
GNSS-based Sound Card Synchronization

Alexander Carôt

Anhalt, University of Applied Sciences

Lohmannstr. 23

06366 Köthen, Germany

Email: alexander.carot@hs-anhalt.de

Hasan Mahmood

Symonics GmbH

Geierweg 25

72144 Dußlingen, Germany

Email: hasan.mahmood@symonics.com

Christian Hoene

Symonics GmbH

Geierweg 25

72144 Dußlingen, Germany

Email: christian.hoene@symonics.com

Abstract—Audio communication on the public Internet suffers
from not synchronized word clocks of the involved audio devices.
The resulting clock drift leads to audio dropouts, which is
typically compensated by a sample rate conversion (SRC) in
standard telecommunication systems. This, however, does not
fulfill the requirements of a high-quality audio system, in which
all devices share one and the same word clock. Professional IP
based network audio systems such as DANTE or AVB with their
respective clock synchronization techniques have so been limited
to LAN usage, where network jitter and loss have negligible
importance regarding the required accuracy in the dimension of
several nanoseconds. In a WAN, however, jitter in the millisecond
dimension would lead to unacceptable measurement errors for
the intended clock synchronization. As a consequence, we decided
to investigate alternative clock synchronization techniques for
WAN-distributed devices and developed a GNSS-based approach,
which leads to precise clock synchronization.

I. INTRODUCTION AND PROBLEM

The term "distributed music" or "network music perfor-

mance" describes a scenario, in which at least two dislocated

musicians perform together as if being in the same room.

This domain has been investigated for more than two decades

[3]. However, with the increasing stability of nowadays avail-

able broadband networks another quality reducing factor has

become relevant: Despite commonly applied standard audio

sample rates of 44,1 kHz, 48 kHz or 96 kHz [10] the word

clocks of two different devices do not run in precise synchrony

for physical reasons. With respect to audio networking, clock

drift means that one audio process is running faster than

the remote one. As a consequence, the faster process will

not receive a sufficient amount of audio samples, which in

turn leads to a buffer underrun and a corresponding audio

dropout in specific intervals ranging between 10 and 30

seconds depending on the actual amount of drift. On the other

side, the slower process receives too many samples, which

eventually leads to a buffer overrun in the same interval,

which also corresponds to disturbances in the audio signal. In

context with low-latency audio networking the network buffers

should be adjusted as low as possible, however, due to the

described clock drift problem this proportionally increases the

probability for audio dropouts.

In LAN-based sound systems (Local Area Network) such

as Dante [2] or AVB [7], each device of the audio network

fast-music is part of the fast-project cluster (fast actuators sensors &
transceivers), which is funded by the BMBF (Bundesministerium fur Bildung
und Forschung).

is therefore synchronized to either a dedicated master clock

or a specific device on the network, which was previously

identified as the clock master. With respect to our Internet-

based application, this synchronization process typically can-

not be applied due to the existing network jitter in the common

dimension of at least one millisecond and rather more. In [4]

we presented an approach, which is able to provide WAN-

based synchronization (Wide Area Network) by averaging the

resulting measurement error, however, the reliability of this

approach is limited depending on the actual amount of network

jitter.

II. CONCEPT

In this section, we present a novel concept, which eventu-

ally provides reliable sound card synchronization for WAN-

distributed devices. Our previous and not perfectly reliable

approach uses the WAN itself as the source of synchronization.

