
Remote Programming and Reconfiguration System

for Embedded Devices

Tomasz Michalec, Maksymilian Wojczuk, Robert Brzoza-Woch, Tomasz Szydło

AGH University of Science and Technology,

Department of Computer Science, Krakow, Poland.

Email: robert.brzoza@agh.edu.pl

Abstract—This article presents a concept of a system which
can be utilized as a remote management add-on for embedded
devices. It can be applied to resource-constrained wireless sensors
and IoT nodes based on a general purpose microcontroller unit
or a field programmable gate array (FPGA) chip. The proposed
solution facilitates remote firmware update, management, and
operation monitoring. Thanks to the utilization of standard
protocols and interfaces, the proposed system is very flexible and
it can be easily customized for multiple modern microcontrollers
or programmable logic chips. The presented system can be an
efficient solution for fast prototyping and it can be an alternative
to a time-consuming process of bootloader development for
ad hoc devices. It can also be applied to remote laboratory
access for educational purposes. A proof of concept prototype
implementation has been successfully developed and evaluated.
The implementation is available on a free license and utilizes a
commonly available and inexpensive hardware platform.

I. INTRODUCTION

INTERNET of Things (IoT) uses multiple nodes distributed

among different physical locations. The nodes may require

remote management and firmware upgrade mechanisms to

be implemented. As the IoT systems are often utilized for

monitoring and interaction with an environment, their opera-

tion has to be either well simulated or tested in a laboratory

or in a target environment. If embedded or IoT software

developers choose the approach that involves practical testing,

the problem of the remote management of IoT nodes arises –

it includes monitoring of a node operating condition, setting

its operation parameters, and upgrading its firmware.

In production environments, a common approach of deploy-

ing a remotely manageable embedded device is to implement

a bootloader. Unfortunately, the process of developing a boot-

loader software may be a very demanding and complex task –

the software needs to be well tested because it is a crucial part

of the system. In case of the bootloader malfunction, while

the device’s software development is at an early stage, the

device becomes unusable until reprogrammed directly through

a local interface. That requires physical access to the device’s

hardware – it can be very inconvenient in the domain of IoT

and sensor nodes which may operate in remote locations.

In this paper, we present a concept and a sample implemen-

tation of a versatile add-on subsystem for remote management

of embedded devices, IoT platforms, especially based on

resource-constrained MCUs.

II. RELATED RESEARCH AND AVAILABLE SOLUTIONS

A common scientific issue is designing a remote laboratory

which is usually utilized to allow for remote access to labora-

tory infrastructure via the Internet [1], [2]. There are presented

extensions of this concept, which allow designers to implement

the remote laboratory on a single-board computer (SBC), but

still it requires to run a full-featured operating system, e.g.

Linux [3]. Such an operating system requires a large amount

of hardware resources and energy.

A natural solution for firmware updates is to write a

bootloader program. However, such a bootloader must be

extremely reliable and it is more difficult to write a reliable

bootloader which itself could be updated remotely using e.g.

wireless connection [4]. Currently, one of the leading solutions

in the field of remote management of the embedded devices

is the utilization of the OMA Lightweight M2M (LWM2M)

protocol [5], [6]. It is based on Constrained Application

Protocol (CoAP) which is popular in the IoT domain [7] due

to its relatively low resource requirements.

There are commercial solutions requiring additional hard-

ware that could program flash memories of MCUs through

the network, e.g. XDS220 USB/Ethernet JTAG Emulator or

the Intel FPGA Ethernet Cable as used in [8]. However, those

solutions are usually expensive, and their application is usually

limited to a vendor-dependent subset of supported devices.

Considering their application for a large number of managed

nodes might not be economical.

A time-efficient approach for remote programming, software

development and prototyping of embedded devices [9] may

be more convenient if the remote reconfiguration is applied.

The utilization of SBCs, such as Raspberry Pi, becomes

more and more popular [10] even for high-end and military

applications [11]. When equipped with proper software, such

as the OpenOCD [12], [13], the Raspberry Pi SBCs can

become remote management nodes as in e.g. [14].

