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Abstract—Due to advances in machine learning techniques
and sensor technology, the data driven perspective is nowadays
the preferred approach for improving the quality of mainte-
nance for machines and processes in industrial environments.
Our study reviews existing maintenance works by highlighting
the main challenges and benefits and consequently, it shares
recommendations and good practices for the appropriate usage
of data analysis tools and techniques. Moreover, we argue that
in any industrial setup, the quality of maintenance improves
when the applied data driven techniques and technologies: (i)
have economical justifications; and (ii) take into consideration the
conformity with the industry standards. In order to classify the
existing maintenance strategies, we explore the entire data driven
model development life cycle: data acquisition and analysis,
model development and model evaluation. Based on the surveyed
literature we introduce taxonomies that cover relevant predictive
models and their corresponding data driven maintenance tech-
niques.

I. INTRODUCTION

T
HE quality of maintenance is a relevant aspect in the

assessment of any industrial product or process, and

therefore a challenging research problem. Our survey shows

that maintenance approaches are continuously evolving over

time. Earlier, corrective maintenance also known as reac-

tive maintenance was used. Preventive maintenance proves

to be a better alternative, as the maintenance actions are

employed before the failure occurs. This approach evolved

into condition-based maintenance, where decisions are based

on the evaluation of the machine status through inspections

and measurements. Among all the existent approaches to

maintenance, each of them varying in terms of efficiency

and complexity, predictive maintenance seems to best fit the

needs of a highly competitive industry setup, as argued by

[1]. Predictive maintenance allows maintenance actions to be

based on changes of the machine and process parameters,

which are continuously monitored by sensors. Currently, due

to recent advances in sensor technology, data communica-

tion, and computing, the ability to collect big volumes of
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heterogeneous, raw sensor data produced by equipment under

observation is exponentially increasing. Therefore, historical

information about normal and abnormal patterns and the

related corrective actions employed during the lifetime of an

industrial asset is becoming available. In order to deal with

such high-dimensional problems, the predictive maintenance

strategy uses a variety of techniques and prediction models

that study both live and historical information. Further on,

this information is used to learn prognostics data and to

make accurate diagnostics and predictions, as presented by [2],

[3], and [4]. They argue that the implementation of effective

prognosis for maintenance has a variety of benefits includ-

ing increased system safety, improved operational reliability,

reduced maintenance, inspection times, repair failures and

life cycle costs. Past works on predictive maintenance show

that maintenance actions are performed by employing various

prediction models and modeling techniques. Among prediction

models, the machine learning (ML) approaches are typically

considered the most suitable to deal with high dimensional

and unstructured data, as argued by [8] and [9]. Moreover,

multimodal fusion techniques are increasingly used by ML

models for combining data from multiple, diverse modalities

and sources with the goal of retrieving new insights from the

fused knowledge i.e. multiple sensors may collect complemen-

tary or concurrent information which is fused in order to obtain

more accurate machine diagnosis and prognosis. There is a lot

of previous work on data fusion, as the topic dates back in the

90es. Application scenarios that implement ML models and

apply multimodal data fusion for maintenance optimization

purposes are defined by [2], [3], [9] and [10]. However, to date,

no standard, nor good practice recommendations for fusion and

integration of multimodal data have emerged. Our research

work reviews the model-agnostic data fusion techniques in

order to find solutions for their optimal usage. We argue that

understanding the capabilities and challenges of existing multi-

modal data fusion methods and techniques has the potential to

deliver better data analysis tools across all domains, including

in the maintenance quality and management field of research.
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A. Maintenance Issues Relative to Prediction Quality

We envision the problematic of maintenance quality as a

complex topic with many complementary aspects: economical,

the conformity with the mainstream industrial standards and

technical. The first aspect follows the classical optimization

concerns relative to maintenance costs, by considering aspects

related to maintenance investment costs and resulting benefits.

Traditional approaches consider maintenance only as cost

related. However, the maintenance activities have direct im-

plications to the production and quality, therefore should

be treated as an investment, as argued by [11]. Moreover,

appropriate timing for performing maintenance activities has

economical justifications, as explained by [12] in the descrip-

tion of the damage model. The damage model recommends

the usage of maintenance actions only when clear evidence

about the machine or equipment status exists. It shows that

based on the long-term, historical data, it is possible to adapt

the predictive maintenance interval to the industrial item life

cycle by forecasting the items wear, and the impact of it on

the production chain, respectively. Reference [12] explains that

the probability of an item to fail is high at the beginning of

its operational life, in its burn-in period. During the burn-in

period, the failure probability of an item is constantly decreas-

ing. During the items working period, the failure probability

is low and remains constant, therefore the prediction of the

items failure during the working period is challenging. The

probability of failure raises with the working hours so that in

the wear period the probability for an item to fail is again high.

Therefore, [12] recommends as a good practice to perform

maintenance actions during the wear period of an items life

cycle.

The second aspect which, we believe, influences the quality

of maintenance is conformity with industrial standards during

the development life cycle of a maintenance product. Our

review of the literature shows the problematic of ad-hoc main-

tenance model development and implementations that do not

comply with the existing mainstream standards. This situation

leads to the absence of good practice recommendations or

general solutions in the development of maintenance prod-

ucts. We briefly review two existing industrial standards for

model development: Cross Industry Standard Process for Data

Mining (CRISP-DM) and Industry Data Space [13]. CRISP-

DM standard represents a guideline to follow in the process

of prototyping a learning model for maintenance purposes.

We shortly list the guideline steps i.e. business understand-

ing, data understanding, data preparation, data fusion, model

prototyping, model evaluation, and deployment. A complete

description is provided by the reference [45]. On its turn,

Industry Data Space standard represents the solution to the

actual problems raised by the huge volume of heterogeneous

data which need to be handled in a standardized way in

the industrial setup, as defined by [13]. Among the expected

benefits of any standard, we mention the knowledge sharing

and re-use which helps building complex, operational models.

The technical aspect of maintenance quality is related to

the set of decisions concerning the appropriate techniques and

approaches that should be used for the development of an

operational and highly qualitative maintenance model. Our

literature survey mainly focuses on analyzing the technical

aspect, but it considers also its connections with the economic

aspect. To our knowledge, none of the reviewed research works

takes into account the conformity with industrial standards for

model development and data management and security. One of

the main issues of actual maintenance techniques and methods

is exactly the absence of this holistic view in considering the

problem of the maintenance quality as directly influenced by

all the above three mentioned aspects. The rest of the paper

is structured as follows: Section 2 starts with a review of

maintenance approaches, according to the terminology defined

by both [14] and [15] maintenance standards. We introduce a

taxonomy that covers the surveyed approaches by categorizing

the employed predictive models, the corresponding modeling

techniques and the implementation algorithms, respectively.