In contrast, our new concept takes advantage of global nav-

igation satellite systems (GNSS) as the synchronization link

between the involved sound devices. We consider GNSS such

as the global positioning system (GPS) excellent sources for

a grandmaster clock in order to synchronize the word clocks

of the involved devices. GNSS transceivers provide a 1-PPS

(one pulse per second) output signal, which gives a high pulse

at every start of a second [5]. This pulse is our reference

point to the absolute start of a second. The UTC (Coordinated

Universal Time) time received from GNSS can be used to

synchronize the word clocks, but there is a delay between

the time received by the GNSS module and time set in the

processor, hence it is not accurate up to microsecond level. In

order to compensate this offset we take advantage of the time

stamping capabilities of IEEE 1588 clocks, which capture the

moment of the actual pulse occurrence so that the local time

can be set later according to the precise reference. Despite the

synchronization with the 1-PPS pulse the local oscillator and

the GNSS clock still suffer from the inherent clock drift so

that the clocks go out of sync after a couple of seconds. We

overcome this problem via a feedback loop and a proportional,

derivative and integral (PID) controller that keeps track of the

clock drift and adjusts the clock rates respectively. The 1588

clock follows the GNSS clock to a precision and accuracy

of greater than one microsecond. Once the 1588 clock is

synchronized, we apply the appropriate fine-tuning to an audio

clock PLL (phase locked loop) accordingly. Figure 1 illustrates

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 309–312

DOI: 10.15439/2019F148

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 309



GNSS Synchronized Sound Card

Common 
Quartz GNSS Receiver

CPU

Tunable Phase 
Look Loop 

(PLL) for audio

Digital Audio 
Interface

1588 counter 
and event 

time stamping

audio 1pps event

GPS 1pps event

sync
clock

clock

GNSS

IP

I2S

clock

Fig. 1. Block diagram of GNSS synchronized sound card

the described key factors of our theoretical concept. Regarding

the upcoming implementation, our concept considers an i.MX7

board by NXP Semiconductors. The i.MX7 series offers a

highly integrated processor designed to enable secure and

portable applications within the Internet of Things and it suits

our demands because it supports the required features with

respect to IEEE 1588 and audio word clocking. In that context

we will now describe the particular hardware architecture that

supports hardware timestamping and time keeping within the

Ethernet driver. Afterwards, we will explain how the clocking

is realized and how the audio word clock can be controlled

and fine-tuned.

A. Hardware architecture

To allow for IEEE 1588, the MAC hardware in i.MX7 by

NXP Semiconductors is combined with a time-stamping mod-

ule to support precise time-stamping of incoming and outgoing

frames and granule control of the IEEE 1588 time [11]. Figure

1 shows the block diagram of the i.MX7 board architecture.

At the centre of the time stamping module is a 32-

bit counter register, which keeps track of IEEE 1588 time

on the hardware level. It is incremented after every rising

edge received from the oscillator by an amount specified by

ENET_ATINC[INC] register. In our use case, this value is

set to 10 nanoseconds because it corresponds to the Ethernet

clock with a frequency of 100 MHz. The ENET_ATPER
register contains the number of nanoseconds after which the

counter will wrap around. It is programmed with a value of 109

so that the counter resets itself in intervals of one second [11].

Common 
Quartz

IEEE 1588
Timer

[0..(1e9+d) ns]

Time Capture 
Compare Reg0 

Correction ad-
justment [ns]

counter value

1 pps

ns clock

Adjustment 
if i=c [ns]

Correction 
Counter 0≤i≤c

d

M
UX

i=c

GNSS 1pps

GNSS phase 
offset [ns]

Time Capture 
Compare Reg1 

audio 1pps

audio phase
offset [ns]

One-shot 
compensation

Fig. 2. Block diagram of the adjustable IEEE 1588 counter and the event
time stamping

The block diagram of the adjustable timer is illustrated in

figure 2.

The ENET_ATCOR register is designed for the fine

grain tuning of the counter. It defines after how many clock

cycles the correction counter should be applied. The amount of

correction is specified in ENET_ATINC[INC_CORR]. If

the value of ENET_ATINC[INC_CORR] is greater than

ENET_ATINC[INC] the counter speeds up, if it is less

the counter slows down. Furthermore, the system supports a

one-shot offset event generation. In that context, the module

contains the ENET_ATOFF register. It holds the final

nanosecond value after which the counter is reset for one

single time.

B. Audio clocking architecture

The audio word clock in the i.MX7 is derived from the

board’s main 24 MHz phase-locked loop (PLL) oscillator.

In that context, our requirements determine that the audio

word clock’s frequency must reside in a significantly lower

dimension of 44,1 kHz, 48 kHz or 96 kHz and therefore

represents a divisor of the board’s main frequency of

24 MHz. Furthermore, the final frequency must be adjustable

with respect to our previously described synchronization

approach. Regarding the fine-tuning functionality the

board contains three registers: In the following the

CCM_ANALOG_PLL_AUDIO[DIV _SELECT ]
register will be abbreviated with Div, the

CCM_ANALOG_PLL_AUDIO_NUM reg-

ister will be abbreviated with Num and the

CCM_ANALOG_PLL_AUDIO_DENOM register

will be abbreviated with Denom. Based on these registers the

output of the audio PLL depends on the following calculation:

Foutput = Fosc ∗ (Div +Num/Denom)

310 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Div multiplies the 24 MHz base clock frequency with the

integer specified. The actual granule fine tuning is provided by

adding a 32-bit fraction denoted by Num and Denom. The

resulting audio PLL goes through a pre-divider and a post-

divider to get the respective clock frequencies. Pre and post

dividers have 64 steps so the frequency change is always an

integer multiple of the audio PLL frequency:

Fperipheral = Fsrc ∗ (Divpost/Divpre)

Afterwards, a so-called Sound Asynchronous Interface root

clock (SAI) is derived from the audio PLL, which represents

the master for the final audio word clock. The SAI root clock

feeds a bit clock generator, which eventually generates the

final square-waves-based audio word clock and eventually

determines the sample capture and playback of the sound card.