III. PROBLEM STATEMENT

After analyzing the available literature and solutions we

decided to develop a concept of the remote development

tool for MCU-based embedded systems with an option to

expand its functionality to remote reconfiguration of FPGAs.

The concept should allow designers to develop, customize,

and deploy the versatile remote programmer-monitor tool for

facilitating embedded software development.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 467–470

DOI: 10.15439/2019F170

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 467



The discussed problem concerns the development of multi-

node systems based on embedded devices that require remote

and batch firmware updates. The designed solution should

meet the following crucial requirements: (1) the solution

should be versatile or at least easy to adapt and extend for

various MCU hardware platforms with an option for future

FPGA configuration support; (2) the remote programming sys-

tem should allow for easy interaction with remote embedded

devices – mainly the firmware update; (3) it should detect the

connected target board and adjust parameters automatically;

(4) The remote reconfiguration tool should be able to operate

on a commonly available and inexpensive hardware platform;

(5) the interface for the user or a developer should be platform-

independent.

IV. THE DESIGN CONCEPTS

In this section, we present suggested choices and concepts

for implementing the remote reconfiguration system based on

the requirements stated in Section III.

A. General architecture and communication

We propose the following architecture of the remote pro-

gramming system. The system may consist of two separate

main parts: (1) the hardware part called the Remote Pro-

gramming Device (RPD) further in this article and (2) the

management part which is a user application for interacting

with one or more RPDs.

The RPD is able to remotely reprogram internal memories

of microcontrollers with provided binary firmware files and

optionally to reconfigure FPGA integrated circuits. Primarily is

intended to work as a temporary add-on to an embedded device

or an IoT node during final stages of software development.

It can also be utilized for diagnostic and long-term moni-

toring purposes in prototype and experimental IoT systems.

The embedded device, which is managed, reprogrammed, or

reconfigured by the RPD, is in this paper referred to as the

target device.

The management part is intended to run on a user’s host

computer. For the purposes of communication between the

two parts of the system, we have chosen and recommend

the LWM2M protocol due to its popularity, basic security,

and ability to communicate not only within local networks

but also globally over the Internet. As the management part,

we decided to use the Eclipse Leshan 1 implementation of

the LWM2M server. It provides a Web-based user interface

(UI) which allows for interaction with connected RPDs. That

interface does not need any additional specific software to be

installed on the management computer.

To provide versatility, the RPD is recommended to commu-

nicate with the target device using a standard and popular

interface, primarily Joint Test Action Group IEEE 1149.1

(JTAG) and, eventually, Serial Wire Debug (SWD). An MCU

for RPD may be a typical inexpensive unit for embedded

systems purposes. The Ethernet was chosen to implement a

1https://www.eclipse.org/leshan/

Fig. 1. RPD architecture and usage (a) and RPD abstraction layers dia-
gram (b).

convenient physical layer for Internet Protocol (IP) commu-

nication. For the prototype implementation, we have chosen

the Nucleo boards equipped with STM32F429ZI MCU with

ARM Cortex-M4 microprocessor core. RPD uses a USB flash

drive to store programming files and configuration locally.

The proposed remote programming architecture has been

shown in Figure 1a.

V. SELECTED DETAILS OF SAMPLE IMPLEMENTATION

A sample software for the remote programming system

has been successfully implemented. This section contains

selected details which concern practical aspects of the remote

programming system operation.

A. RPD general architecture

The RPD has been designed to be easily extendable. Its

architecture is based on layers. Figure 1b shows the designed

organization of the layers. The first layer, denoted as Target,

is the only layer exposed to the external interface described

further in Section V-B. The Target layer purpose is to represent

all programmable devices in a unified way. The Device driver

is an intermediate layer which can be partitioned into multiple

sub-layers. The driver sub-layers are able to communicate

with devices supporting ARM Debug Interface Access and

Data Ports (ADIv5 AP and ADIv5 DP). Such an architecture

allows similar devices to share common parts of software

implementation. This layer is independent of hardware. The

Interface is the lowest layer and it encapsulates logic needed

to use a physical medium. It is tightly coupled with hardware

used to realize the RPD.

