Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 18

Proceedings of the 2019 Federated Conference on Computer Science and Information Systems

Automated Generation of Business Process Models using Constraint Logic Programming in Python

, , ,

DOI: http://dx.doi.org/10.15439/2019F174

Citation: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 733742 ()

Full text

Abstract. High complexity of business processes in real-life organizations is a constantly rising issue. In consequence, modeling a workflow is a challenge for process stakeholders. Yet, to facilitate this task, new methods can be implemented to automate the phase of process design. As a main contribution of this paper, we propose an approach to generate process models based on activities performed by the participants, where the exact order of execution does not need to be specified. Nevertheless, the goal of our method is to generate artificial workflow traces of a process using Constraint Programming and a set of predefined rules. As a final step, the approach was implemented as a dedicated tool and evaluated on a set of test examples that prove that our method is capable of creating correct process models.


  1. M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers et al., Fundamentals of business process management. Springer, 2013, vol. 1.
  2. V. Jovanovic and D. Shoemaker, “Iso 9001 standard and software quality improvement,” Benchmarking for Quality Management & Technology, vol. 4, no. 2, pp. 148–159, 1997.
  3. M. Havey, Essential business process modeling. O’Reilly Media, Inc., 2005.
  4. W. Cieśliński, “Procesowa orientacja przedsiębiorstw: wyniki badań empirycznych,” Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, no. 52 Podejście procesowe w organizacjach, pp. 41–48, 2009.
  5. S. Lusk, S. Paley, and A. Spanyi, “The evolution of business process management as a professional discipline,” BP Trends, vol. 20, pp. 1–9, 2005.
  6. E. Kucharska, “Heuristic method for decision-making in common scheduling problems,” Applied Sciences, vol. 7, no. 10, p. 1073, 2017.
  7. K. Kluza, P. Wiśniewski, K. Jobczyk, A. Ligęza, and A. Suchenia (Mroczek), “Comparison of selected modeling notations for process, decision and system modeling,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 11. IEEE, 2017, pp. 1095–1098.
  8. P. Pasamonik, “Modelowanie procesów biznesowych zorientowane na czynności,” Zeszyty Naukowe Wyższej Szkoły Informatyki, vol. 9, no. 2, pp. 102–116, 2010.
  9. W. M. van der Aalst, “Process-aware information systems: Lessons to be learned from process mining,” in Transactions on petri nets and other models of concurrency II. Springer, 2009, pp. 1–26.
  10. OMG. (2011) Business process model and notation. [Online]. Available: https://www.omg.org/spec/BPMN/2.0
  11. W. M. van der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs et al., “Process mining manifesto,” in International Conference on Business Process Management. Springer, 2011, pp. 169–194.
  12. M. Szpyrka, Sieci Petriego w modelowaniu i analizie systemów współbieżnych. Wydawnictwa Naukowo-Techniczne, 2008.
  13. A. A. Kalenkova, M. De Leoni, and W. M. van der Aalst, “Discovering, analyzing and enhancing BPMN models using ProM,” in BPM (Demos), 2014, p. 36.
  14. A. A. Kalenkova, W. M. van der Aalst, I. A. Lomazova, and V. A. Rubin, “Process mining using BPMN: relating event logs and process models,” Software & Systems Modeling, vol. 16, no. 4, pp. 1019–1048, 2017.
  15. A. Kalenkova, A. Burattin, M. de Leoni, W. van der Aalst, and A. Sperduti, “Discovering high-level BPMN process models from event data,” Business Process Management Journal, 2018.
  16. W. M. van der Aalst, A. Weijters, and L. Maruster, “Workflow mining: Which processes can be rediscovered,” BETA Working Paper Series, WP 74, Eindhoven University of Technology, Eindhoven, Tech. Rep., 2002.
  17. S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Scalable process discovery with guarantees,” in International Conference on Enterprise, Business-Process and Information Systems Modeling. Springer, 2015, pp. 85–101.
  18. A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” in 2011 IEEE symposium on computational intelligence and data mining (CIDM). IEEE, 2011, pp. 310–317.
  19. S. K. van den Broucke and J. De Weerdt, “Fodina: a robust and flexible heuristic process discovery technique,” decision support systems, vol. 100, pp. 109–118, 2017.
  20. J. C. Buijs, B. F. Van Dongen, and W. M. van der Aalst, “On the role of fitness, precision, generalization and simplicity in process discovery,” in OTM Confederated International Conferences "On the Move to Meaningful Internet Systems". Springer, 2012, pp. 305–322.
  21. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno, “Automated discovery of structured process models: Discover structured vs. discover and structure,” in International Conference on Conceptual Modeling. Springer, 2016, pp. 313–329.
  22. W. M. van der Aalst, Process mining: discovery, conformance and enhancement of business processes. Springer, 2011, vol. 2.
  23. A. Augusto, R. Conforti, M. Dumas, and M. La Rosa, “Split miner: Discovering accurate and simple business process models from event logs,” in 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017, pp. 1–10.
  24. P. Wiśniewski, K. Kluza, and A. Ligęza, “An approach to participatory business process modeling: BPMN model generation using constraint programming and graph composition,” Applied Sciences, vol. 8, no. 9, p. 1428, 2018.
  25. M. L. Owoc et al., “Benefits of knowledge acquisition systems for management. an empirical study,” in 2015 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2015, pp. 1691–1698.
  26. W. M. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Discovering process models from event logs,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.
  27. E. Tsang, Foundations of constraint satisfaction: the classic text. BoD–Books on Demand, 2014.
  28. A. Niederliński, Programowanie w logice z ograniczeniami: Łagodne wprowadzenie dla platformy ECLiPSe. Wydawnictwo Pracowni Kom- puterowej Jacka Skalmierskiego, 2010.
  29. P. Wiśniewski, K. Kluza, M. Ślażyński, and A. Ligęza, “Constraint-based composition of business process models,” in Business Process Management Workshops, E. Teniente and M. Weidlich, Eds. Cham: Springer International Publishing, 2018, pp. 133–141.
  30. A. A. Cervantes, N. R. van Beest, M. La Rosa, M. Dumas, and L. García-Bañuelos, “Interactive and incremental business process model repair,” in OTM Confederated International Conferences" On the Move to Meaningful Internet Systems". Springer, 2017, pp. 53–74.
  31. B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and W. M. Van Der Aalst, “The ProM framework: A new era in process mining tool support,” in International conference on application and theory of petri nets. Springer, 2005, pp. 444–454.