III. IMPLEMENTATION

This chapter describes the actual implementation of our

concept. First, we describe how the synchronization of the

local time to UTC time is being realized with an accuracy

of one second. Secondly, granule control of the time with

nanosecond accuracy is explained and how to keep the clock

synchronized with the GNSS time using a PID controller.

Eventually, the final audio clock is synchronized with the IEEE

1588 clock, which in turn is in sync with the GNSS clock as

intended.

A. IEEE 1588 synchronization to UTC time

In order to let the IEEE 1588 clock follow UTC time,

first, the local clock must be set to UTC time. This time can

be received from the GNSS module periodically once every

second [1]. A daemon called gpsd is used as an interface

between the i.MX7 and the GNSS module. Gpsd provides a

socket connection between the module and the host [6]. The

IEEE 1588 clock ID can be retrieved with the function phc

open() [9]. The definition of this procedure is found in the

library phc2sys [9]. After the retrieval of the clock ID the

POSIX function clock settime (clockid t clockid, const struct

timespec *tp) [8] is called and the current time is read from

the gpsd buffer. Hence, the IEEE 1588 time is set to UTC

time at the nearest second.

B. Granule control of the 1588 clock

Once the 1588 clock time is accurately set at the nearest

second, an offset between the start of a second in the UTC

time and the local clock time can be observed as described

in the concept. The required offset compensation is realized

via hardware time stamping. As soon as the 1-PPS pulse

occurs on the interrupt line, the current value of the 1588

counter is latched on to the Timer Capture Compare Register

ENET_TCCR by the hardware to be inspected later on by

the software [11]. This enables a precise calculation of the

phase offset. Since the counter is reset in intervals of one

second, this value represents the true second offset between

the local clock and the absolute start of the second. A one-

shot event through ENET_ATOFF is then applied in the

interrupt handler, whose value is set to the value latched in

ENET_TCCR, which enables the timer. When the 1588

counter reaches this value, it is set to zero and starts again

resulting in the desired offset removal.

After the offset compensation has been applied it is possible

to take care of the actual clock drift. The drift can be

controlled by an adjustment value that is applied to the counter

every second. Ideally, every second would consist of 109 ns.

However, as the clocks are drifting, the GNSS second is not

exactly equal to 109 ns of the i.MX7 quartz. Instead, we see a

difference to be equalized. To compensate for this clock drift,

the IEEE 1588 timer counts to 109+dnormal, where dnormal is

the drift offset. This principle compensates the clock drift with

a certain degree of precision, however, we further optimize it

by using dc as a correction value instead of the dnorma value

once every c seconds. This approach is called Proportional-

Integral-Derivative (PID).

More precisely, the ENET_ATINC[INC_CORR] reg-

ister and the ENET_ATCORR register, which allow

granule control over the 1588 counter, can be sped

up or slowed down using the Timer Increment. The

ENET_ATINC[INC_CORR] register has the new incre-

ment and the ENET_ATCORR register defines its fre-

quency. When the number of clock cycles of the 1588 counter

equals the ENET_ATCORR value, the 1588 counter is in-

cremented by the ENET_ATINC[INC_CORR] nanosec-

ond value instead of the usual ENET_ATINC[INC] value.

The resulting adjustment assumes a difference in time

between our 1588 clock start of second and the GNSS start

of second. The difference is obtained from the current value

latched on to the ENET_TCCR register. Speeding up the

1588 counter is realized by increasing the ENET_ATCORR
register value. Decreasing it slows down the timer.

C. Synchronizing the audio clock with the IEEE 1588 clock

The final step of synchronizing the audio PLL with the

IEEE 1588 clock is realized via a task, which is scheduled in

intervals of one second. It receives the clock drift correction

from the previous step. According to this value, the audio

PLL frequency is changed respectively in order to reflect the

change of the audio word clock speed. However, the clock

drift compensation of the audio clock is different compared

with IEEE 1588: The audio PLL allows to tune the audio bit

clock with a very fine grain resolution of less than 0.1 Hz.

Even if the clock drift of the audio signal is compensated,

we will need to determine the precise time phase offset of the

audio signal with respect to the GNSS clock. Otherwise, the

incoming and outgoing audio signals would not be in sync. In

order to achieve this, we introduce a special synchronization

mode. This synchronization mode is activated only at the

startup period because we assume that the time offset does

not change if the clocks are running synchronously. Instead

of a digital audio output signal, an artificial 1-PPS signal is

generated.

