
Development of a Flexible Mizar Tokenizer and

Parser for Information Retrieval System

Kazuhisa Nakasho

Yamaguchi University

in Yamaguchi

2-16-1, Tokiwa-dai, Ube City, Yamaguchi, Japan

Email: nakasho@yamaguchi-u.ac.jp

Abstract—In this paper, we explain the development of a new
Mizar tokenizer and parser program as a component of a search
system that works on the Mizar Mathematical Library. The
existing Mizar tokenizer and parser can handle only an article
as a whole written in the Mizar language, however, the newly
developed program can deal with a snippet of a Mizar article.

In particular, since it is possible to handle a snippet of an
article without specifying a vocabulary section of an environment
part, it is expected that user input efforts will be greatly reduced.

I. MOTIVATION

T
HE AUTHOR is developing a new information retrieval

system that works on the Mizar Mathematical Library

(MML) [1]. In this paper, we explain a developed tokenizer

and parser program of the Mizar language as a component of

our search system.

A. MML Query

Currently, MML Query [2] developed by Grzegorz

Bancerek in 2001 is widely used as an MML theorem search

system. MML Query is the forerunner of the search systems

for formalized mathematical libraries. Even today, it is the

only active system that can search comprehensively large

formalized mathematical libraries [3]. MML Query realizes

pattern matching according to the grammatical structure of

the Mizar language with its own language to specify a search

object. This feature allows the users to input search patterns

that have more expressive power than that of regular expres-

sions. However, the users have to spend a considerable amount

of time to learn the grammar of its own search language.

Furthermore, since a mathematical theorem can be transformed

into an infinite number of patterns by equivalent rewriting,

it often causes retrieval omission in pattern matching. As

mentioned above, MML Query has succeeded in reducing

laborious retrieval work in the MML, however, there is still

rooms for improvement.

B. Developing search system

In order to learn from the drawbacks of MML Query, the

newly developing search system extracts features of the input

data and compares them with that of theorems and definitions

registered in the MML. For the feature comparison, we use a

algorithm designed to output a logical distance between two

expressions. In addition, the search history will be collected

Fig. 1. Diagram of our information retrieval system

and reused as corpus data for machine learning so that the

distance calculation algorithm will be tuned to fit user trend.

The flow of our search system is as follows:

1) A user inputs a search target such as a theorem in the

Mizar language.

2) The search system parses the input data.

3) The search system calculates the features of the input

data such as a number of occurrences and positional

relationship of symbols and variables by analyzing the

syntax tree.

4) The search system compares the above features with that

of theorems and definitions registered in the MML, and

ranks and displays the matching rates.

5) The user of the search system browses the search result

displayed on the system.

Fig. 1 shows a diagram of our search system.

C. Necessity of a new tokenizer and parser

The developed tokenizer and parser program correspond to

process 2) in Fig. 1. The existing parser used in the proof

verification program of the Mizar system first reads an article

and converts it into the Weakly Strict Mizar (WS-Mizar)

language [4], [5]. In the WS-Mizar language, all terms are

fully parenthesized, therefore, there is no ambiguity in operator

precedence. After this process, the article in the WS-Mizar

language is converted into XML intermediate representation

by a parser program generated with Bison. The existing parser

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 77–80

DOI: 10.15439/2019F151

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 77



program is supposed to handle full text of a Mizar article,

therefore, it cannot process a snippet like a theorem, which is

expected as the main input of our search system. That is the

reason why we needed to develop a new tokenizer and parser

program for the Mizar language.

II. REQUIREMENTS OF NEW TOKENIZER AND PARSER

The Mizar language consists of a context sensitive grammar,

and a set of valid symbols are determined according to Mizar

articles enumerated in a vocabulary section of an environment

part. However, in the construction of a Mizar article, it is

said that the most difficult process is to create an environment

part correctly. Therefore, it is not practical to enforce a search

system user to input an environment part for every search. In

this project, we aimed at constructing a tokenizer and parser

program that works practically without an environment part.

However, since the omission of an environment part may cause

unexpected syntax errors, our search system needs to provide

interfaces that enable the users to grasp and correct any syntax

errors easily.

A. Tokenizer

As mentioned earlier, in the Mizar language, valid symbols

are determined according to the Mizar articles enumerated in

a vocabulary section. It means that a vocabulary section has

an ability to determine word boundaries in lexical analysis.

