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Abstract—To augment source code with high-level metadata
with the intent to facilitate program comprehension, a program-
mer can use annotations. There are several types of annotations:
either those put directly in the code or external ones. Each
type comes with a unique workflow and inherent limitations.
In this paper, we present a tool providing uniform annotation
process, which also adds custom metadata-awareness for an
industrial IDE. We also report an experiment in which we sought
whether the created annotating support helps programmers to
annotate code with comments faster and more consistently. The
experiment showed that with the tool the annotating consistency
was significantly higher but also that the increase in annotating
speed was not statistically significant.

I. INTRODUCTION

T
HE MAIN hindrance programmers deal with when they

need to comprehend source code is known as the ab-

straction gap. This gap exists between the problem domain

and the solution domain of a given software system. Many

high-level concerns from the problem domain are either lost or

scattered as programmers transform them to code. As argued

by LaToza et al. [1] and Vranić et al. [2], programmers often

ask questions about the intent behind particular source code

fragments. In this paper, we present and evaluate an approach

for helping to preserve the high-level knowledge within source

code annotations.

A. Motivation

Two general approaches for retrieving information otherwise

lost or scattered in source code are available:

• recovery of pieces of high-level information from the code

by means of reverse engineering, and

• preservation of a programmer’s thoughts and intentions

in software artifacts.

Feature location tools from the recovering approach usually

produce list of source code elements that are evaluated as

relevant to the given feature [3]. Preserving approaches directly

assign high-level information to source code elements with

annotations [4], [5]. Although in both cases the retrievable data

represent source code metadata (abbreviated: metadata), they

are of different nature.
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Recovering approaches use intrinsic metadata, which either

define source code elements themselves or can be derived from

these elements. In contrast to them, preserving approaches

focus on extrinsic metadata, which complement the intrinsic

ones by adding custom, high-level details explicitly recorded

by programmers. On one side, the more accurate preserved

knowledge may help to bridge the abstraction gap better than

the lower-level recovered one. On the other side, recording

programmer’s mental model of the code brings in an additional

cost: the programmer must spend extra time to record it.

The immediate availability of intrinsic metadata makes

them a great choice for code analysing tools in integrated

development environments (IDEs) [6]. These can provide

structure-aware visualizations (e.g., file structure browsers,

semantic code highlighting, linting) and actions (e.g., contextual

code completion, refactoring). However, intrinsic metadata also

restrict these tools to lower-level domains.

It is thus a worthwhile question whether adding the metadata

upfront will be too costly compared to any benefits they may

bring later. Sulír et al. show in [4] how concern metadata in

the form of Java annotations can enable rapid construction of

reader’s mental model of the implementation. Report of Ji et

al. [7] shows that presence of feature-related metadata within

source code comments was beneficial for software product

line development. The authors presume that by employing a

supporting tool the benefits can be further increased.

To tackle the tool support for such custom metadata in the

source code we need to consider both the type of annotations

that can be used and granularity of elements where they can

be used. Ideally, a programmer would not have to consider all

the different ways in which metadata can be bound to the code,

but directly express the intention to bind metadata to specific

source code elements and let a tool to perform the binding.

This is the main motivational factor for the work presented in

this paper, proposed through the idea of uniform annotation

process in a metadata-aware development environment.

B. Goal

The goal of this paper is twofold. First, we present the idea

and prototype implementation of the uniform annotation process

in an integrated development environment (IDE) extended by

metadata-awareness. By IDE metadata-awareness we mean the

ability to work with both custom code-bound metadata and
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with annotations that bind them as with first-class source code

elements. This goal is addressed in Section II.

Second, in sections III and IV we report an experiment

we performed to evaluate the effect our prototype tool has

on annotating speed and consistency of comment annotations

created during code annotating task. An overarching research

question for the experiment is “Does metadata-aware IDE help

programmers to annotate code with comment annotations?”.

II. ANNOTATION PROCESS IN A METADATA-AWARE

DEVELOPMENT ENVIRONMENT

IDE tools are adapted to use intrinsic metadata derived from

code elements. They can easily bind them to the originating

elements and build dynamic code views or projections from

them [6], [8]. Extrinsic metadata are available also but mostly

limited to data from version control and bug tracking systems.

As such, they are bound only to files, or lines of text. We can

achieve more specific bindings with source code annotations.

In our work the term source code annotation (abbreviated:

annotation) has a more general meaning than, e.g., Java

annotation. As per Definition 1, we consider any binding of

metadata to source code element as annotation.

Definition 1. Annotations are in-place or addressing bindings

of custom metadata to source code elements.