Further on, we review the literature works focusing on the

technical steps of a maintenance model development process:

data acquisition and analysis, data fusion, model development

and evaluation, each of them being discussed in a subsection.

Moreover, we present the concept of multimodal data fusion

and we discuss a taxonomy of model-agnostic data fusion

methods and their usage recommendations. Section 3 presents

the review process we followed in gathering the literature for

our survey. Findings and results of the investigated approaches

are highlighted in Section 4. Finally, Section 5 concludes the

paper with a discussion about the research challenges and

future works.

II. BACKGROUND

A. Classification of Maintenance Approaches

The European recognized maintenance standards: DIN EN

13306 - Maintenance Terminology [14], and DIN EN 31051

- Fundamentals of Maintenance [15] are defining the main-

tenance related terminology and concepts. According to the

DIN EN 31051 standard, the maintenance concept is defined

as: the combinations of all technical and administrative actions

as well as actions of management in the lifetime of a unit, in

order to be in the fully functional state or to recover in this

one, so that this unit can fulfill his requirements.

The main maintenance activities i.e. service, inspection,

repair, and improvement are defined by the DIN EN 31051

standard. Their definitions together with other relevant main-

tenance concepts defined by the DIN EN 31051 maintenance

standard are listed in Table I. The DIN EN 13306 maintenance

standard defines the existing maintenance strategies: correc-

tive maintenance, preventive maintenance, condition-based

maintenance, and predictive maintenance. They are discussed

in the following subsections. Moreover, the definition of a

further maintenance strategy, namely prescriptive maintenance

- which is not yet standardized, but already used in practice -

is discussed in the following subsection.
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TABLE I
FUNDAMENTALS OF MAINTENANCE DIN EN 31051 STANDARD

Item Defines a component, device, subsystem, functional unit, equipment or a system which can be described and considered as an entity.

Wear Represents the reduction of wear margin due to chemical or physical processes.

Wear limit Is the defined minimum value of the wear margin.

Wear margin Defines the possible reserve function capacity under defined circumstances which a unit possesses.

Service Includes all activities delaying the degradation of the wear margin. The activities include cleaning, conservation, greasing, oiling,
complementing, changing and readjusting.

Inspection Refers to all activities used to determine and evaluate the actual conditions of facilities, machines, assemblies or components.
Inspection refers to collecting data, and related activities that can be measuring, verifying and monitoring.

Repair Covers activities for retrieving the nominal condition, such as renewing, patching and adjusting.

Improvement Defines the combination of all technical and administrative activities as well as activities of management in order to increase
the reliability, the maintainability, or the safety of an item without changing its initial function.

1) Corrective Maintenance: According to the EN 13306

standard, the corrective maintenance is defined as the mainte-

nance carried out after fault recognition and intended to put an

item into a state in which it can perform a required function. A

system that employs corrective maintenance is aware of all its

predefined set of failures and damages. But, in the industrial,

operational context new faults and their corresponding patterns

appear over time, because of the items usage during the

working hours. One main advantage of applying corrective

maintenance techniques is that the wear-limit of an item, i.e.

the service time is fully used. This implies that the effort for

items inspection and for replacing the item is significantly

reduced, compared with the case of preventive maintenance.

The main challenge in applying corrective maintenance is that

the item can fail at an unknown time not previously known

or decided and consequently can produce damages and an

additional cost that can be higher as the yield of full usage of

its wear margin.

2) Preventive Maintenance: The EN 13306 standard de-

fines preventive maintenance as the maintenance carried out

at predetermined intervals or according to prescribed criteria

and intended to reduce the probability of failure or the

degradation of the functioning of an item. One main chal-

lenge of preventive maintenance in operational context is that

industrial scenarios for data analysis do not provide tracking

of the past, abnormal behavior or maintenance operations that

were performed in order to correct or to prevent a faulty

behavior. Consequently, preventive maintenance defines a set

of actions carried out before failure and that are intended

to prevent failures or degradation of a machine. Time-based

maintenance is defined as the preventive maintenance approach

that recommends performing all maintenance activities after a

certain amount of operation hours, or by predefined schedul-

ing, regardless of the items health condition. The assumption

is that after several operational hours, the wear margin of an

item is worn out. The employed approach is to change the

item or to overhaul part of it before the wear margin is used.

The advantages of time based maintenance are the reduced

breakdown frequency and the increased service life compared

with other preventive maintenance strategies. It is therefore

recommended only when the safety of the environment can

be harmed, or when the items lifetime is known, which is not

the case in the operational environment. The economic justi-

fication behind the time-based maintenance approach is that

the maintenance costs can be kept low when the maintenance

interval is adjusted to the actual lifetime of the asset so that

the item or some of its parts are changed just before they fail.

3) Condition-based Maintenance: The EN 13306 standard

defines condition-based maintenance as the preventive mainte-

nance which includes a combination of condition monitoring

and/or inspection and/or testing, analysis, and the ensuing

maintenance actions. Condition-based maintenance aims to

anticipate a maintenance operation based on the evidence

of degradation and deviations from a supposed asset normal

behavior. The equipment is monitored with multiple sen-

sors which are supposed to acquire relevant data about the

equipment operation life. Additionally, contextual information

like temperature, humidity, etc. may also provide significant

information. Key Process Indicators (KPIs) or health indicators

are usually computed and analyzed, in order to discover trends

that lead to abnormal contexts and failure events.

4) Predictive Maintenance: According to the EN 13306

standard, predictive maintenance is defined as the condition-

based maintenance carried out following a forecast derived

from repeated analysis or known characteristics and eval-

uation of the significant parameters of the degradation of

the item. Predictive maintenance is a sub-class of condition

based maintenance. It uses a variety of approaches and ML

techniques to study both recent and historical data and to

learn prognostic models which are expected to make accurate

predictions about the future status of a machine or equipment.

The main challenge of predictive models is that they rely on

the assumption that there are certain contexts in the equipment

life time where the failure rate is increasing. In the industrial,

operational context there are patterns in which the failure

probability does not increase, but remains constant during the

equipment life time, and therefore the equipment can fail at

any time: it is the case of electrical and electronic components.

5) Prescriptive Maintenance: Terminologically, it is men-

tioned by neither the EN 13306, nor the DIN EN 31051

maintenance standards. But, its functionality can be conse-

quently deduced and is seen as a recommendation of one or

more courses of action based on the outcomes of models for

corrective and predictive maintenance. The main challenge of

prescriptive maintenance is the difficulty to build in practice

operative models. Existing research models are based on ad-
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hoc model development where ML methods and data fusion

techniques are jointly used with fuzzy reasoning, simulation

techniques, and evolutionary algorithms.

