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Abstract—The state of the art in Sentiment Analysis is defined
by deep learning methods, and currently the research efforts
are focused on improving the encoding of underlying contextual
information in a sequence of text. However, those neural networks
with a higher representation capacity are increasingly more
complex, which means that they have more hyper-parameters
that have to be defined by hand. We argue that the setting
of hyper-parameters may be defined as an optimisation task,
we thus claim that evolutionary algorithms may be used to the
optimisation of the hyper-parameters of a deep learning method.
We propose the use of the evolutionary algorithm SHADE for

the optimisation of the configuration of a deep learning model
for the task of sentiment analysis in Twitter. We evaluate our
proposal in a corpus of Spanish tweets, and the results show
that the hyper-parameters found by the evolutionary algorithm
enhance the performance of the deep learning method.

I. INTRODUCTION

O
PINIONS, sentiments, experiences, private states,
broadly speaking subjective information, are continu-

ously posted on micro-blogging sites as Twitter. The pro-
cessing of this kind of information is crucial for other users
and for any kind of organisation, because it offers a valuable
source of knowledge to understand the perspectives of users
on topics of interest, which eases the process of making
decisions [1]. Sentiment Analysis (SA) is the task centred
on labelling the opinion meaning of a text, and it is defined
as the computational treatment of opinions, sentiments and
subjectivity in texts [2].

Since the use of language in Twitter has its own charac-
teristics that make it different from the use of language in
formal genre of writing, specific computational methods have
to be developed [3]. The main contributions to the processing
of the sentiment of tweets can be found in the respective
tasks of the workshops SemEval1 for the English language and
TASS2 for the Spanish language. The state of the art on those
workshops has evolved from the use of linear classification
systems grounded in the use of a big bunch of hand-crafted
linguistic features [4], [5] to the use of deep learning methods

1https://aclweb.org/aclwiki/SemEval_Portal
2http://www.sepln.org/workshops/tass/

without the need in most of the cases of hand-crafted features
[6], [7].

Besides the strong results of deep learning methods in SA
in Twitter, we stress out that those deep learning methods
has reduced the need of feature engineering, because they are
based on the use of unsupervised pre-train features, which the
most used are vectors of word embeddings. Deep learning
methods depend on the configuration of some parameters
that are known as hyper-parameters, such as the number of
output units of each neural layer or the dropout rate. Those
hyper-parameters must be defined by hand, hence the positive
reduction of the effort in the designing of features has been
changed to the effort of setting the right hyper-parameters
value. The current trend in the development of neural networks
for SA is to attempt to encode as much contextual information
as possible, which is the aim, for instance, of the self-
attentive networks [8] and memory networks [9]. The high
complexity of those deep learning architectures entails to
define a higher number of hyper-parameters, which means that
their configuration would not be an easy task.

We define the process of hyper-parameter setting as an
optimisation task, because the optimisation of the value of the
hyper-parameters allows to optimise the performance of the
neural network. In this paper we thus claim that the use of an
optimisation method, as an Evolutionary Algorithm [10], may
find out the right hyper-parameters values and consequently
optimise the performance of a neural network. We propose the
use of the evolutionary algorithm SHADE [11] for optimising
the hyper-parameters of a self-attentive neural network for the
task of SA in Twitter.

We evaluate our proposal in the task of SA in Twitter in
Spanish, and we used the Spanish set of the corpus InterTASS
[12]. We define as a baseline model our self-attentive neural
network with a set of hyper-parameters values defined by hand,
and we compare its performance with the optimised version
of the neural model. Likewise, we compare the performance
of our proposal with the results reached in the TASS 2018
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competition,3 and we show how our proposal without any
external knowledge reaches a similar performance than the
highest ranked systems in the competition. Moreover, we show
how our evolutionary proposal has the ability to improve the
learning of minority classes in a imbalanced dataset, as the
InterTASS corpus is, and reduces the complexity of the neural
model. Although we evaluated our proposal in an imbalanced
dataset, we did not conduct any standard data augmentation
technique that are usually performed for enhancing the per-
formance of deep learning methods [13], because our aim is
to evaluate our claim without the influence of any data pre-
processing method.