When a vocabulary section is omitted, our tokenizer extracts

tokens according to the longest match rule on the assumption

that every symbol registered in the MML is valid. As a

result, a token that is not an originally valid symbol might be

mistakenly recognized as a symbol. However, we succeeded

in reducing token recognition errors by implementing special

interpretation rules to recognize a token placed immediately

after a certain keyword such as let or reserve as a variable.

B. Parser

Bison, which is used as a parser generator for the existing

Mizar parser, adopts LALR parsing known as one of the most

practical bottom-up parsing algorithms. Generally, bottom-up

parser generators produce more efficient and smaller programs

than top-down parser generators. However, since bottom-up

parsers have difficulty in constructing a rough tree structure

in the middle of parsing process, they sometimes tend to output

meaningless error messages when grammatically incorrect

input is given. The existing Mizar proof verification system

also tends to output grammatical error messages that are

difficult for beginners to understand. Based on these reasons

and recent performance improvement of computer hardware,

there have been increasing cases where top-down parsers such

as LL parser and packrat parser are used in recent years. We

also adopted ANTLR, which is based on Adaptive LL (*)

parsing and known as one of the most powerful top-down

parser generators, because incomplete input will often be given

to our search system. ANTLR supports many output languages

such as Java, C++, Python2, Python3, Go, Swift, JavaScript

and C#. Whenever we need to develop Mizar tools that work

on Web browser or modern editors such as Atom or Visual

Studio Code, it can generate a parser written in JavaScript

immediately.

III. PROGRAM SPECIFICATION

This section explains input, output and the flow of our

tokenizer and parser program. Fig. 2 shows the flow chart

of our program.

Fig. 2. Flow of our tokenizer and parser program

A. Input and output

Our program accepts not only full text of a Mizar article

but also various types of blocks such as theorem, definition,

registration, notation, and scheme as input data. Our program

outputs a parsing result in XML format as well as the

existing Mizar parser program. The output XML faithfully

reproduces the structure of the official BNF grammar provided

at mizar.org. Applying the official grammar rules to output

XML will promote the secondary use of our tokenizer and

parser program.

B. Tokenizer specification

In lexical analysis, when a vocabulary section is not spec-

ified, it is assumed that all the symbols defined in the MML

are valid.

All the symbols in the MML are recorded in mml.vct at-

tached to Mizar distribution binaries. In our tokenizer program,

a symbol dictionary is built by extracting symbol information

from mml.vct in a pre-processing step.

Our tokenizer program first removes comments. Next, it

reads tokens such as symbols, keywords, numbers, identifiers,

etc. from the left hand side according to the longest match

rule. If the token matches a symbol registered in the symbol

dictionary, our tokenizer program appends prefix ”_ _ «symbol

type» «symbol priority» _” to the token. Owing to the prefix,

the following parser program is able to distinguish symbol

types in the parsing process. Table I shows the correspon-

dence between symbol types and their meanings in the Mizar

language.

When a token is cut out according to the longest match rule

on the assumption that all the MML symbols are valid, there

78 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



TABLE I
CORRESPONDENCE BETWEEN SYMBOL TYPES AND THEIR MEANINGS

Symbol type Meaning

R Predicate
O Functor
M Mode
G Structure
U Selector
V Attribute
K Left Functor Bracket
L Right Functor Bracket

is a risk that a variable is misinterpreted as a symbol. For

this reason, when a token comes immediately after a certain

keyword such as let or reserve, our tokenizer regards the token

as a variable identifier, and its symbol validity is temporarily

turned off within the scope of the variable. Our program writes

out token-separated text at the end of the process.

C. Parser specification

The official syntax of the Mizar language is written in

BNF. We transformed the BNF syntax definition into ANTLR

grammar form, then passed it to ANTLR parser generator.

Normally, LL parsers require left recursion removal, although

ANTLR automatically resolves direct left recursions. For this

reason, we only needed to remove indirect left recursions.

There are only two indirect left recursion in the Mizar official

syntax definition. We repaired them and transformed the

grammar rules from BNF to ANTLR grammar form.

The Mizar language has a feature that allows users to define

prioritized infix operators (functors). While this feature has

given a significant advantage of the readability of the Mizar

language, it has also made lexical and syntactic analysis more

difficult. Historically, this grammatical complexity has often

become a bottleneck in the development of support tools for

the Mizar system [6]. The existing Mizar system converts the

Mizar language into the WS-Mizar language, thus all terms

are parenthesized. Thanks to this process, the existing parser

can avoid ambiguity in associativity and precedence of infix

operators. In our program, its syntax tree structure is re-edited

according to infix operator priorities in post-process. This

strategy is also used in a parser of Standard ML [7]. At the

end of parsing process, our parser removes prefixes attached

by a tokenizer to symbols, then outputs an XML file.