As a proof of concept implementation, we provide support

for programming two different MCUs. The users and develop-

ers can extend the range of the supported programmed chips

by modifying the provided source code. Further details on the

RPD are elaborated in Section V-C.

B. Communication part

We used a standard LWM2M protocol stack with the CoAP

over User Datagram Protocol (UDP) implemented with the

LwIP stack – a commonly used TCP/IP stack designed for

embedded devices. We have used Eclipse Leshan as the

LWM2M server to provide the user with a generic Web-based

UI for managing the programmer resources.

The communication with the management part includes

two parts: the management interface using the LWM2M and

the file download part with the Hypertext Transfer Protocol

(HTTP). The LWM2M implementation at the RPD side uses

468 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



the Wakaama code [5], [15]. The user can browse, read and

update each connected device’s properties through the UI.

LWM2M server sends user’s actions to particular devices

and calls adequate procedures associated with resources. The

firmware URL resource contains the URL of the current binary

file. Once updated, the device downloads the newest firmware

version from the HTTP server. A simplified process has been

shown in Figure 2.

The whole communication between the user and the RPD

is done through the LWM2M Server, excluding the binary

download which is done using the HTTP. In order to en-

sure basic functionality for the sample implementation, we

have defined an object representing the Remote Target – an

embedded device to be programmed. The object contains

properties necessary to monitor and control vital aspects of

the remote target. The network configuration mechanism has

been implemented and it can be dynamically changed without

direct physical access to the device.

Fig. 2. Simplified communication flow (the LWM2M Server, the HTTP
Servers, and the user’s workstation may or may not be running on a single
machine).

C. Programming part

The sample implementation of the RPD is able to program

flash memory of the following MCU families: STM32F4xx,

STM32L4xx. Both of them are similar, but the STM32L4xx

uses more energy-efficient technology and has updated hard-

ware peripheral modules. JTAG has been selected as the

hardware interface for the MCU programming in the proto-

type implementation. The JTAG’s daisy-chaining feature is

supported in the sample firmware. The RPD is also able to

perform automatic discovery of connected devices by using

their IDCODE registers. Discovered devices are exposed as

independent targets to the management part.

VI. PROTOTYPE EVALUATION

Further in this section, we present a quantitative evaluation

of the sample implementation of the RPD and its analysis.

A. Network communication

The system presented in this paper is intended to provide

the possibility to transfer a new firmware binary file from the

management part to a target embedded device programmed

by an RPD. The main goal of the system is to allow for

programming the target located in a distant physical location.

To prove that functionality and usefulness of the created

(a) (b)

Fig. 3. Comparison of binary files download time (a) and programming
time (b).

system we have tested time performance for different network

environments. We conducted 5 practical tests for each of the

following network conditions:

• Network A: The LWM2M server, the HTTP server, the

user’s computer, and the RPD with target boards are

located in the same local network. The user’s computer

is connected with the router and switch through Wi-Fi

interface.

• Network B: The LWM2M server, the user’s computer,

and the RPD are placed in the same local network, but the

binary file is downloaded from an external HTTP server

in another network but in the same city Kraków, Poland.

• Network C: The LWM2M server is running on the

Amazon Elastic Compute Cloud (Amazon EC2) instance

from Amazon Web Services in Frankfurt Datacenter and

the binary files are placed also in Frankfurt, on the

Amazon Simple Storage Service (the Amazon S3). User’s

computer, the RPD connected to target boards are located

in Kraków, Poland, in the same local network.

• Network D: In this test set-up, the user’s computer as

a virtual machine, the LWM2M Server, and the HTTP

Server on the EC2 Instance from Amazon Web Services

were located in the United States Datacenter while the

RPD was in the AGH University network in Kraków,

Poland, Europe.