The reminder of this paper is organised as what follows:
Section II exposes some related works to SA in Twitter and
hyper-parameter learning. Subsequently, Section III presents
our deep learning model for SA in Twitter, which is optimised
by an evolutionary algorithm that is detailed in Section IV.
Sections V and VI are focused on the description of the
experimental set up and the analysis of the results. Finally,
Section VII presents the conclusions of our work.

II. RELATED WORKS

We propose the automatically learning of the hyper-
parameters of a deep learning method in order to tackle the
task of SA in Twitter. Accordingly, Section II-A describe some
works related to SA, and Section II-B is focused on the task
of neural networks hyper-parameters learning.

A. Sentiment Analysis in Twitter

Since the first days of Twitter, this microblogging site has
attracted the attention of the research community, although the
first works were closer to social sciences [14] than computer
science, as well as to the concept of the electronic word
of mouth [15]. However, as the popularity of Twitter was
increasing, it was becoming in a communication tool in which
users exchange their private states, or in other words their
experiences, sentiments and opinions.

The first works on SA in Twitter were similar to the first
ones in regular texts [16], [17], they were focused on the study
of how to represent the opinion meaning of texts and the com-
parison of linear machine learning classification algorithms. In
[18], the first corpus of SA in Twitter is described, and the
authors evaluated the performance of three linear classification
methods with three different feature vector representations
approaches. The following works centred the efforts on feature
engineering, broadly speaking, on the use of linguistic features
and external knowledge for the representation of the opinion
meaning of tweets. For instance, in [19] the tweets were
represented with a combination of weighted unigrams and
features generated from a sentiment lexicon. Similarly, in
[20] the authors used a list of subjetive hashtags besides
the use of a sentiment lexicon and unigrams to classify the
polarity of tweets from different topics. The use of sentiment
external knowledge is essential in [21], in which the authors

3http://www.sepln.org/workshops/tass/2018/

first represented the tweets as bag of unigrams and bigrams,
and each unigram and bigram is represented as a vector of
sentiment values aggregated from several sentiment lexicons.

The classification of the polarity of tweets was also used
to the prediction of future events, such as the outcome of
elections [22], [23]. Likewise, in [24], the authors use the
classification of the opinion to predict the evolution of stock
markets. As the previous works, the method are based on the
representation of the tweets with a great bunch of features and
the use of linear classifiers.

Besides the strong results of deep learning methods in
Twitter SA, they allow to extremely reduce the efforts in
feature engineering and in the use of external knowledge.
However, this is caused by the representation of the input
sequences of text, in this case, tweets, with unsupervised pre-
trained feature vectors. Those feature vectors are known as
word embedding that represent the meaning of each word,
and they are based on the distributional semantics hypothesis.
Accordingly, deep leaning methods allow to reach strong
results with a low designing effort. For instance, in [25],
the authors classify the polarity and the language of tweets
with a convolutional neural network (CNN). Likewise, the
straightforward neural network described in [26] also reached
good results in SA in Twitter in Spanish. Other example of
the use of deep learning methods for SA in texts different
from English can be read in [27]. However, in some cases,
the enhancing of the performance of polarity classification in
Twitter forces to use deeper and more complex deep learning
methods. In [28], the authors propose the combination of a
Long-Short Term Memory (LSTM) Recurrent Neural network
(RNN) layer and CNN layer for polarity classification of
tweets written in English.