D. Choice of programming languages

We selected C++ for our parser implementation language

because the parsing process takes most of the execution time

and requires a high performance implementation. On the

other hand, we also chose Python3 for other processes to

realize smooth linkage with other programs and increase the

productivity of the implementation. As for the parser, when

we tried both C++ and Python3 as ANTLR output languages,

we confirmed that C++ is about 10 times faster than Python3.

In the C++ version, the parsing process occupies about 50

to 70 percent of the whole execution time. To bridge the gap

between Python3 and C++, we used the C++ extension feature

of Python3 so that the data exchange is performed on memory.

IV. EVALUATION

The source code of our program is published and managed

on GitHub under the MIT license1.

A. Functionality

Most of our program is written in Python3 and is composed

of highly extensible modules. Furthermore, since our program

faithfully outputs an XML file that follows the official gram-

mar rules written in BNF, it is easy to reuse its source code

for development of other support tools of the Mizar system.

Currently, although the platform on which our program runs is

limited to UNIX, we also plan to support Windows and Mac

OS in the future.

B. Performance

Table II shows a number of words and file size of each

Mizar file used for a performance test. jordan:95 is input data

for a test case of our search system so that this file consists

of a single theorem and a vocabulary section is not included.

The file size of ring_1 is standard and that of jgraph_4 is the

largest in the MML, respectively.

TABLE II
SPECIFICATION OF MIZAR ARTICLES

number of words size

jordan:95 168 0.575 kB

ring_1 11558 37.6kB

jgraph_4 185895 492 kB

Table III shows the specification of the test environment

used in the performance test.

TABLE III
TEST ENVIRONMENT

Item Specification

CPU Intel R©CoreTM i7-7500U @ 2.70GHz

Memory 16GB

OS Ubuntu 16.04 LTS
Compilier GCC version 7

Table IV shows the execution time of each step of our

program. Each item in the list corresponds to the labelled

process shown in Fig. 2. From this table, it is confirmed

that most of the execution time is occupied by process 7),

that is, occupied by an ANTLR generated parser. According

to the measurement results, in the case of an article of

about 10,000 words like ring_1, the time consumption is less

than one second, which means it is enough to be used in

practical applications. However, when it comes to an article

with more than 100,000 words like jgraph_4, parsing time

exceeds 10 seconds. Currently, we suppose the application

of our program is limited to the analysis of small input data

KAZUHISA NAKASHO: DEVELOPMENT OF A FLEXIBLE MIZAR TOKENIZER AND PARSER 79



TABLE IV
TIME CONSUMPTION OF EACH PROCESS

jordan:95 ring_1 jordan_1

1) Read Mizar Text File 0.0029 s 0.0004 s 0.0102 s

2) Remove Comments 0.0000 s 0.0007 s 0.0039 s

3) Tokenize Environment Part 0.0000 s 0.0019 s 0.0026 s

4) Parse Environment Part 0.0000 s 0.0030 s 0.0017 s

5) Create Symbol Dictionary 0.0196 s 0.0061 s 0.0077 s

6) Tokenize Environement Part 0.0015 s 0.1054 s 2.2488 s

7) Parse Main Part & Build XML 0.0235 s 0.4444 s 15.1322 s

8) Modify XML Tree 0.0013 s 0.0731 s 1.3009 s

9) Write XML File 0.0022 s 0.0275 s 0.4751 s

Total 0.0511 s 0.6626 s 19.1831 s

like jordan:95. Hence, we conclude our program already has

enough performance for the application.

Table V shows the comparison result of performance mea-

surement between our program and the existing Mizar parser.

Even though this performance comparison is unfair because

the existing Mizar parser has additional features such as

indexing variables, it is enough to check approximate rel-

ative performance of these two programs. This comparison

made it clear that our program tends to be slower than

the existing parser as the input file size becomes larger.

This tendency mainly comes from the difference of parser

algorithms between the conventional bottom-up parsing and

top-down parsing. The official grammar rules of the Mizar

language include a significant number of left recursions that

cause backtracking in the process of top-down LL(*) parsing

and performance deterioration. This performance deterioration

is a well known issue that occurs when ANTLR generates

parsers for languages with complex grammar rules.