The results are shown in Figure 3a. The binary download

time to the target is similar for the local network conditions

and across neighbouring countries on one continent – in all

of those cases the system has a similar level of its overall

usefulness and the physical distance had only a limited impact

on the overall system performance. The network overhead

plays a greater role in large distances as in the Network D case.

However, system can then still be considered useful because

the binary download time does not exceed 4 s.

B. The target device programming

This section discusses its overall performance in different

scenarios with reference to the underlying dependencies of this

process. The information can be useful in comparison with

other available commercial solutions than mentioned in this

section and also to provide more complete information for

scientists and engineers who wish to contribute to the RPD

development.

Time required for the programming process includes over-

head for communication between the RPD and a target device,

ROBERT BRZOZA-WOCH ET AL.: REMOTE PROGRAMMING AND RECONFIGURATION SYSTEM FOR EMBEDDED DEVICES 469



erasing the target’s flash memory, and the target’s flash mem-

ory programming.

The JTAG clock signal (TCK) was set to 1MHz. For erasing

flash memory on STM32F4xx and STM32L4xx we utilized

a mechanism to erase only those memory regions that were

going to be programmed. For programming the STM32L4xx

we used a binary file with size 40 KiB. STM32F4xx was

programmed using a binary file with size of 22 KiB.

Tests in the following scenarios have been performed: (1)

RPD with two devices in JTAG daisy-chain, (2) RPD with one

device in JTAG chain, and (3) ST-Link programmer connected

locally with USB. The latter scenario served as a reference

for comparison with a commercial solution. All tests were

repeated 5 times and the average time is presented in Figure 3b.

The process of programming a target device while another

one is in JTAG daisy-chain takes longer than programming

one target device only, because it was required to write the

BYPASS instruction to all other devices in the chain. There is

also additional code in the RPD that needs to be executed to

handle multiple targets.

Even the STM32L4xx binary file is almost two times

larger than the STM32F4xx program, time for flashing the

STM32L4xx increased only 145%, because it also includes

an overhead for programming operation.

The RPD firmware was compiled with the free GCC cross

compiler, arm-none-eabi-gcc. With the compiler optimization

level set to Og, the resulting firmware size is 149.2 KiB and

the RPD program requires 135.4 KiB of static data memory.

The measured power consumption of the RPD is 1.1W with

fully operational Ethernet interface but without an external

mass storage device. The total power consumption may vary

depending on the utilized mass storage memory, usually a USB

flash drive. In practice, the measured total power consumption

with a flash drive connected is approx. 1.2W.

VII. CONCLUSION AND FUTURE WORK

In this article, we present a concept of the remote program-

ming, configuration, and monitoring system for development

and testing of embedded devices and IoT nodes.

The sample implementation of the reconfiguration system

has been successful, the basic proof-of-concept functionality

has been achieved, and the requirements stated in Section III

are met which proves the overall correctness of the presented

concept. The remote management interface is easy to use and

can be run on many different operating systems thanks to

the utilization of the Leshan LWM2M implementation with

Web-based GUI. The created RPD software is ready for users

to further develop the RPD functionality according to their

own use cases, including new programmed devices, sensors,

etc. The developed software is available on GitHub2 on the

free (MIT) license. The hardware price of the remote pro-

gramming system presented in this paper is much lower than

the commercial solutions presented in Section II. However,

this implementation may require additional work needed for

2https://github.com/maxiwoj/RemoteProgrammer

customizing it for specific, not yet supported use cases. The

additional labor cost can be less noticeable if the multiple

RPDs with the same custom firmware are deployed.

Future improvements may include implementing a support

for the SWD interface, optimizing storage management and

flash memory writing, as well as remote management of the

RPD firmware and health checks of the connected target

devices using additional sensors.

ACKNOWLEDGMENT

The research presented in this paper was partially sup-

ported by the National Centre for Research and De-

velopment (NCBiR) under Grant No. LIDER/15/0144/L-

7/15/NCBR/2016.