B. Hyper-parameters Learning

The trend in SA in Twitter is the addition of more encoding
layers (CNN, LSTM), and other kind of mechanisms to
increase the capacity of the network to represent the contextual
information of the input sequence of text. Those layers depend
on a set of configuration parameters or hyper-parameters,
which their right definition is essential for the global perfor-
mance of the neural network. Moreover, regularisation layers,
as Dropout or penalty rates for the loss function, are key
elements of the architecture of neural networks in order to
avoid the over-fitting. Consequently, the design of a neural
network required of an effort of selecting the right hyper-
parameters for each of the layers of the architecture. Therefore,
the feature engineering effort has evolved to hyper-parameter
engineering.

The definition of the right hyper-parameters is not an easy
task, and there is not any rule of thumb to do it. However,
there exist some strategies to address it, as well as, some
computational approaches, which we indicate as what follows:

1) Brute force. It consists in the exhaustive evaluation of all
possible values of all the hyper-parameters, which is not
feasible because of limitation of time and computational
resources.
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2) Grid search. It is a brute force approach constrained by
a pre-defined set of hyper-parameters values. This is a
feasible strategy because the number of evaluations is
lower in comparison with the brute force, and it allows
to reach good results as show in [29]. However, the hyper-
parameters values must be defined by hand.

3) Random search. In [30] is shown that the random search
of the values of the hyper-parameters allows the neural
network to reach good results. However, the random
search cannot assure to find out the values that optimise
the performance of the network.

4) Bayesian approximations [31]. The positive side of this
strategies is that they do not have to completely run the
neural network to optimise it, because they are grounded
in a approximation. However, the complexity of those
methods make them close to be unfeasible and difficult
to be parallelised.

5) Evolutionary algorithms [10]. As the bayesian approxi-
mations, these algorithms seek in the hyper-parater values
search space those ones that may optimise the perfor-
mance of the network. Nevertheless, the own definition
of evolutionary algorithms has specific strategies for
finding the right values in the search space. Moreover,
these algorithms are parallelisable in contrast to bayesian
approximations, indeed they are parallelisable in GPUs
[32]. In [33] is described the use of the CMA-ES [34]
for tuning the hyper-parameters of a neural network.
In [35] is again used the CMA-ES algorithm for the
otpimimisation of a neural network, but in this case
for the generation of a language model. The use of
evolutionary methods for hyper-parameter tuning has not
ceased, and recently in [36] a new evolutionary method
has been proposed with positive results.

Since evolutionary algorithms are showing a positive perfor-
mance on the task of hyper-parameter optimisation, we select
that strategy for our experimentation, and we propose the
use of the algorigthm SHADE for the tuning of the hyper-
parameters of a self-attentive neural network for the task of
SA in Twitter.

III. DEEP LEARNING MODEL FOR SA

Since our aim is to show the suitability of evolutionary algo-
rithms for tuning the value of hyper-parameters, we propose
a deep neural network with several layers with the aim of
encoding as much contextual information as possible, which
also goes in the line of the proposals of the state of the art
(see Section II-A). In the subsequent sections we describe
the architecture of our neural network that is composed of
three main layers: (1) encoding layer (see Section III-A),
self-attention layer (see Section III-B) and classification layer
(see Section III-C).

A. Encoding layer

Two kind of information may be encoded from a sequence
of text: local and temporal. The local information is the
underlying one from the inter-dependencies among words in

a local context. On the other hand, the entire sequence of text
has also their own meaning which depends on the relation of
all the words. Because of these two kind of information, we
define an encoding layer composed of a CNN, focused on the
local information, and an RNN LSTM layer, centred on the
temporal information.

a) CNN: We choose a CNN layer in order to focus on
the local information motivated by its sparse interactions and
the ability to combine features of a local context. CNNs get
this ability by implementing the discrete convolution operator
(see Equation 1).

s(t) = (x ∗ w)(t) =

∞
∑

a=−∞

x(a)w(t − a) (1)

where x is the input and w the kernel. The output is sometimes
referred to as the feature map of size CNNfm.