A development environment able to utilize the metadata

recorded by code authors may provide program comprehension

support on a higher level of abstraction, closer to the problem

domain of a software system. Our idea of such metadata-

aware development environment (MADE) comprises of three

following aspects:

1) Support for the annotation process, during which a

programmer binds metadata to code elements.

2) Preservation of annotations and metadata as code

changes.

3) Utilization of the metadata in various IDE tools to

facilitate program comprehension.

In the work presented in this paper, we focus on the first

aspect: on supporting the annotation process, which we define

in Definition 2.

Definition 2. Annotation process, or annotating, is a process

in which metadata are being bound to code elements.

A. Types of Source Code Annotations

When faced with a task to annotate code, a programmer has

three following types of annotations to chose from:

• Internal annotations contained within the source code files,

further classifiable into two distinct types:

– Language-level annotations (LLAs), which use native

programming language constructs for metadata.

– Structured comment annotations (SCAs), which give

the “metadata” status to code comments.

• External annotations (EAs), which are created with

a supporting tool and bound to the source code by

addressing the annotated elements.

Each of these annotation types has a different set of inherent

limitations, which we discuss in the following.

1) Language-level Annotations: LLAs are formally defined

in language’s grammar and all standard language tools can

work with them. On the other side, they can be used only if the

language itself does support them, and only on elements where

it supports them. An example of applying custom metadata

with LLAs in Java language is given in Listing 1.

Listing 1. Java annotations as high-level metadata

@NoteChange @TagManagement

public void addTag(String tag) { /* ... */ }

2) Structured Comment Annotations: SCAs reuse general

code comments, which can contain arbitrary text. For that

reason we need to define a specific syntax for them that would

allow us to parse the metadata. Listing 2 shows an example

of such syntax. Such annotations can be used in almost any

language, considering that a comment can be put at the desired

place in the code. But they require supporting tool that can

recognize the metadata and bind them to specific code elements.

Listing 2. High-level metadata in structured comment annotation

// [# note change ] [# tag management ]

public void addTag(String tag) { /* ... */ }

3) External Annotations: EAs are superimposed over the

code by means of an addressing mechanism that locates

annotated elements. The mechanism can use simple addresses

like element’s starting and ending offsets within a file, or more

robust descriptors of code elements [9]. Annotations are usually

visualized in the code editor (see Fig. 1).

The most significant advantage of EAs is that arbitrary code

fragments can be annotated, even inside files the programmer

cannot (or does not want to) modify. On the other side, their

addresses need to be kept in sync with changes made to the

code and they are completely dependent on a supporting tool.

B. Supporting the Annotation Process

Our focus on custom extrinsic metadata allows us to assume

that annotating is going to be performed “manually” by

programmers. Their goal may be to capture their mental model

of the code in a form that can be used by tools and can

help future maintainers of the code. In the design of a tool

Annotations:        note change         tag management

Fig. 1. Metadata bound to code fragment through external annotations
displayed in the editor’s gutter
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supporting such annotation process, we should strive to remove

unnecessary distractions from programmers’ primary goal of

annotating. For us, it primarily means that regardless of which

type of annotation is used the workflow should be the same.

However, annotation of a given type differs from other types

in how exactly it is applied to the code and what conditions

must be met before it can be applied. The most important

differences are the following.

• Definition: LLAs are represented by language elements,

which may need to be defined before they can be applied

(e.g., like Java’s annotation types). Similarly, EAs may

require definition through a tool [10]. SCAs have no single

definition of the source metadata and the programmer

needs to maintain them individually in each comment.

• Application: Internal annotations must be typed1 into the

code at the appropriate place. EAs are applied through

environment’s UI and their application may be preceded

by code selection.

• Binding: LLAs are bound to specific elements in-place

according to language’s grammar. EAs use addressing

bindings, which may be text-level or element-level. And

comments, as free-standing statements, have no bindings

to the surrounding code elements.

To deal with these differences, we designed an abstracted an-

notation process, which by itself does not require any changes

to the annotated code and imitates annotating the code with EAs.

In this process, operations required to annotate code fragments2

should be performed through IDE actions. The actions cover

selecting code fragment for annotation and selecting annotation

representing required metadata. When these are selected, the

annotation should be applied automatically with the configured

annotation type.

We implemented a prototype tool called Connotator3, which

supports the abstracted annotation process and its configuration

per project. The tool is implemented as a plug-in for JetBrains

IntelliJ platform-based IDEs. The current implementation

supports all three annotation types for the Java language,

and SCAs and EAs for languages Kotlin and Python. It also

provides source code editor augmentations [11] related to

code annotations. In the following, we describe the annotation

process and its realization in Connotator in more detail.