Tables II, III and IV introduced in Section 4 are constructed

based on the reviewed literature on maintenance strategies i.e.

corrective, preventive and predictive. The tables present the

surveyed literature, i.e. a structured review of the maintenance

type and goals, correlated with a specific statistical or data-

driven operational method, and the corresponding results. For

a better understanding of implementation techniques for main-

tenance purposes, the next section reviews the basic steps of a

data-driven model development life cycle i.e. data acquisition

and preparation, model development (including the multimodal

ML methods discussion) and model evaluation.

B. Data Driven Model Development Life Cycle Methods and

Techniques for Maintenance Purposes

Understanding the specific application context, or the busi-

ness requirements is the first step for any learning model

developed and deployed in an industrial environment. The

basic steps of a data driven model development life cycle for

maintenance purposes are discussed in the next subsections.

1) Data Acquisition and Preparation: Predictive models

learn patterns from historical, multimodal data and predict

future outcomes with certain probability based on these ob-

served patterns. The performance of any learning model is

highly correlated with the relevancy, sufficiency, and quality

of the training, validation and test data. Data pre-processing

and feature extraction techniques are relevant in building

reliable data driven models. Processing the raw data before

modeling is improving the performance of the learned model.

In practice, raw data in the form of sensor signals are complex

and related information about the degradation process of the

monitored component is not always available. Therefore, pre-

processing raw sensor data is a mandatory step before building

the maintenance models. Generally, data processing methods

can be divided into two main tasks, namely processing and

data analysis.

2) Model Development: In the context of a data-driven

model development life cycle, the ML techniques for mainte-

nance is considered the most suitable research perspective to

deal with big volumes of heterogeneous data. ML techniques

comprise two main approaches: (i) supervised learning, where

the information about the occurrence of failures is present in

the modeling data set; and (ii) unsupervised learning, where

only the process information is available and no historic main-

tenance data exists. In an operational environment, predictive

maintenance makes use of the following well-established su-

pervised learning techniques from ML field: (i) classification

algorithms which are used to represent groups of normal

and abnormal health status of the item under observation

i.e. Random Forest, Nearest Neighbors, SVMs and HMMs;

(ii) regression algorithms; and (iii) clustering methods with

anomaly detection algorithms. Multimodal machine learning

(MML) represent an increasingly used set of ML methods

for combining data from multiple and diverse modalities and

sources with the goal of retrieving new insights from the com-

bined knowledge i.e. multiple sensors collect complementary

or concurrent information which is combined in order to obtain

more accurate machine diagnosis and prognosis. We provide in

Section 4 an overview of the multimodal ML methods which

shows that the multimodal fusion method seems to be the most

employed for maintenance goals.

3) Model Evaluation: Once a model is built, an estimate of

its performance is required. According to [41] there are two

types of evaluation metrics that are giving insights about the

quality of the model performance metrics: offline evaluation

metrics that measure offline data of the prototype model and

uses mainly historic data, and online evaluation metrics that

measure live metrics on the deployed model on real-time

data. Offline evaluation is used to estimate the performance

of training and validating data, and therefore performance

metrics like accuracy and precision-recall together with F1-

Score are employed. An online evaluation usually is used

for real-time, test data e.g. to estimate business metrics. Our

survey focuses on reviewing the offline evaluation metrics

used in industry for evaluation learning models for prediction

maintenance purposes. The model evaluation is made on a

different set of data, i.e. testing data set that is statistically

independent of the data set that it was previously trained

on. Mathematically speaking, the model evaluation means to

estimate the generalization error of the learning model, i.e. to

measure how good the model behaves under new data cali-

brations. A good practice is to split the data set into training,

validation and test data, in a time dependent manner. Further

good practice is to consider the training data earlier in time

than all the validation and test data. Andrew Ng recommends a

split such as training set (60%), cross-validation-set (20%) and

testing set (20%). The confusion table (also called confusion

matrix) it is used to show a detailed breakdown of correct and

incorrect classifications and is applied for evaluating models

that learn from highly imbalanced data. Performance metrics

based on the confusion table are accuracy, precision, recall,

specification, F1-Score, the AUC-ROC Curve.

III. RESEARCH APPROACH

The aim of this research review is to increase knowledge in

the field of maintenance techniques and their operationaliza-

tion. This implies a sort of awareness in considering the appro-

priate predictive models and their corresponding implementa-

tion techniques depending on the available data and on the

application scenario. The conference and journal publications

selected for our review belong to the non-empirical conceptual

and mathematical field of research. Consequently, they de-

scribe issues and perspectives related to maintenance strategies

and their modeling techniques applied in an industrial setup. A

systematic search using online databases was employed for a

keyword-based search, in order to find journal and proceeding

publications. We used the English language and the following

keywords: maintenance AND machine learning. We iteratively

continued the search using the following keywords: predictive
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maintenance, multimodal machine learning, multimodal fu-

sion, multimodality, maintenance AND big data, maintenance

AND Industry 4.0. We finally obtained a shorter literature list

which was further reduced by eliminating the duplicates, when

similar topics and approaches were found. Science Direct,

Scopus and Google Scholar literature databases were used for

their wide coverage of journals, proceedings and books.

A. Description of the Criteria Used for Analysis

Our research perspective relative to the maintenance quality

problematic focuses on: (i) the decision process to choose a

specific maintenance approach i.e. maintenance goals, benefits,

challenges and obtained results; and (ii) the implementation of

the maintenance approach i.e. the employed prediction models

and their corresponding modelling techniques. The selected

literature was carefully examined in order to extract useful

information based on the following criteria:

• Prediction models reveal a taxonomy of the most em-

ployed prediction models types employed in a main-

tenance process i.e. physical models, knowledge-based

models, databased models and hybrid models.

• Modelling techniques represent the implementation

pipeline (data analysis + algorithms) used. It is a relevant

criterion which further helps us to select the set of the

most used ML algorithms to be critical reviewed.

• Dataset comprises information about the involved sensor

types and the kind of fusion applied. It is a relevant

criterion which further helps us to provide a critical

analysis of the quality of data involved in a maintenance

process.

• Industry is concerned with the branch of industry where

maintenance processes are applied.

• Equipment parts reveal the critical parts of equipment

which are considered for maintenance.

• Obtained results /performance metrics extract the infor-

mation concerning how the model was evaluated and give

us a hint about how optimal the data analysis and learning

algorithms were applied.

• Maintenance goals provide us with a taxonomy of

topics showing the final decisions of the algorithms

pipeline. Paired with the Modelling techniques criterion,

it gives useful information about the successful algorithm

pipeline used for a certain maintenance goal.