TABLE V
PERFORMANCE COMPARISON BETWEEN CURRENT AND NEW VERSIONS

current version new version

ring_1 3.013 s 0.662 s

jgraph_4 3.610 s 19.183 s

V. REMAINING CHALLENGES

A. Display of parsing results

Since token interpretation of the Mizar language depends

on the entries in a vocabulary section of an environment

part, there is a possibility that the program produces incorrect

results against user intention when it is applied to input

data without a vocabulary section. Therefore, when parsing a

snippet by our program, it is necessary to provide a graphical

user interface (GUI) that allows users to check the parsed

result visually. In the development of our search system, we are

planning to build up a component that converts a parsing result

into an HTML document with highlights of syntax errors,

hyperlinks to symbol definitions, and so on.

1https://github.com/mimosa-project/emparser

B. Type checking

The Mizar language allows symbol overloading and mode

inheritance as well as Java and C++ languages. Therefore, type

checking or type inference must be performed in the semantic

analysis. Improving the precision of the semantic analysis is

expected to greatly contribute to improve on the accuracy

of our search system. There is a preceding research on type

inference without an environment part by Cezary Kaliszyk et

al. [8].

C. Performance improvement

We are planning to improve the performance for the case

where our program is applied to other than our search system

in the future. According to the performance measurements, it

is supposed that effective remedies are to change the parser

algorithm to bottom-up parsing or to optimize a grammar file

passed to ANTLR. However, the replacement to a bottom-up

parsing makes error handling more difficult, and optimization

of the ANTLR grammar file has a disadvantage of impairing

readability of the syntax rules. Another improvement plan is

to rewrite program components written in Python, such as

tokenizer, by using C++ extensions.

ACKNOWLEDGMENT

I would like to express my gratitude to Adam Naumowicz,

Artur Korniłowicz and Radosław Piliszek, who explained

the specification of the existing Mizar tokenizer and parser

programs and provided a part of their source code.

REFERENCES

[1] G. Bancerek, C. Byliński, A. Grabowski, A. Korniłowicz,
R. Matuszewski, A. Naumowicz, and K. Pąk, “The role of the
Mizar Mathematical Library for interactive proof development in Mizar,”
Journal of Automated Reasoning, vol. 61, no. 1, pp. 9–32, Jun 2018.
[Online]. Available: https://doi.org/10.1007/s10817-017-9440-6

[2] G. Bancerek, “Information retrieval and rendering with MML query,”
in Mathematical Knowledge Management, J. M. Borwein and W. M.
Farmer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
266–279. [Online]. Available: https://doi.org/10.1007/11812289_21

[3] F. Guidi and C. Sacerdoti Coen, “A survey on retrieval of mathematical
knowledge,” Mathematics in Computer Science, vol. 10, no. 4,
pp. 409–427, Dec 2016. [Online]. Available: https://doi.org/10.1007/
s11786-016-0274-0

[4] C. Bylinski and J. Alama, “New developments in parsing Mizar,” in
Intelligent Computer Mathematics, J. Jeuring, J. A. Campbell, J. Carette,
G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 427–431. [Online].
Available: https://doi.org/10.1007/978-3-642-31374-5_30

[5] A. Naumowicz and R. Piliszek, “Accessing the Mizar library with
a weakly strict Mizar parser,” in Intelligent Computer Mathematics,
M. Kohlhase, M. Johansson, B. Miller, L. de Moura, and F. Tompa, Eds.
Cham: Springer International Publishing, 2016, pp. 77–82. [Online].
Available: https://doi.org/10.1007/978-3-319-42547-4_6

[6] P. Cairns and J. Gow, “Integrating searching and authoring in Mizar,”
Journal of Automated Reasoning, vol. 39, no. 2, pp. 141–160, Aug
2007. [Online]. Available: https://doi.org/10.1007/s10817-007-9073-2

[7] A. W. Appel and D. B. MacQueen, “Standard ML of New Jersey,”
in International Symposium on Programming Language Implementation

and Logic Programming. Springer, 1991, pp. 1–13. [Online]. Available:
https://doi.org/10.1007/3-540-54444-5_83

[8] C. Kaliszyk, J. Urban, and J. Vyskočil, “Learning to parse on aligned
corpora (rough diamond),” in International Conference on Interactive

Theorem Proving. Springer, 2015, pp. 227–233. [Online]. Available:
https://doi.org/10.1007/978-3-319-22102-1_15

80 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