1) Defining metadata annotations: All annotations repre-

senting custom metadata are in Connotator managed through

the main tool window (see Fig. 2). Annotations defined there

may be applied to the code. The metadata model is currently

rather simple: annotations are defined only by their names and

optionally they can have a parent annotation. The tool supports

annotation name refactoring, which appropriately updates all

their existing instances in the code.

2) Selecting annotatable code fragment: Only valid code

selections—those matching some AST elements—are mean-

1LLAs may take advantage of already existing IDE support like code
completion, but some typing is still involved.

2We use the term code fragment in a sense of one or more consecutive
elements selected for annotation.

3Connotator is available at https://git.kpi.fei.tuke.sk/jan.juhar/connotator.

actions for

managing

annotations

tree view with

annotations

and annotated

elements

Fig. 2. Annotations tool window.

ingful targets for metadata. In general, fine-grained element

selection (like statements and expressions) should be possible,

but the specific set of annotatable elements should be config-

urable per-project. These requirements are in Connotator met

through code fragment selection facility using tree patterns

matched against the PSI tree4 of code elements. A user can

specify these patterns as XPath-like expressions built from a set

of basic element types. For example, the following expression

can be used to match Java statements without block bodies:

codeBlock/statement[not child::blockStatement]

To select elements for annotation, the user uses fragment-

selecting action (with keyboard shortcut or from menus). The

action resolves annotatable elements from current text selection

or caret position in the code editor, as can be seen in Fig. 3(a).

3) Applying annotations: Existing metadata annotation can

be applied on selected code fragment with dedicated action

that allows the user to specify the annotation. Its usage is

shown in Fig. 3(b). Once the annotation is selected, Connotator

finishes code annotation automatically. It selects the annotation

type to use from the tool’s configuration (it can be specified

separately for each type of annotatable elements) or selects one

automatically based on their availability and predefined priority

(LLA > SCA > EA). Fig. 3(c) shows the result of applying an

annotation on class fields when Java LLAs are configured for

their element type. Note that the tool also generates required

Java annotation types if they do not exist yet.

The same annotation process is applicable for any annotation

type; the only difference is in the final alteration of the code.

As an example, Fig. 4 shows a for statement annotated with

SCA. All the source code editor augmentations, like gutter icon

and annotation highlighting, remain the same. An EA would

differ only by no visible annotation inserted into the code.

C. Binding Comments to Code Elements

Going back to the differences among annotation types, the

one we did not discuss so far is binding. As far as LLAs

and EAs are concerned, the binding is defined either by the

language’s grammar or by specific addressing mechanism used

by the tool supporting EAs5. On the other hand, SCAs do not

have any grammar-based or other bindings to surrounding code

4PSI (Program Structure Interface) tree is a version of concrete syntax tree
backing most structure-aware features of the IntelliJ platform [12].

5In Connotator, we currently use just a very basic offset-based addressing.
A more robust solution is out of scope of here presented work.
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user-made selection

code fragment selection popup

resolved annotatable elements

(a) selecting code fragment (b) selecting annotation (c) annotations applied

annotation selection popup

highlighted language-level annotations

icon marking the annotated fragment

Fig. 3. Annotation process in Connotator. (a) The user selects code and uses action to resolve annotatable elements. (b) The user uses action to apply
annotation to the selection and then selects desired annotation. (c) The tool applies Java LLAs because this type is configured for class fields in the project.

annotated code fragment icon highlighted comment annotation

location of annotated 

code fragment in file

actions available for

annotated code fragment

Fig. 4. IDE editor showing annotated block statement with associated actions
and source code editor augmentations.

elements; in fact, compilers and interpreters for most languages

ignore comments already in the lexing phase.

However, IDEs need to know about every concrete syntax

tree token in order to be able to map each character from

the file to the corresponding parsed node, and vice versa. For

this reason they use custom lexers and parsers that preserve

comments [12]. Nevertheless, only comment’s parent can be

determined from the tree (e.g., a comment inside a method),

which is not enough to unambiguously assign comments to

code elements. Does a comment standing alone on a first line

within a method relate to the method (parent) or to a statement

below? One possibility for dealing with such ambiguities is to

deploy a set of conventions, or rules, to resolve them.

In the design of comment-to-element binding rules for a tool

that needs to be able to find comments in the existing code,

as well as to generate them when elements are annotated, we

need to consider their following two properties:

• Placement of comments relative to elements they are

bound to. There are many such relative placements that

can be supported; see, e.g., the work of Sommerlad et al.

[13] or our examples in Fig. 5.