The input of a CNN layer is always a grid-structured dataset.
For example, the sequence of vectors w = (w1, w2, ...wn).
This layer performs the convolution function for a fixed kernel
size k. For an 1-dimensional CNN, the output is another grid-
structured dataset of size n×CNNfm. Equation 2 summarise
the definition for an 1-dimensional CNN layer:

CNN(w1:n,k) = y1:n

yi = s(k)

wi ∈ R
d,k ∈ [1, 2, ..., n]

(2)

b) Bidirectional Long-Short Term Memory: The election
of RNN to capture temporal information is due to the fact
that they maintain memory based on information history.
These networks are defined by a non-lineal function σ applied
recursively on a sequence of inputs (w1, w2, ..., wn). The input
of σ is a state vector si−1 and an element of the sequence input
wi. The output of the non-lineal function σ is a new state
vector si, which is transformed to the output vector yi by a
deterministic function O. Equation 3 summarise the definition:

RNN(w1:n, s0) = y1:n

yi = O(si)

si = R(wi, si−1);

wi ∈ R
d, si ∈ R

f(hlstm),yi ∈ R
hlstm

(3)

LSTM is a gating-based architecture of RNN that uses
several gates in order to solve the gradient vanishing (or
exploding) problem of RNN. However, LSTM still has a
limitation, the recurrence is only implemented in one direction
(from left to right). Nevertheless, the meaning of each word
depends on their surrounding context words, broadly speaking,
the words in their left and right. Accordingly, we use a
bidirectional LSTM (biLSTM). These networks consist in two
consecutive LSTM layers, each one in one direction (forward
(LSTMf ) and backward (LSTMb)), encoding the full context
information. We formally define biLSTM in Equation 4.
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biLSTM(w1:n) = [LSTMf (w1:n, s
f
0 ),LSTMb(w1:n, s

b
0)]

(4)

B. Self-Attention mechanism

The aim of attention mechanisms is to give the neural
network the capacity of selecting what to learn from the input
data, as humans do. Attention mechanisms have become an
essential part of sequence modelling in a wide range of tasks.
They are commonly used in conjunction with a RNN.

The attention mechanism in NLP tasks allow to learn
what words are the most salient for the global meaning
of a sequence of text, but it does not take into account
the dependencies that each word has with the others. Self-
Attention mechanism [37] calculates the relation of each word
with the others, hence it uses more information in order to
identify the most salient words. Since Self-Attention allows to
use more contextual information of the input data, we chose
it in order to automatically learn the set of more prominent
words for the polarity classification of the input tweets.

The input of the attention mechanism is a matrix of features,
in our case the output of a dense layer inmediatly after the
biLSTM layer, H = (h1,h2, ...,hn) where hi ∈ R

d. This
mechanism aims at selecting the best linear combination of
the n hidden vectors in H . The output of the attention layer
is a vector of weights a, which are calculated according to
Equation 5.

a = sigmoid(ws2tanh(Ws1H
T )) (5)

where Ws1 is a matrix of size c × d and ws2 a vector of
size c, with c arbitrary fixed in [1, n] (usually equal to n). The
sigmoid function ensures that the output weights are in [0, 1].

The output or the attention mechanism has to be combined
with the processing pipeline in order to select the most salient
words from the input. Accordingly, the output of the attention
layer is added up to the output of the dense layer that is
inmediately after the biLSTM layer.

An extension of the mechanism that performs multiple hops
of attention can be used. It is enough to replace the vector ws2

with a matrix Ws2 of dimension r×n, where r is the number
of weighted outputs we want to generate.

A = sigmoid(Ws2tanh(Ws1H
T )) (6)

Finally, the mechanism encodes the weighted sums by
multiplying the matrix A and the matrix of features H,
resulting the matrix M = AH. To ensure the matrix M does
not suffer from redundancy problems, the mechanism uses a
penalisation term in order to encourage the diversity of the
weighted sums across different hops of attention.

C. Classification layer

The classification starts with the tokenization of the se-
quence of input text (n). The meaning of each word is
represented with its corresponding word embedding vector,

which is looked up in a set of pre-trained word embeddings
vector. Accordingly, the output of the input layer is In×d.