REFERENCES

[1] R. Bose, “Virtual labs project: A paradigm shift in internet-based
remote experimentation,” IEEE access, vol. 1, pp. 718–725, 2013.
[Online]. Available: https://doi.org/10.1109/ACCESS.2013.2286202

[2] A. V. Parkhomenko, O. Gladkova, E. Ivanov, A. Sokolyanskii, and
S. Kurson, “Development and application of remote laboratory for
embedded systems design,” International Journal of Online Engineering

(iJOE), vol. 11, no. 3, pp. 27–31, 2015.
[3] P. Alexander and N. Radhakrishnan, “Remote lab implementation on an

embedded web server,” in 2015 International Conference on Circuits,

Power and Computing Technologies [ICCPCT-2015]. IEEE, 2015, pp.
1–5. [Online]. Available: https://doi.org/10.1109/ICCPCT.2015.7159525

[4] S. Schmidt, M. Tausig, M. Hudler, and G. Simhandl, “Secure firmware
update over the air in the internet of things focusing on flexibility and
feasibility,” in Internet of Things Software Update Workshop (IoTSU).

Proceeding, 2016.
[5] S. Rao, D. Chendanda, C. Deshpande, and V. Lakkundi, “Implementing

LWM2M in constrained IoT devices,” in 2015 IEEE Conference

on Wireless Sensors (ICWiSe). IEEE, 2015, pp. 52–57. [Online].
Available: https://doi.org/10.1109/ICWISE.2015.7380353

[6] J. Prado, “OMA Lighweight M2M Resource Model,” in IAB IoT

Semantic Interoperability Workshop, 2016.
[7] B. Djamaa, M. A. Kouda, A. Yachir, and T. Kenaza, “Fetchiot:

Efficient resource fetching for the internet of things,” in 2018

Federated Conference on Computer Science and Information Systems

(FedCSIS). IEEE, 2018, pp. 637–643. [Online]. Available: http:
//dx.doi.org/10.15439/978-83-949419-5-6

[8] J. Belleman, D. Belohrad, L. Jensen, M. Krupa, and A. Topaloudis, “The
LHC Fast Beam Current Change Monitor,” WEPF29, IBIC, 2013.

[9] A. Tutaj and J. Augustyn, “Universal serial bus as a communication
medium for prototype networked data acquisition and control
systems-performance optimisation and evaluation,” in 2018 Federated

Conference on Computer Science and Information Systems (FedCSIS).
IEEE, 2018, pp. 665–674. [Online]. Available: http://dx.doi.org/10.
15439/978-83-949419-5-6

[10] R. Baumgartl and D. Muller, “Raspberry pi as an inexpensive
platform for real-time traffic jam analysis on the road,” in
2018 Federated Conference on Computer Science and Information

Systems (FedCSIS). IEEE, 2018, pp. 623–627. [Online]. Available:
http://dx.doi.org/10.15439/978-83-949419-5-6

[11] F. T. Johnsen, “Using publish/subscribe for short-lived iot data,” in
2018 Federated Conference on Computer Science and Information

Systems (FedCSIS). IEEE, 2018, pp. 645–649. [Online]. Available:
http://dx.doi.org/10.15439/978-83-949419-5-6

[12] H. Högl and D. Rath, “Open on-chip debugger–openocd–,” Fakultat fur

Informatik, Tech. Rep, 2006.
[13] D. Rath, “Openocd,” https://github.com/ntfreak/openocd, 2005.
[14] R. Brzoza-Woch, Ł. Gurdek, and T. Szydlo, “Rapid embedded systems

prototyping-an effective approach to embedded systems development,”
in 2018 Federated Conference on Computer Science and Information

Systems (FedCSIS). IEEE, 2018, pp. 629–636. [Online]. Available:
http://dx.doi.org/10.15439/978-83-949419-5-6

[15] O. M. Alliance, “Lwm2m specification 1.0,” Open Mobile Alliance: San

Diego, CA, USA, 2017.

470 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