The overview of the reviewed maintenance literature is pre-

sented in Tables II, III and IV. We are not considering for

our research works the empirical perspective, i.e. we are not

discussing the maintenance strategies and their operational-

ization based on information obtained from interviews, or

from analyzing case studies. The analytic literature review

we conduct is formalized by [17] and [18] and starts with

clarifying relevant maintenance terminology and definitions

based on the accepted, European maintenance standards [15]

and [14].

IV. FINDINGS AND RESULTS

This section presents the reviewed results displayed in

Tables II, III and IV. The surveyed works we consider

are grouped by maintenance type, and further on they are

grouped by prediction modeling types and relevant modeling

techniques used in the implementations.

A. Analysis of Maintenance Strategies

1) Corrective Maintenance: Our survey shows that the fault

recognition and diagnostic is generally seen as a process of

pattern recognition i.e. the process of mapping the information

i.e the features obtained in the measurement space to the

machine faults in the fault space, as described in [19], [20],

[21] and [22]. Diagnosis is a necessary part of any maintenance

system, as only prognostics cannot provide in practice a

sure prediction which covers all failures and faults. In case

of unsuccessful prognosis, a diagnosis is a complementary

tool for providing maintenance decision support. The meth-

ods employed in order to deal with fault classification and

diagnostics are diverse: from expert systems [23] to Hidden

Markov Models (HMM)s, as presented in [19], Artificial

Neural Networks (ANN)s as described in [20], Support Vector

Machine (SVM) as in [21] and fuzzy algorithms enhanced with

spectral clustering and Haar wavelet transform, as described

in [22].

2) Preventive Maintenance: The reviewed literature shows

that a relevant class of preventive maintenance techniques are

the prognostics through pattern recognition, classification and

machine health status identification. Prognostics analyze data

by automatically finding new insights in terms of behavioral

patterns. The information extracted from the monitored data

can help detecting patterns that characterize the machine work-

ing conditions or is anticipating and estimating critical events

i.e. fault detection as in [3] and Remaining Useful Life (RUL)

estimation as in [8]. Prognostics are considerate superior to

diagnostics in the sense that they prevent faults and are

employed for prediction problems with items spare parts and

human resources, saving unplanned maintenance costs. The

reference [5] proposes a data mining maintenance approach for

predicting material requirements in the automotive industry by

measuring the similarity of customer order groups. Identifying

behavioral patterns in data means to classify similar data in

some data-groups which share the same characteristics i.e.

operational conditions, as described by [24], [25], [26], [27]

and [28]. Within these classified groups there are data-points

that are far from the identified pattern i.e. the outliers, or they

may correspond to a distinctive property i.e. the mean point or

the group distribution. Such patterns may help to identify faults

or any other type of abnormal behavior. Large groups of data

are interpreted as normal behavior, while small groups of data,

or events that are far from the pattern are usually representing

anomalies. Consequently, in modeling the learning model,

there are only unlabeled input examples, i.e. we employ the

the unsupervised learning perspective. ML algorithms and data

fusion strategies are used to find new patterns in data therefore,

in this case, clustering should be the most used technique,
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TABLE II
REVIEW OF CORRECTIVE MAINTENANCE MODELS AND CORRESPONDING IMPLEMENTATION TECHNIQUES

References
Prediction

models
Modeling

techniques
Dataset(s) Industry

Equipment
parts

Obtained results
e.g. performance metrics

Maintenance
goals

(Bunks, C., et al., 2004)
[19]
(Deuszkiewicz, P., et al.; 2003)
[20]
(Hao, Y., et al.; 2005)
[21]
(Baraldi, P., et al.; 2014)
[22]
(Alexandru, A., 1998)
[23]

Knowledge
based models

Expert Systems +
fault tree analysis

functional sensor data
of the PV pilot plant +
meteorological sensor data

Water pumping
station

PV pilot plant Zambelli,
Italy (Joule II EU Project)

real time supervision and monitoring +
detection of foreseen faults

real time monitoring;
maintenance inspection
on request

Fuzzy similarity,
fuzzy c-means
algorithm

synthetic data of simulated faults
in a pressurizer water reactor (PWR)
NPP: vapor and steam temperature, liquid
temperature, liquid level and pressure

Nuclear Power
Plant

Pressurizer water system

drawback: new faults cannot be
classified into new groups without
repeatedly applying the spectral analysis

classification models
for fault diagnosis
using unsupervised
clustering

Data based
models

Stochastic model:
Hidden Markov
Models (HMMs)

vibration measurements from a set of
8 accelerometers from the gearbox,
at 9 torque levels and 8 seeded
defects

Naval Research
Westland helicopter
gearbox

HMMs are fully probabilistic models
incorporating quasi-stationarity
as a feature + build robust and flexible
classification models

machine health
status diagnostics;
defect type
classification

Artificial
Neural Networks
(ANNs)

sensors from the body of the driving
axle box at various speed (50, 70, 90,
110 Km/h), crest factor signal, XSK signal

Railway
(ZNTK S.A.
Rolling Stock
Repair Company)

Power transmission
unit in (ED-72 train)
rolling bearing

minimizes the frequency of revision
inspections + in time online warning for
unexpected new failures

Machine health
status diagnostics
in useful time

Statistical model:
Support Vector
Machine (SVM)+
k-fold cross validation

gas temperature, fuel flow, pressure
rotor speed

Aerospace Gas Turbine engine

accuracy: 93% even when the
standard deviation of noise is 3 times
larger than normal: a better
generalization than ANNs

Identification of 3
most possible faults
types

TABLE III
REVIEW OF PREVENTIVE MAINTENANCE MODELS AND CORRESPONDING IMPLEMENTATION TECHNIQUES

References
Prediction

models
Modeling
techniques

Dataset(s) Industry
Equipment

parts
Obtained results

e.g. performance metrics
Maintenance

goals

(Manco, G., et al.; 2017)
[3]
(Krishnakumari, A., et al.; 2017)
[24]
(Jaramillo, V.H., et al.; 2017)
[25]
(Liu, C., et al.; 2016)
[26]
(Diez, A., et al.; 2016)
[27]
(Li,C., et al.; 2016)
[28]

Hybrid
models

Outlier detection
failures, events described by
type, timestamp, subsystems,
duration, severity, description

Railway Train doors
High degree outliers are effective
indicators of incipient failures.

fault detection

Knowledge
based models

Fuzzy
Classifier +
Decision Tree

Feature extraction + monitored
data representing condition-based
status of vibration signals

Manufacturing
Gears in rotary
machines

Feature extraction and classification
explained. The performance of the
fuzzy inference has 95 %accuracy.

pattern recognition +
fault detection and
classification

Data based
models

Statistical model:
Bayesian
Inference

Multi sensor feature based
fusion (acceleration, current,
voltage, temperature)