• Type of comments that should be used. Particularly end

of line and block comments are often supported by

languages, sometimes complemented by conventional

format of documentary comment (as Java’s JavaDoc).

Examples of possible relative comment-to-element place-

ments and comment types are in Fig. 5. In the following,

we describe how these placements and comment types are

interpreted by Connotator, which supports their configuration

Fig. 5. Comment placements and types with bound code elements

for each annotatable element type.

• End of line comment is bound to the if statement on the

next line through the line before relative placement.

• Block comment is bound to the method parameter

useCache through the first line right relative placement.

The block type of comment is required in this context

because the bound element is followed by more tokens.

• Documentary comment is is bound to the method

updateView through the equally named documentary

comment placement. This placement expresses the inten-

tion to bound the conventional documentary comment to

the element it documents.

Because the user can manually insert a comment annotation

at invalid position (such that does not bind it to any annotatable

element), Connotator is able to issue warnings through in-editor

highlighting when such comment is found.

III. EXPERIMENT: ANNOTATING CODE WITH COMMENT

ANNOTATIONS

Our main motivation behind the presented tool support

for annotation process is in reducing overhead of annotating

a source code. To evaluate any effects our prototype tool

Connotator can have in this regard, we prepared a task in

which a portion of a selected application’s code base needs

to be annotated with comments containing high-level concern
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metadata. We specify what kinds of code elements can be

annotated and where should the annotating comments be placed

relatively to the annotatable elements: together, we will call

this set of constraints the annotation rules.

In this section we present an experiment in which we

compare two groups of students-programmers performing

the described task. The first group uses IntelliJ IDEA with

Connotator installed and the second, control group, uses IntelliJ

IDEA in its default setup. We formulate the following two

research questions for the experiment.

RQ 1. Do programmers annotate source code with comments

more consistently with defined annotation rules if they are

guided by a metadata-aware tool that adheres to these rules?

RQ 2. Do programmers annotate source code with comments

more quickly if the development environment is aware of the

comment annotations?

A. Hypotheses

In the experiment we focus on two aspects of the annotation

process: comment annotations placement consistency and

annotating speed. In the following, we formulate related

hypotheses. The goal of the experiment is to statistically test

those hypotheses with a confidence level of 95% (α = 5%).

1) Comment Annotations Placement Consistency: In Con-

notator, comment annotations placement rules are used to bind

SCAs to specific code elements. We hypothesize that Conno-

tator will help to increase comment annotations placement

consistency in comparison to manual annotating. We define

placement consistency (PC) of comment annotations as

PC =
NC

NA

× 100%

where NC is the number of correctly (according to the

annotation rules) placed comment annotations, and NA is

the number of all comment annotations placed during the

annotating task. We formulate the following null and alternative

hypotheses for RQ 1:

H1null: The placement consistency of comment annotations

created during code annotation task with Connotator

is equal (=) to the placement consistency of comment

annotations created during the same annotation task

with the standard IntelliJ IDEA setup.

H1alt: The placement consistency of comment annotations

created during code annotation task with Connotator

is higher (>) than the placement consistency of com-

ment annotations created during the same annotation

task with the standard IntelliJ IDEA setup.

2) Annotating Speed: Connotator abstracts the annotation

process for different annotation types into a set of IDE

actions. We hypothesize that these actions, when combined

with the annotation rules for annotatable elements, will increase

annotating speed of programmers performing code annotation

task. We define annotating speed (AS) as

AS =
NA

t

where NA is the number of all comment annotations placed

in the code during the annotating task and t is the total time

needed to complete the task. We formulate the following null

and alternative hypotheses for RQ 2:

H2null: The annotating speed during code annotation task

with Connotator is equal (=) to the annotating speed

during the same annotation task with the standard

IntelliJ IDEA setup.

H2alt: The annotating speed during code annotation task

with Connotator is higher (>) than the annotating

speed during the same annotation task with the

standard IntelliJ IDEA setup.

B. Setup

1) Participants: Participants of the experiment were 36

bachelor’s degree Computer Science students from our depart-

ment. They were in their fourth semester with programming

courses and were familiar at least with languages C and Java.

These students formed two study groups (not equally sized)

of the Component Programming course, in which the Java

language is used. One group of students was chosen as the

experimental group where Connotator was used: we will call

it the Connotator group. The other group of students was used

as the control group working with standard IntelliJ IDEA IDE

setup: the manual group. The Connotator group contained 20

participants and the manual group 16.