The output of the input layer is processed by the encoding
layer. First, a CNN layer of kernel 2 with feature map
of size CNNfm. Subsequently, we use an one-dimensional
maxpooling operation with pool size as two using padding in
order to keep the sentence size. Likewise, we add a dropout
layer with rate dr1 after the maxpooling layer.

After the convolution, we use a biLSTM layer with hlstm

hidden units. We use the L2 kernel regulariser with rate L2r
1

in each LSTM layer. After that, we reduce the dimension of
the output of the biLSTM with a dense layer with h1 hidden
units.

We apply the self-attention mechanism at this point in order
to capture the relevance of each word with the generated
features. We merge the results of the attention mechanism with
the previous output by an addition. We apply a fully-connected
layer with output size n× h1.

sigmoid(y9n×h2
) = pred4

Dropout(y8
n×h1

, d3r) = y9
n×h2

Dense(y7n×h1
) = y8n×h2

Attention(y6n×h1
) = y7

n×h1

Dropout(y5n×h1
, d2r) = y6n×h1

Dense(y4n×2hlstm
) = y5

n×h1

biLSTM(y3n×CNNfm
) = y4n×2hlstm

Dropout(y2n×CNNfm
, d1r) = y3n×CNNfm

MaxPooling(y1n×CNNfm
) = y2n×CNNfm

CNN(wen×d, 2) = y1
n×CNNfm

(7)

Finally, we use two dense layers. The first one with h2

hidden units, and the second one matching the number of
labels with sigmoid activation function.4

We show the architecture of our model in Figure 1. Fur-
thermore, we summarise the formal definition in Equation 7.

IV. EVOLUTIONARY OPTIMISATION OF

HYPER-PARAMETERS

The increasing complexity of deep learning models in SA
are becoming harder the right configuration of the hyper-
parameter values of the neural networks. In this section we
describe our proposal grounded in the use of a evolutionary
algorithm for tuning the hyper-parameters of a deep learning
method.

Evolutionary algorithms (EA) are based on the natural evo-
lution of species, which allows to keep promising individuals,
that is, best solutions to our problem. The main steps of
these types of algorithms are: (1) Initialisation of a random
population, (2) evaluation of the population, (3) selection of
the parents, (4) crossover and mutation and (5) replacement of

4We decided to use the sigmoid function instead of softmax as activation
function of the last layer because the sigmoid function reached better results
in previous experiments.
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Fig. 1. Architecture of the deep learning model.

the current population by a new generation with individuals
selected between parents and offspring. The algorithm is
iteratively run until the stopping condition is satisfied.

According to the CEC competition,5 L-SHADE [38] is in
the state of the art of EAs. This algorithm is able to work
with large populations of individuals, and it has a mechanism
to linearly reduce the population size. The population size of
our problem is not large, hence the L-SHADE algorithm is
not the most suitable. Consequently, we used the SHADE
algorithm [11], which lacks of the linear population size
reduction method.

We define as the population of EA the hyper-parameters
of some of the layers of our deep learning configuration
proposed, specifically: (1) dropout rate (dr1, dr2 and dr3),
(2) regularisation rate (L2) (L2r

1 and L2r
2) and (3) number

of units in the network layers (CNNfm, hLSTM , h1 and h2).
Thus, each individual shows a candidate combination of these
network hyper-parameters. Figure 2 shows an example of an
individual of the population.

110 0.5 64 64 0.0005 0.5 32 0.002 0.5

CNNfm dr
1 hLSTM h

1
L2r

1
dr

2
h
2

L2r
2

dr
3

Fig. 2. Example of an individual of the population.

5http://www3.ntu.edu.sg/home/EPNSugan/index_files/cec-benchmarking.
htm

Differential evolution (DE) evolves a population of NP D-
dimensional individual vectors towards the global optimum.
We represent as xi,G the individual i at generation G and
called it target vector. The initial population should ideally
cover the entire search space by randomly distributing each
parameter of an individual vector with uniform distribution
between prescribed upper and lower parameters bounds.