In the synchronization mode, the serial audio bit output of

the SAI is connected with the serial audio input to a direct

ALEXANDER CARÔT ET AL.: GNSS-BASED SOUND CARD SYNCHRONIZATION 311



Fig. 3. Audio word clock drift with and without our synchronization

feedback loop. In addition, the SAI data output – filtered by a

D flip-flop that is driven by the audio bit clock – is connected

to an IEEE 1588 time capture register (similar to the 1-PPS

signal of the GNSS receiver). Then, we can measure the delay

between sound and GNSS if playing out an artificial digital

audio pattern.

IV. EVALUATION

The clear and obvious purpose of this paper is the removal

of clock drift in remotely distributed sound systems. Therefore

we decided to perform our evaluation based on the comparison

of two sound card’s word clocks with regard to the phase

of a low-frequency square wave, which is predestined in that

context. In our setup, we generate a 20 Hz square signal with

a frequency generator and feed it into two sound cards. The

outputs are fed into a 2-channel oscilloscope, which displays

both signals at the same time. If the sound card’s clocks

exhibit a drift the phase of the displayed square waves will

drift as well over time. If our implementation is successful

we expect the signal to stay in phase and the image on

the oscilloscope should stay the same. The duration of the

measurement was set to 15 minutes and we retrieved a phase

measurement in intervals of 11 seconds. In figure 3 we present

our results of this evaluation with and without our developed

synchronization approach.

It is clear that without synchronization the phase drift

increases proportionally and amounts to 7.5 ms after the

final duration of 15 minutes. With our synchronization being

applied the phase remains the same because the audio word

clocks don’t exhibit a drift anymore. In fact we can observe

slight phase variations in fixed intervals, however, they are

immediately compensated by our applied algorithm and cannot

be considered problematic regarding the demands of our

described use case.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we describe the successful implementation of a

GNSS-based sound card synchronization technique for devices

distributed in wide-are-networks (WAN) such as the public

Internet. Measurement results clearly show the inherent audio

word clock drift of approximately 7.5 ms over a duration of

15 minutes without our synchronization technique and precise

synchrony of both sound cards and in turn no clock drift when

applied. To our knowledge this is the first implementation

able to provide the described functionality in the sound card

domain. In the near future, we will develop a custom sound

card, which benefits from this approach and integrates it into

our remote music system. The drawback, however, is that

GNSS is not necessarily available in any given environment –

especially in basement rehearsal chambers – which is why we

will also apply our older approach side-by-side with the new.

REFERENCES

[1] L.J. Arceo-Miquel, Yuriy Shmaliy, and Oscar Ibarra-

Manzano. “Optimal Synchronization of Local Clocks

by GPS 1 PPS Signals Using Predictive FIR Filters”.

In: IEEE Transactions (2009), pp. 1833–1840. DOI: 10.

1109/TIM.2009.2013654.

[2] Audinate Website. Dante Overview. [Online; accessed

12-May-2019]. 2019. URL: https://www.audinate.com/

solutions/dante-overview.

[3] Alexander Carôt. “Musical Telepresence – A Compre-

hensive Analysis Towards New Cognitive and Technical

Approaches”. PhD thesis. Institute of Telematics –

University of Lübeck, Germany, 2009.

[4] Alexander Carôt and Christian Werner. “External

latency-optimized soundcard synchronization for appli-

cations in wide-area networks”. In: Proceedings of the

14th regional AES Convention. Tokyo, Japan, July 2009.

[5] Bálint Ferencz. Hardware Assisted IEEE 1588 Clock

Synchronization Under Linux. Master Thesis. Budapest

University of Technology and Economics, 2013.

[6] GPSd reference manual. [Online; accessed 12-May-

2019]. URL: http://catb.org/gpsd.

[7] Christoph Kuhr and Alexander Carôt. “A Jack Sound

Server Backend to Synchronize to An IEEE 1722 AVTP

Media Clock Stream”. In: Proceedings of the Linux

Audio Conference 2019. Stanford, USA, 2019.

[8] Donald A. Lewine. POSIX programmers guide. first.

O’Reilly, 1994.

[9] phc.h Source code. [Online; accessed 12-May-2019].

URL: https://github.com/richardcochran/linuxptp/blob/

master/phc.h.

[10] Ken C. Pohlmann. Principles of Digital Audio. fifth.

The Mcgraw-Hill Companies, 2005.

[11] NXP Semiconductors. iMx7d Dual Applications Pro-

cessor Reference Manual. 2019.

312 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


