014. http://www.openemr.

org/wiki/index.php/Database_Structure. Retrieved October 14,

Accessed in 2017.

[39] B. Mamlin and S. Jindal Introduction to OpenMRS. 2017.

https://wiki.openmrs.org/display/docs/Introduction+to+OpenMRS.

Retrieved October 14, 2017, Accessed in 2017.

94 COMMUNICATION PAPERS. POZNAŃ, 2018