Manufacturing

Electric motor
with two gearboxes
and a load

Feature based fusion + concepts of
global/local fusion + feature extraction
is good explained based on the example
+ transparent Bayesian inference method

machine health
status assessment
and condition
monitoring

Statistical model:
SVM +Fourier
transform + discrete
Wavelet decomposition

Multisensor feature-based
fusion (dynamometer sensor,
acceleration sensor, cutting force,
vibration signal)

Manufacturing

Cutting tools
and flank
milling machines

Accuracy: 90% information feature-
based fusion with multiple sensors
provide complementary information
to machining conditions

multiple machine
condition monitoring
and recognition

k-NN based outlier
remover + clustering
approach of vibration
events and joints +
Fourier transform

Multi-sensor feature-based
fusion (accelerometer sensor +
location sensor)

Construction
Bridges (Sydney
Harbour Bridge)

Real time health score (of the structure)
learned from historical data and used to
check new events based on cluster
centroids and joints representatives.

damage detection
of abnormal or
damaged

ANN and
Deep Learning

Automatic multisensor feature
fusion from vibration, signal
measurements

Manufacturing Rotary machines

Deep Learning with statistical
feature representation shows better
performance metrics. Statistical features
in the time, frequency and time-frequency
domains have different representation
capabilities for fault patterns.

fault diagnostic
and fault patterns
identification

together with a measure of similarity which should deal with

showing the correspondence of data groups. When pattern

classification is applied for describing training data, then we

assume the availability of (i) historic data with abnormal

behavior; and (ii) data concerning maintenance activities that

were carried out. The learner looks for identifying the causes

for confirmed, abnormal behavior and critical events, in order

to predict them and to avoid them in the future. In this case,

values for the target labels are available, and therefore the

supervised learning strategy and the corresponding algorithms

are to be employed. The target labels are representing features

that are discrete or continuous, and they are always related

to the diagnostic. Time-series analysis is employed to extract

damage and fault-sensitive features from data. When a correc-

tive action is made, the preceding data represent an abnormal

behavior or abnormal data context. When events of interest

or based on past maintenance actions are tracked, they are

assumed to represent a normal data context. Another type of

scenario is learning the normal behavior of the machine or

parts from its equipment. This is a difficult process in the

operational context, as it supposes that there are no outliers,

nor operational faults, which is not the case of the industrial

environment. Finding patterns in the monitored data requires a

deep knowledge of the topic and of physics of the process so

that the issue can be theoretically understood. In the context

of supervised learning approaches, feature engineering and

mainly the interpretation of the assessment of the results

represent always a challenge.

3) Predictive Maintenance: The survey shows that the pre-

dictive maintenance process has the goal of providing an accu-

rate estimate of the RUL, but also it should asses the provided

estimate, as argued in [31], [32], and [33]. Time-series analysis

is used to anticipate anomalies and malfunctions in equipment

and processes maintenance procedures. Traditional approaches

are moving average over a time window, ARMA/ARMAX,

Kalman Filter and cumulative sum, as described in [9]. Recur-

sive Neuronal Networks (RNNs) show relevant characteristics

for time series forecasting, as their loops allow information

to persist, as presented in [8]. Multi sensor fusion ranges

from multi signal combinations, as argued in [8] and [9],

to more complex integration of conditional assessment, RUL

estimation, and decision making, as presented in [2] and [10].

Operational predictive approaches are based on a schema that

implies frequent, and sometimes unnecessary maintenance of

the equipment and of the entire production process that leads to

high maintenance time and costs. They use complex A.I. based

algorithms, and data fusion strategies - in an ad-hoc manner,

usually after trial and error approaches - which imply the usage
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of consecutive fusion algorithms, as described by reference

[26]. The uncertainty in prediction is always a challenge and

to this time the fuzzy logic is used to represent uncertainties in

prediction, as argued by [4]. As a particular case of condition-

based maintenance, reference [29] shows that techniques for

condition monitoring and diagnostics are gaining acceptance

in the industry sectors, as they prove to be effective also

in the predictive maintenance and quality control areas. The

authors apply a feature based fusion technique implemented

with the cascade correlation neuronal network to multiple

sensor data collected from rotating imbalance vibration of a

test rig. The results show that the multi-sensory data fusion

outperforms the single sensor diagnostic. The reference [30]

focuses on the capability of providing real-time maintenance

by extracting knowledge from the monitored assets (with

vibration sensors) on the production line. Using intelligent data

driven monitoring algorithms (ADMM), data fusion strategies

and the proposed three-levels layered (IoT, Fog with gateway

nodes for sensors aggregation, Decision) system model, the

authors argue on the efficiency of cloud oriented maintenance.

The uncertainty in prediction is always a challenge and to

this time the fuzzy logic is used to represent uncertainties

in prediction, as argued by [4].The references [6] and [7]

show that the problem of scheduling under constraint of

completion time of all production jobs can also be solved

using predictive maintenance algorithms. The efficiency of the

algorithms for predicting machine failures is further evaluated

using simulation tests. The results, i.e. the optimized jobs

schedule shows a nearly 50% drop in the number of operations

compared with the initial, nominal schedule. The classification

of modeling techniques for predictive models is presented in

Figure 1. Physical models use the laws of physics to describe

the behavior of a failure [2]. Knowledge-based models assess

similarities among observed situations and a set of previously

defined failures. These models can be sub-divided in expert

system models able to answer complex queries, as presented

by [23], and fuzzy models, as in [4]. Data-driven models are

based on the acquired data. This type of model can distinguish

among stochastic models, statistical models and artificial

neural networks (ANNs). Hybrid models use combinations of

two or more modeling techniques as in [34], [35] and [44].

Stochastic models provide event-based information. Hidden

Markov models and Kalman filters belong to this category

too. Statistical models predict a future state by comparing

the monitored results with a machine health state without

faults. ML models, such as regressions, classifications, and

clustering represent a category of data-based, statistical models

relevant in the study of maintenance optimization. However,

the ML models are focusing on increasing the accuracy of

their predictions, while the classical statistical community is

more concerned with the understanding of their models and of

the model’s parameters i.e. model calibration and inference.

4) Prescriptive Maintenance: The main challenge of pre-

scriptive maintenance is the difficulty to build in practice

operative models. Existing research models are based on ad-

hoc model development where ML methods and data fusion

techniques are jointly used with fuzzy reasoning, simulation

techniques, and evolutionary algorithms. The reviewed lit-

erature shows that prescriptive maintenance implementations

show an ad-hoc grouping of methods including data fusion and

ML techniques, combined with fuzzy reasoning algorithms,

simulations [34] and multi-objective evolutionary algorithms

for optimization [44]. When a predictive model raises an alarm

before the fault occurs, the prescriptive model will work in the

direction of reducing the probability that this alarm will rise in

the future, by modifying the working parameters and variables

of the asset or the process affected by the fault. When the fault

is confirmed, the prescriptive models will work to minimize

its impact of the work context and to re-routing assets to the

non-faulty production lines.