2) Code for Annotation: As a target for the annotating

task we used source code of application for managing notes

for bibliographic entries called EasyNotes.6 It is a small-

scale (about 2700 lines of code) project written in Java. An

advantage of its code base is the presence of high-level concern

annotations in a form of Java annotations, which were added

by its author for the purpose of the study performed by Sulír

et al. [4]. This provided us a very good starting point for

preparing our own annotating task. From 25 available concern

annotation types, we selected 10 that covered a large portion of

the application’s domain logic, its data model and persistence.

We left out all the code directly related to the graphical user

interface because it contained more complicated code generated

by a UI designing application.

However, high-level concerns may be difficult to recognize

in an unfamiliar code base. This difficulty of program com-

prehension represents the main confounding factor for our

experiment because it can negatively affect the annotation

speed (our dependent variable) and correctness of contextual

placement of annotations (which we do not evaluate). Our

attempt to minimize the influence of this factor was to try and

bring the annotating close to a mechanical process, not unlike

one performed by a programmer who is already familiar with

the code. For this purpose, we renamed several identifiers to

names that included some form of the relevant concern name.

3) Format of Comment Annotations: The two groups of

participants did not use use exactly the same comment structure

6Source code of the application EasyNotes is available at https://github.com/
MilanNosal/easy-notes.
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for annotations. As shown in Fig. 4, Connotator uses specific

comment annotation format where the annotation name needs

to be placed between prefix [# and suffix ] within the text of a

comment. These additional symbols are, however, meaningless

without the tool and they would pose unnecessary hindrance

for participants working without Connotator. For this reason,

participants in the control group did use only simple prefix #

before annotation name in comments to clearly designate that

the following text is meant to be an annotation.

4) Additional Materials: We prepared two documents for

study participants: annotation rules they need to follow during

the task and a user guide for Connotator. We kept these

documents short so they would fit each on one sheet of paper.

The document with annotation rules was designed to guide

participants through the task of annotating EasyNotes’ code.

It described the form of comment annotations, their possible

relative placements, and paired each type of annotatable element

with required comment placement (for the last see Table I).

The document was concluded with a table of actual annotations

the participants should use. For each of the 10 annotations it

specified words related to high-level concerns that could be

found in element identifiers. It also explained the high-level

meaning of each annotation. For example, for concern citing

the table listed “citing of publications” as its explanation and

“cite, citation, publication” as related words in identifiers.

In addition to the annotation rules, we provided participants

in the Connotator group with a brief user guide of the tool.

This guide explained the role of the annotations panel and the

available workflows to select, annotate and deannotate code

fragments. The guide also presented the Connotator’s ways

of signalling through code highlighting whether a specific

comment annotation is considered to be valid or invalid

according to the configuration.

5) Environment: The experiment took place in our depart-

ment’s software laboratory room containing 20 computers

with widescreen full HD displays and IntelliJ IDEA 2017.3.5

installed on Windows 10 OS. We also set up a screen recording

application to record the participants’ annotating sessions for

extracting the task completion times and for later analysis of

their performance. We informed participants that their session

was going to be recorded.

C. Procedure

We carried out the experiment in two separate sessions,

each for one group of participants and lasting 90 minutes (the

TABLE I
ANNOTATION RULES FOR THE ANNOTATING TASK

Annotatable code fragment type Comment annotation placement

Class

Documentation commentMethod

Class field

Simple statement
First line right

Method parameter

Block statement Line before

duration of a lab lesson). Each session proceeded as follows.

When the participants came for the experiment into the

laboratory room, they already had their environment prepared:

IntelliJ IDEA was running with the EasyNotes project opened

and the screen recording was started. The Connotator group

had the tool configured in accordance with the annotation rules.

First, the experimenter—the author of this paper—introduced

the concept of annotating source code with high-level concerns.

Then he presented the EasyNotes application, explaining its

purpose and demoing its functionality.

In the next step, the experimenter handed over printouts

of prepared materials, each labeled with a unique participant

number. Then he walked the participants through its individual

sections: form of comment annotations, possible comment

placements, the comment annotation placements rules and the

annotations themselves. For the Connotator group, the experi-

menter then covered the Connotator user guide complemented

by presentation of its usage.

Next, the participants were asked to proceed with the task.

They were also asked to minimize the IDE window and notify

the experimenter when they finish. When each participant

finished their task, he or she was asked to fill out a prepared

questionnaire. At the end, the experimenter collected annotated

projects and videos of annotating sessions.

D. Evaluation

The first phase of evaluation consisted of analyses of captured

videos, in which we needed to determine the actual duration

of each participant’s annotating task. Next, we proceeded

with analysing annotated projects. The projects were analysed

by counting created comment annotations. In every project

annotated by an experiment participant we counted:

• Total number of annotations in comments.

