Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 18

Proceedings of the 2019 Federated Conference on Computer Science and Information Systems

Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction

, ,

DOI: http://dx.doi.org/10.15439/2019F365

Citation: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 18, pages 36 ()

Full text

Abstract. We summarize the sixth data mining competition organized at the Knowledge Pit platform in association with the Federated Conference on Computer Science and Information Systems series, titled Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction. We outline the scope of this challenge and briefly present its results. We also discuss the problem of acquiring knowledge about new notions from video games through an active learning cycle. We explain how this task is related to the problem considered in the challenge and share results of experiments that we conducted to demonstrate usefulness of the active learning approach in practice.

References

  1. S. Yan, K. Chaudhuri, and T. Javidi, “Active learning from imperfect labelers,” in Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS’16. USA: Curran Associates Inc., 2016, pp. 2136–2144. [Online]. Available: http://dl.acm.org/citation.cfm?id=3157096.3157335
  2. S. H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia, S. Sen, A. Ratner, B. Hancock, H. Alborzi, R. Kuchhal, C. Ré, and R. Malkin, “Snorkel drybell: A case study in deploying weak supervision at industrial scale,” in SIGMOD Conference. ACM, 2019, pp. 362–375.
  3. B. Settles, Active Learning. Morgan & Claypool Publishers, 2012.
  4. E. Lughofer, “Hybrid active learning for reducing the annotation effort of operators in classification systems,” Pattern Recogn., vol. 45, no. 2, pp. 884–896, Feb. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2011.08.009
  5. W. Cai, Y. Zhang, Y. Zhang, S. Zhou, W. Wang, Z. Chen, and C. Ding, “Active learning for classification with maximum model change,” ACM Trans. Inf. Syst., vol. 36, no. 2, pp. 15:1–15:28, Aug. 2017. [Online]. Available: http://doi.acm.org/10.1145/3086820
  6. H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in Proceedings of the Twenty-first International Conference on Machine Learning, ser. ICML ’04. New York, NY, USA: ACM, 2004, pp. 79–. [Online]. Available: http://doi.acm.org/10.1145/1015330.1015349
  7. K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from real and synthetic data,” CoRR, vol. abs/1703.03365, 2017. [Online]. Available: http://arxiv.org/abs/1703.03365
  8. C. Zhang and K. Chaudhuri, “Active learning from weak and strong labelers,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, pp. 703–711. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969239.2969318
  9. A. Janusz, T. Tajmajer, M. Świechowski, Ł. Grad, J. Puczniewski, and D. Ślęzak, “Toward an intelligent HS deck advisor: Lessons learned from aaia’18 data mining competition,” in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018., M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2018, pp. 189–192. [Online]. Available: https://doi.org/10.15439/2018F386
  10. A. Janusz, D. Ślęzak, S. Stawicki, and K. Stencel, “SENSEI: an intelligent advisory system for the esport community and casual players,” in 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, Santiago, Chile, December 3-6, 2018. IEEE Computer Society, 2018, pp. 754–757. [Online]. Available: https://doi.org/10.1109/WI.2018.00010
  11. A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.
  12. D. Ruta, L. Cen, and Q. H. Vu, “Greedy incremental support vector regression,” in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, Leipzig, Germany, September 1-4, 2019., M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., 2019.
  13. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006.