The tables II, III and IV are constructed based on the re-

viewed literature on maintenance types: corrective, preventive

and predictive. The tables present a structured view of the

maintenance type and goals, correlated with a specific statisti-

cal or data-driven operational method, and the corresponding

results.

B. Analysis of Data Driven Development Life Cycle

1) Data Acquisition and Preparation: Predictive models

learn patterns from historical, multimodal data and predict

future outcomes with certain probability based on the ob-

served patterns. The performance of any learning model is

highly correlated with the relevancy, sufficiency, and quality

of the training, validation and test data. Moreover, the data

used for training and testing the model should be relevant

for the application scenario, therefore the expertise and the

guidance of a domain expert is important. The most relevant

data sources for a predictive model application scenario are

condition monitoring data referred to as hard data, and human

generated data referred to as soft data. Condition monitoring

data contains knowledge in the form of degradation patterns

and other types of anomalies in data that leads to an item

degradation. Time-varying features are expected to capture

these abnormal patterns, and the models fed with these features

are expected to learn to distinguish between normal and abnor-

mal pattern behaviors of items and also to forecast the RUL

for the monitored items. Condition monitoring data can be

further decomposed into sensor data, asset data, operation data,

offline inspection data, and historical data. On its counterpart,

human generated data represents information about replaced

components, repair activities performed on a certain item or

on parts of it. Moreover, it consists also of software generated

information e.g. event data information such as alarms and

faults messages which are described in natural language,

but it comprises also technical metadata for devices and

processes i.e. model, manufactured date, the start of service,

maintenance reports. The event-data collection implies always

a manual process and includes qualitative information about

the monitored item such as the description of the installation,

breakdown, inspection, repair, overhaul, failure causes, etc.,

the severity of the failure and the description of what was

done to fix the failure. In practice, the item under critical
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TABLE IV
REVIEW OF PREDICTIVE MAINTENANCE MODELS AND CORRESPONDING IMPLEMENTATION TECHNIQUES

References
Prediction

models

Modeling

techniques
Dataset(s) Industry

Equipment

parts

Obtained results

e.g. performance metrics

Maintenance

goals

(Xenakis, A., et al.; 2019)
[30]
(Liu, Z., et al.; 2018)
[2]
(Niu, G., et al.; 2017)
[4]
(Guo, L., et al.; 2017)
[8]
(Acorsi, R., et al.; 2016)
[9]
(Mosallam, A., et al.; 2016)
[31]
(Cristaldi, I., et al.; 2016)
[33]
(Safizadeh, M., et al.; 2014)
[10]

Knowledge
based models

Rule-based fuzzy
logic + condition-based
fusion diagnosis

Multisensor decision level
fusion (vibration signal +
current signal)

Railway

Electric multiple units
(EMU) trains ->pulling
motor of EMU bogie

the accuracy of multiple classifier fusion
(vibration/current features) is greater as
the accuracy of single classifiers

general maintenance

Data based
models

ADMM
(altering direction
method of multipliers)
algorithm +
Decision Fusion

1-second vibration
signals snapshots
with the samplig
rate set at 20kHz

Industrial Automation Production Line
minimize operational costs +
efficient energy consumption

real time
analyse and
process of
machine faults +
health status
monitoring

RNN-based health
indicator for RUL
prediction

Multisensor fusion at feature
level (vibration signals +
time-frequency features)

Aerospace Bearings
high RUL prediction accuracy
of generator bearings

RUL
prediction

kNN + discrete
Bayesian filter

KIP from operational data
(NASA Lithium-Ion Battery
B0005->B0056 repository)+
Turbofan engine data C-MAPSS

Aerospace
Battery and
turbofan engine

3-fold cross validation is successfully
validating the approach. average MAPE
is computed and generates low errors
for both applications

RUL
prediction

Statistics,
Deep Learning

Features extraction from
single product and fleet levels

Electrical Power
plants

Medim/High
circuits breakers

Health Condition Profile with RUL and
PoF (Probability of Failure) computed
in a predetermined window of time.

RUL and
PoF prediction

PCA + kNN

Multisensor fusion (waterfall
fusion technique) at feature level
+ decision level (accelerometer
data + load cell data)

Manufacturing
Rolling
bearings

Data from different sensors provide
more information than data gathered
from single ones.

condition-based
monitoring and
diagnosis

Hybrid
models

k-means, association
rules (GSP, Apriori),
Neural Networks,
Random forest,
Decision Tree, kNN

Feature extraction from
parameter logs (user settable
machine quantities), message
logs and energy data sampling
sensors

Manufacturing

Automatic machines
in the manufacturing
line

accuracy (95% - Random Forest),
but the precision is low (38%)
which implies false alarms
recall (74% - Neural Networks)

fault prediction

Simulation
+ multi-sensor fusion

Multi sensor
hard/soft data fusion

Aerospace
Aerospace Industry
Manufacturing

digital twin concept and many
levels of fusion for hard/soft data

health status
estimation and
maintenance
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Fig. 1. Taxonomy of Prediction Models

conditions which is monitored continuously generates two

types of data: event data and condition-monitoring data. Event

data represent fault events which are considered critical to

the system, and diagnostics messages when the events are

alarm messages that described the item status. Events are

triggered by the software component that monitors the item

based on the item status information. Condition monitored

data is collected every time when the events are triggered in

order to form the context of the associated events and to ease

their interpretation. Event data is characterized by attributes

like type (i.e. fault, alarm, diagnostic), timestamp, item/sub-

component where the event was triggered, severity, duration,

and textual description, among many other possible attributes.

After the acquisition process, the data sets must be prepro-

cessed as they exhibit uncertainties that may affect the learning

model performance. Data preprocessing and feature extraction

techniques are relevant in building reliable data driven models.

Processing the raw data before modeling is improving the

performance of the learned model. In practice, raw data in the

form of sensor signals are complex and related information

about the degradation process of the monitored component is

not always available. Therefore, preprocessing raw sensor data

is a mandatory step before building maintenance models. Gen-

erally, data processing methods can be divided into two main

tasks, namely processing and data analysis. After processing

the raw data coming from sensors, the resulting heterogeneous

data may be categorized in the following types, depending

on the quality of information they provide: (i) competitive,

or redundant sensor data; (ii) cooperative, non-overlapping

but partial sensor data; (iii) complementary, overlapping and

partial sensor data; and (iv) independent, unrelated sensor data.