• Number of invalid annotations, which were further cate-

gorized as comment annotation with:

– invalid placement: annotations occurrences in com-

ments that, given their placement in the code, did

not annotate any element according to the annotation

rules,

– invalid syntax: comment annotations that did not use

required syntax,

– invalid context: comment annotations that annotated

elements not related to the concerns expressed by

these annotations.

E. Results

Our data samples were unpaired, as each participant was

either in Connotator or in manual group. There was one in-

dependent variable—availability of the Connotator tool—with

nominal values “available” and “unavailable”. Our dependent

variables were comment annotations placement consistency and

annotating speed, none of which looked normally distributed.

We used the Mann-Whitney U test as a statistical test for our

hypotheses. We report the results in the following.
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1) Comment Annotations Placement Consistency: The place-

ment consistency was higher in the Connotator group. The

mean value in this group was 99.59%, compared with the mean

of 83.55% in the manual group. Only 3 comment annotations

were placed incorrectly for the Connotator group (participants

typed them manually and ignored the tool’s warnings). On the

other hand, manual group had 2 extreme outliers, who reached

PC of only 46.43% and even 0.0%, respectively. If we exclude

these two participants, the mean for the manual group rises

to 92.17%. Statistical results are summarized as box plots in

Fig. 6.

With or without the two extreme cases in the manual group,

the computed p value is well below 0.001 (6.42× 10−7 and

1.74×10−6 respectively), which is also below our significance

level (0.05). Thus, we reject H1null and accept H1alt. The

conclusion is that comment annotations placement consistency

was higher in the Connotator group and the result is statistically

significant.

2) Annotating Speed: The annotating speed was also higher

in the Connotator group, with the mean of 2.07 annotations

per minute. The manual group reached the mean of 1.48

annotations per minute. See Fig. 7(a) for the box plot.

The computed p value for annotating speed is 0.11, which

is above our significance level (0.05). Thus, we fail to reject

H2null. The conclusion is that while annotating speed was

higher in the Connotator group, the result is not statistically

significant.

It is, however, interesting to note that when we consider

just the duration of the annotating sessions (box plot shown in

Fig. 7(b)), the difference between groups is more prominent:

participants from the Connotator group finished their task

in 42.64 minutes in average, while for manual group the

average is 52.76 minutes. The computed p value for session

durations is < 0.001. We discuss the possible reasons for this
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Fig. 6. The results of statistical evaluation of differences between groups
of participants regarding their comment annotations placement consistency:
(a) with all participants, (b) with the two outliers (0% and 46.4% PC) from
the manual group removed. Median values are included below group names.

discrepancy between annotating speed and annotating session

duration (among other observations) in Section IV.

F. Threats to Validity

In the following, we discuss threats to the validity of the

experiment and relevant control actions taken.

a) Internal validity.: Assignment of participants into

groups was not strictly random: we used existing groups

of students, in which randomness is not guaranteed. The

alternative was to randomly assign half of each study group to

the experimental group and the other half to the control group.

However, in such arrangement, the experimentator would need

to present the annotating tool in front of participants assigned

to the control group (they would be in the same room), which

could also have an effect on the result.

Pilot-testing was limited to one participant who performed

the annotating task with Connotator. At that time, 13 high-level

annotations were selected. As we considered the time needed

to reasonably complete the task too long, we decided to lower

the count of annotations to 10.

b) External validity.: Participants of our experiment were

students, not professional programmers. According to the

findings of Salman et al. [14], it might not have great effects

on the results, because the tested approach—the Connotator

tool—is new for both students and professionals. Nevertheless,

we would need code authors or maintainers (who would

knew the project in detail) to eliminate the effect of program

comprehension on the result. We attempted to eliminate this

effect by making the task more mechanical, as described in

Section III-B2.

Within the broader approach of using extrinsic metadata for

program comprehension, we tested only its part—the annotation

process. Without further integration of bound metadata into the

IDE, their presence in annotations is not well utilized. However,

the annotation process is the most time-consuming part of the

approach, and we strive for a better supporting tool.
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Fig. 7. The results of statistical evaluation of differences between groups
of participants regarding (a) their annotating speed and (b) duration of their
annotation sessions. Median values are included below group names.
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c) Conclusion validity.: The most prominent threats to

conclusion validity are the small number of subject participating

in the experiment (36) and the confounding factor of needed

comprehension of annotated source code.

IV. DISCUSSION OF THE EXPERIMENT

In this section, we present observations regarding the data we

obtained by analysing source codes annotated in the experiment.

A. Differences in Number of Created Annotations

Based on our version of annotated EasyNotes’ source code,

which itself was based on annotations from its author and

refined to finer granularities allowed by SCAs, we consider 70

to 90 comment annotations for an optimal result of annotating.