Feature engineering is the next step prior to modeling the data.

A feature is considered to be a predictive attribute for the

model, such as temperature, pressure, vibration, etc. It is a

good practice that the features extracted from the sensor data

to comply with the following requirements: (i) features should
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contain information required to distinguish between potential

faults; (ii) features should not take into account the irrelevant

variability which might be mixed in the sensor signals; and

(iii) features should be limited in number to allow efficient

computation.

2) Model Development: ML techniques for predictive

maintenance comprise two main approaches: (i) supervised

learning, where the information about the occurrence of fail-

ures is present in the modeling data set; and (ii) unsupervised

learning, where only the process information is available and

no historic maintenance data exists. In an operational envi-

ronment, predictive maintenance makes use of the following

well-established techniques from ML field: (i) classification

algorithms which are used to represent groups of normal and

abnormal health status of the item under observation: Decision

Tree, Random Forest, Nearest Neighbors, SVMs and HMMs;

(ii) regression algorithms; and (iii) clustering methods with

anomaly detection algorithms, as presented in Figure 2. Binary

classification algorithms are used to predict the probability

that a piece of equipment fails within a future time period.

The business requirements, the analyzed available data and

the domain expert make estimation for e.g. (i) minimum lead

time required to replace components, deploy resources and

perform maintenance actions in order to avoid a problem that is

likely to occur in the future time period; or (ii) minimum count

of events that can be triggered before a critical problem oc-

curs. Multi-class classification algorithms are used for making

predictions in the following possible scenarios: (i) defining a

plan maintenance schedule i.e. estimation of the time intervals

when an asset has the bigger probability to fail; (ii) monitoring

the health status of an asset i.e. estimation of the probability

that an asset will fail due to a specific cause /root problem;

and (iii) prediction that an asset will fail due to a specific

type of failure. In this case, a set of prescriptive maintenance

actions can be considered for each of the previously identified

set of failures. Another type of algorithms for classification

are the multiple classifiers which can be used in the process

of knowledge discovery to discern particular patterns of data

degradation for an asset or for a process. The benefits of

the multiple classifiers reside in allowing the planning of the

maintenance schedules using a statistical cost minimization

approach. Regression models are typically used to compute

the RUL of an item, as presented in [8]. RUL is defined

as the amount of time that an asset is operational before

the next failure occurs. The operational historical data is

needed because the RUL calculation is not possible without

knowing how long the asset has survived before a failure.

Autoregressive models such as ARMA models assume that all

future values are linear functions of past observations. e.g. fault

predictions. A data-based ANN approach is recommended to

be used for information clustering when there is no knowledge

or understanding about the monitored system e.g. [8] and [10].

3) Multimodal Machine Learning Methods: Multimodality

is defined by [36] as referring to the way something happens,

or is experienced: we read textual information, we see objects

and we hear sounds, we feel textures and smell odors. All

these perceptions represent modalities. A research problem,

application or data set is multimodal when it includes multiple

such modalities. In order to understand and to make sense of

the world around us, A.I. techniques, in particular, multimodal

machine learning (MML), must be able to interpret multimodal

information and further to reason about it and make decisions.

MML is a multi-disciplinary field of research which builds

models that process and relate information from multiple

modalities, as defined in [36]. The main idea is that data from

different sensor sources provide different representations of

the same phenomena. In MML literature, this is known as

multimodal, multi-view, multi-representation or multi-source

learning, as described in [37]. The main multimodal ML

methods were identified and defined in [36] i.e. representation,

translation, alignment, fusion, and co-learning. Their defini-

tions according with [36] and [37] are listed in Table V. Under-

standing the capabilities and challenges of existing multimodal

data fusion methods and techniques has the potential to deliver

better data analysis tools across all domains, including the

maintenance quality and management field of research. A

relevant research challenge for the multimodal data fusion

perspective is to identify patterns and commons governance

rules that can be used to apply the appropriate multimodal

data fusion technique for an application specific context or for

a data set. Reference [38] arguments that data fusion is a multi-

disciplinary research area with ideas raised from many diverse

research fields such as signal processing, information theory,

statistical estimation and inference, and artificial intelligence.

Data fusion appeared in the literature as mathematical models

for data manipulation. The diversity of the research fields

is indeed reflected in the reviews of maintenance techniques

in Tables II, III and IV. Multimodal data fusion represents

the integration of information from multiple modalities, with

the goal of (i) making a prediction; and (ii) retrieving new

insights from the joined knowledge, as defined by [36]. There

are many approaches to data fusion, as the topic dates back

in the 90es. The model-agnostic technique to data fusion is

discussed in [36] and [39] and later, described by [37], which

also lays the grounds for the multimodal data fusion formal

theory. Multimodal data fusion has the direct economic impact

in the implementation of maintenance techniques which are

based on aggregation data from heterogeneous sources into

actionable decisions for maintenance purposes. Multimodal

data fusion represents the core concept in MML, as argued

in [36] [39]. The model-agnostic data fusion types that are

used in the operational environment are listed in Table VI.

The reference [37] lays the grounds for the multimodal data

fusion theory by giving a solution to the research problem of

determining the appropriate type of data fusion for a specific

application context or for a data set. On his view, the main

challenge in multimodal data fusion research resolves around

the dependency-problem i.e. the arguments for choosing a

specific type of data fusion. The assumption is that the optimal

fusion type to be employed in an operational environment

depends on the level we expect to see a dependency between

the inputs in the modalities: (i) feature-based fusion assumes a
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Fig. 2. Machine Learning Techniques for Predictive Maintenance

TABLE V
MULTIMODAL MACHINE LEARNING (MML) METHODS

Representation Learning to represent heterogeneous information in a unitary way, easy to be understood and processed by a learning model.

Translation Mapping the information from one modality to another in a most accurate way.

Alignment Identifying the inherent relations between sub-components. It also implies dealing with similarity measurements.

Fusion Joining/combining in a meaningful way the information from different modalities.

Co-learning Transferring knowledge among modalities: the modality with limited resources can benefit from another with more information.

dependency at the lowest level of features (or raw input unpro-

cessed data), (ii) intermediate-fusion assumes a dependency at

a more abstract, semantic level; and (iii) decision-based fusion

assumes no dependency at all in the input, but only later at

the level of decisions. The above described assumption has

the following implications, as argued in [47]: (i) there are no

established, standard methods to identify feature dependencies

in multiple sensors and modalities; (ii) the technology exists,

but there are no standard methods to extract unbiased feature

from raw data, and therefore deep learning methods are

preferred; (iii) there are basic techniques to handle modality

fusion when dealing with missing information; (iv) it is unclear

what are the relevant features to be learned, in the sense that a

trial-and-error process of feature engineering is employed for

the shallow ML algorithms, i.e. Decision Tree, SVM, kNN;

and (v) multimodal data fusion best practices i.e. data sets,

fusion algorithms, success stories, training and evaluation of

results, should be recorded and shared. Moreover, the review of

existing proposals for data fusion techniques and frameworks

clearly shows that the actual trend for maintenance engi-

neering is cloud maintenance i.e. maintenance-as-a-service,

as argued in [2] and [11]. The envisioned platform is seen

as a management system of smart services i.e. data-analysis-

as-a-service, prognostics-as-a-service or data-as-a-service, that

represent better solutions in terms of technology, performance,

and costs. The list of challenges continues with: (vi) the

absence of a clearly defined generic framework for smart

services that standardize the usage of a data fusion pipeline it

is clear that in an operational environment more than one data

fusion techniques should be applied; (vii) there are no standard

techniques for dealing with temporal and spatial (context)

data alignment and synchronization, i.e. the ontology-based

proposal of [44] assumes some benefits due to knowledge

access, reasoning and re-use of ontology web-standards; and

(viii) lack of research studies to analyze the performance of

ML algorithms in a cloud environment.

4) Model Evaluation: One challenge for evaluating the per-

formance of learning models is represented by the availability

of data: when the data set is not large enough to provide

sufficient data quantities for the data training validation and

test sets, then methods such as k-fold cross validation and

bootstrapping are used to simulate new data. K-fold validation

is used to split the original dataset into k folds, and run

the learning algorithm k times. Another challenge on model

evaluation is represented by the skew or imbalanced data. In

any maintenance scenario, the minority data class is repre-

sented by the abnormal data i.e. the event-faults. Therefore,

in the case of fault prediction, the algorithm needs to identify

only a small group of data from the overall historical data.

Incorrectly predicting a positive class as a negative may lead

to a greater cost than the reverse situation, i.e. the problem

of the asymmetric cost. Consequently, performance metrics

based on the confusion table are used to evaluate how accurate

the algorithm is. Boosted methods, such as boosted decision

trees are also used as algorithms for solving the imbalanced

data problem. Consequently, the time-dependent split of the

imbalanced data is useful for avoiding data overfitting on

classification models for fault predictions, and on regression

models for predicting the RUL. Other problems to be avoided

when evaluating a learning model are variance and bias. The
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TABLE VI
MODEL-AGNOSTIC FUSION TYPES

Feature-based (Early Fusion) Features from all the modalities are concatenated as one long input and trained by a single learner.

Intermediate (Hybrid Fusion) There is a single learning model which is trained with a preprocessed input from modalities in the fused layer.
It is implemented by neural networks and multi-kernel support vector machines algorithms.

Decision-Based (Late Fusion) Each modality is trained with a different learning model that independently makes a decision. All decisions
generated by learning models are later combined based on a fusing schema.

reference [42] addresses these problems suggesting appropri-

ate solutions.

V. DISCUSSIONS

The present work reviews maintenance approaches with ap-

plicability in the industrial environment. The aim is to identify

potential sources and ideas for delivering better data analysis

tools and techniques for the optimization of the industrial

maintenance processes. Past works on maintenance approaches

show that maintenance actions are performed by employing

various prediction models and modeling techniques. However,

the existent literature does not inform us to which extent the

new A.I. technology based on ML methods and techniques

is influencing and changing the maintenance approaches in

the industrial setup. Consequently, we provide an analytical

literature review showing first that among all the existent

approaches to maintenance, each of them varying in terms

of efficiency and complexity, predictive maintenance seems

to best fit the needs of a highly competitive industry setup.

Next, we consider ML to be a prediction methodology and we

show that ML methods enhance industrial maintenance with

a critical component of intelligence: prediction. The approach

we envision for the optimization of predictive maintenance

actions investigates the MML perspective and consequently

uses a variety of multimodal ML methods that study both live

and historical information, in order to learn prognostics data

and to make accurate diagnostics and predictions. Based on

the surveyed literature we construct taxonomies that cover

the main predictive models and their modeling techniques

relative to maintenance goals. We show that among all the

prediction models, the data driven, statistical inference based

ML approaches are the most suitable to deal with big volumes

of heterogeneous data. Their acceptance in the field is mainly

due to the fact that prediction is easier than model inference

i.e. the ML models are performing tests to check how well

a learning model which is trained on a data set is able to

predict new data. This allows ML algorithms to easily work

with larger volumes of complex data. However, a critical

analysis of ML algorithms and of the sensor data sets used

for maintenance will directly show that there are no optimal

ML models that always outperform all the other. Usually, their

efficiency is based on the type of training data distribution.

On its turn, multimodality is presented as an efficient ML

method of combining data from multiple, diverse modalities

and sources. Its main goals are: making better predictions

and retrieving new insights from the combined knowledge.

A model-agnostic taxonomy of the reviewed multimodal ML

fusion methods is presented together with appropriate solu-

tions for optimal usage. In particular, we distinguish among:

(i) feature-based fusion or early fusion a basic concatenation

of features belonging to different modalities; (ii) intermediate-

fusion typical for algorithms implemented by the artificial

neuronal networks or by multi-kernel support vector machines;

and (iii) decision-based fusion which applies a learning model

for each modality independently, and the fusion takes place

only at the decision level. Past works present multimodal

fusion strategies made in an ad-hoc way, without following

some standard implementation lines. We highlight the fact

that there is a need for standardized solutions in applying

multimodal ML methods for maintenance purposes. More-

over, we show that analyzing only the technical aspect i.e.

the multimodal ML perspective, for improving the quality

of maintenance is not sufficient. The connections with the

economic aspect and the conformity of data science projects

with industrial standards like CRISP-DM and Industrial Data

Space are relevant. Consequently, we argue that quality of

maintenance in an industrial setup can be improved only

when in the development of a generalized architecture for

maintenance purposes the following aspects are taken into

consideration: (i) the technological aspect which recognizes

the potential of multimodal ML methods for maintenance

purposes; (ii) the business aspect which envisions a structured

development of the implementation works starting with the

business model’s conceptualization, and assuring its confor-

mity with the industry standards; and (iii) the economic aspect

which follows the classical optimization concerns relative to

maintenance costs. Future works are planned to analyze the

usage of multimodal ML methods combined with semantic

technologies in a cloud-oriented environment. The goal is to

overcome the problem of sensor integration for efficient data

analysis. We recognize that the actual trend for maintenance

engineering is cloud maintenance. Within this context, the

envisioned digital platform is seen as a management system

of smart services i.e. prediction-as-a-service and maintenance-

as-a-service, with expected benefits in terms of technology,

performance and costs.
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