Participants annotated code on the basis of the annotations table

that we provided them. Ultimately, the specific code elements—

and their count thereof—that participants chose to annotate

depended on their understanding of both the annotations and

of the code. In processed projects, we saw that the numbers

of annotations created during the task varied significantly.

From the box plot in Fig. 8, we can see that the manual group

performed better with regard to the number of annotations. The

median (72.5 annotations) is closer to our optimal count than

the median of Connotator group (61.5 annotations) and there

are no very low (<30) nor very high (>200) values.

The most frequently and most inconsistently used was an-

notation domain entity. Some participants took this annotation

too broadly and annotated a majority of variables named note

or notes. Interestingly, the extreme cases of such very general

understanding of this annotation (almost 100 occurrences in

the project) were present only in the Connotator group.

Described differences in number of created annotations,

especially the tendency towards lower count of annotations in

the Connotator group, may be behind the discrepancy between

annotating speed and session duration distributions (see Fig. 7).

Also, 3 participants in the Connotator group annotated code

in less than 40% of files they were asked to annotate, in

comparison to only one such participant in the manual group.

We conclude that in order to more reliably assess the effect

of our tool on annotating speed, the task should more precisely

define both the elements to be annotated and the determining

factor of when the task can be considered as completed. This

may reduce the variability in annotations counts or at least

allow us to exclude clearly incomplete tasks.

0 50 100 150 200 250
Number of annotations occurrences

combined

Connotator

manual

Fig. 8. Distributions of number of created comment annotations. Shows
distributions for both groups and for all participants combined.

B. A Closer Look at Placement Consistency

Comment annotations placement consistency (PC) showed

to be significantly higher in the Connotator group (see

Section III-E1). This result may be not surprising as this

group used tool that prevented misplaced7 comment annotations.

Our interest was, however, to find out how many misplaced

annotations there would be in the manual group and whether

the difference would be significant.

Fig. 9 shows absolute numbers of misplaced annotations in

relation to all annotations created by individual participants.

Only one participant in the manual group managed to make no

placement mistakes, but he made totally only 35 annotations

(the lowest number in the group).

C. Invalid Syntax or Context of Created Comment Annotations

There were 0 comments with invalid syntax in the Conno-

tator group. Manual group made syntactic mistakes in 1.6%

of comments in average, mainly by omitting the # prefix.

Three participants in the Connotator group misspelled name

of one annotation, which resulted in having them misspelled

at every occurrence in the code. However, due to Connotator’s

annotation renaming feature, such issue can easily be fixed. On

the other hand, manual group had 2.6% of comments in average

with misspelled annotation names. Without a supporting tool,

such errors lead to inconsistencies that hinder the usage of

such comment tags with common search tools [15].

As the tested annotation process does not influence program

comprehension, we expected to found no difference in the

numbers of contextually invalid annotations. This expectation

was confirmed as these was only small and statistically

insignificant difference: median values for percentages of

contextually invalid annotations were 13.6% and 11.7% for

Connotator and manual groups, respectively.

D. Observations from the Questionnaire

In the questionnaire we asked participants questions about

how they would rate their understanding of annotations

7Misplaced comment annotation is an annotation within a comment that is
not bound to any code element because its placement or comment type does
not match annotation rules.
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Fig. 9. Number of misplaced annotations of each participant.
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meaning and of EasyNotes source code on a 5-point scale.

Generally, participants expressed that they understood meanings

of annotations and that they were able to comfortably navigate

source code of EasyNotes. Differences between groups were

minor, with marginally higher (i.e., better understanding) means

in the manual group.

Next, we asked question regarding the annotation process,

in which the participants answered as follows.

• 45% of participants from the Connotator group stated

that annotating was simple and fast, compared with only

12.5% in the manual group.

• 43.8% of participants from the manual group considered

annotating as laborious and 62.5% stated they copied

existing comment annotations to create new ones.

• 90% of participants from the Connotator group considered

the annotating tool as helpful.

We also asked how often they needed to check the document

with annotation rules (on a 10-point scale from “in 1 out of 10

cases” to “in 10 out of 10 cases”). The responses are plotted

in Fig. 10 and show that participants in the Connotator group

reported less frequent usage of annotation rules (median of

3/10) than in the manual group (with median of 5.5/10). These

responses indicate that participants working with our tool were

less occupied by the details of the annotation process.

V. RELATED WORK

In this section we look at other approaches and tools that

share similarities with ours presented in this paper.

Mattis et al. present an approach named Concept-Aware

Programming Environment [16]. They are interested in making

programming environments aware of concepts that are present

in the code through identifier names, with the goal to help

programmers to build their mental model of the code. Another

use-case is in detecting architectural drift: change in meanings

and distributions of words used in names of identifiers during

program evolution. Their method for finding concepts in the

code is automated, but allows programmer’s intervention and

correction. For sharing of corrected concepts in a distributed

workspace, they suggest to embed them in comments, which

would result in SCAs conceptually similar to our ones.

Integration of their approach into development environments

consists of tools for concept exploration, custom class diagrams,

and concept-augmented IDE editor, debugger and VCS tools.
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Fig. 10. The frequency of checking annotation rules by participants in n out
of 10 cases of inserting an annotation into the code.

We presented a uniform annotation process that works for

all annotation types and, considering their limitations, allows

to choose the appropriate type per use case. Cazzola et al.

extended LLAs for languages C# [17] and Java [18] to finer

granularities through customized compilers, by which they

extended the applicability of this single annotation type to code

blocks and expressions. In comparison with our approach, the

availability of annotations in the compiler and for processing

through reflection at runtime is an advantage. However, a

special tool (in this case a custom compiler) is still needed,

and each such solution is restricted to a single language.

Current implementation of Connotator has only a simple

metadata model, where annotations can represent high-level

concerns through their names. A practical extension of this

model would be to link external resources to the metadata. Sim-

ilar thing was done by Baltes et al. who designed SketchLink

tool [5] for linking sketches documenting high-level design to

code elements through SCAs. Their design included a service

for uploading and managing images of sketches from mobile

devices and web browsers. IDE plug-in linked these images

through unique identifier included in source code comments.

Our approach to select structurally valid annotatable code

fragments uses AST patterns. Kästner et al. [19] and Behringer

et al. [20] use AST rules to ensure structurally valid separation

of features in feature-oriented development of software product

lines. Kästner et al. call the annotation process coloring and

Behringer et al. extend it with snippet code organization system

for managing feature variability.

Cséri et al. [21] present their approach to assign source code

comments to specific elements of the AST. They were interested

in comment-to-element assignment for software maintenance

tool, but had to work with legacy codebases, inside of which the

assignment needed to happen. Their solution, similar to ours,

consists of project-specific rules for defining relative comment

placements, but the rules are more complex, supporting, e.g.,

assignment of a single comment node to multiple code elements.

On the other hand, they do not differentiate types of comments,

because they only process existing comments and do not need

to generate new ones.

Rule-based comment assignment is also used in tool TagSEA

by Storey et al. [22]. It uses a simple rule: comments are bound

to the closest enclosing Java element. Such rule is sufficient

if metadata granularity does not go below methods.

In contrast to our per-project configurable comment-to-

element assignment, Sommerlad et al. [13] used fully-automatic

assignment, distinguishing leading, trailing and freestanding

comments. Their goal was to retain all comments and their

positions while refactoring the code.

We used annotations for high-level metadata from the

problem domain. Sulír and Porubän in their approach [23]

used annotations to preserve low-levle runtime information.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our work towards allowing pro-

grammers to more easily preserve their high-level knowledge

of source code they create by annotating it.
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We gave an overview of the concept of the metadata-aware

development environment and focused on its first building

block: the support for the annotation process. For annotating

code with three different types of annotations, and making the

annotating workflow uniform, we designed an abstraction of

the process. First, a programmer chooses source code elements

to annotate and annotation representing metadata that should be

bind to these elements. Then, a specific annotation is applied

automatically by a supporting tool. We also described our

prototype of such a tool in the form of a plugin for IntelliJ

platform-based IDEs, called Connotator.

Finally, we reported the experiment in which we evaluated

Connotator regarding its effect on the annotation process. We

confirmed the hypothesis that the tool could increase placement

consistency of comment annotations with annotation rules. The

group of participants using the tool achieved higher consistency

and reported less distraction by the details of the annotating

than the group without the tool. The hypothesis that the tool

increases annotating speed was not confirmed, although the

group using the tool tended to finish the task sooner.

The natural next progress is to explore in detail the remaining

two aspects of MADE to better utilize the preserved metadata

and facilitate program comprehension. An interesting direction

may also be in merging intrinsic metadata already available

in IDEs with the preserved, extrinsic ones, and providing a

querying facility for the resulting model. The queries could

be used to customize views of code provided by an IDE,

similarly to the concept of scriptable IDE presented by Asenov

et al. [24].

Although our approach supports multiple types of annota-

tions, we used only one type in the presented experiment. We

will focus on assessing the annotation process using a mixture

of annotation types in future evaluations.
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