The main operations of the SHADE algorithm are described
as what follows.

A. Mutation Operation

Trying to generate diversity in our population, we create
a new population which will be crossed in a next step
with the current individuals. We define the next mutation
operation for this task. For each target vector xi,G we
generate a mutant vector vi,G. We use the mutation strat-
egy DE/current-to-best/1, which generates a mutant
vector using differences between the target vector and the
best individual and other random individuals of the current
population (see Equation 8).

vi,G = xi,G + F (xbest,G − xi,G) + F (xri
1
,G − xri

2
,G) (8)

where the subscripts r1 and r2 are random and mutually
different integers generated in the range [1, NP ], F is a
positive factor for scaling differential vectors and xbest,G is
the individual vector with best fitness value in the population
at generation G.

B. Crossover Operation

The idea of diversity is needed for seeking the solution.
However, we need a balance between exploration of the
search-space and exploitation of the current population. Thus,
after the mutation operation, crossover operation is used on
the individual xi,G and its corresponding mutant vector vi,G
to generate a trial vector ui,G, which could be seen as a new
individual that allows to keep both properties noted before.
For each parameter of the trial vector, we choose between
the corresponding parameter of xi,G or vi,G depending on
crossover rate (CR):

uij ,G =

{

vij ,G j = K or randij [0, 1] ≤ CR

xij ,G otherwise

where CR is a value within the range [0,1), K is a randomly
chosen integer in the range [1, D]. To ensure that the trial
vector ui,G will differ from its corresponding vector xi,G we
add the condition j = K . As result, we obtain the off-spring
population.

C. Selection Operation

It selects the best individuals from the population in order
to generate a better offspring. The objective function value
of each trial vector is compared to its corresponding target
vector in the current population. If the trial vector improve the
objective function value, the trial vector will replace the target
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vector for the next generation. Otherwise, the target vector will
remain in the population for the next generation. The selection
operation is grounded in the Equation 9

xi,G+1 =

{

xi,G f(xi,G) ≤ f(ui,G)
ui,G otherwise

(9)

D. Parameters self-adaption

The performance of the original DE algorithm is highly
dependent on the parameters settings (CR and F ). It may
require a huge amount of computation time. SHADE can au-
tomatically adapt the parameters settings during evolution. For
this purpose, SHADE introduce success and failure memories
to store different values of F and CR within a fixed number
of previous generations, hereby named learning period (LP).
After the initial LP generations, the probabilities of choosing
different parameters values is given by Equation 10.

pk,G =
Sk,G

∑K

k=1 Sk,G

(10)

where K is the total number of values that we can choose, and
Sk,G represents the success rate of the trial vectors generated
by the kth value and successfully entering the next generation
within the previous LP generations with respect to generation
G. Equation 11 defines Sk,G.

Sk,G =

∑G−1
g=G−LP nsk,G

∑G−1
g=G−LP nsk,G +

∑G−1
g=G−LP nfk,G

+ ǫ (11)

where ns and nf are the successful and failures for a certain
value in a certain generation.

E. Restart mechanism

When an iteration of the evolution is performed, it is
possible that our solutions may get stuck in a local search
space. Accordingly, we propose to use a restart mechanism
in order to avoid to reach a local optimum. When many
generations pass without an improvement of the best solution,
we opt to restart the population, keeping the best so far. It
allows to move our search to new points of the search-space
and and test new solutions that could not be evaluated without
this approach.

F. Objective function

We need an objective function for evaluating the candidate
solutions and select best ones. For that, we design a fitness
function based on the following requirements:

• We fixed a model (same for each individual).
• Given an individual, each individual parameter is placed

adequately in this model.
• We train the model for those values.
• We get predictions and calculate Macro-F1 (see Section

V-C) over a training set.
• With the purpose of minimising the previous value, we

use 1−MacroF1 as fitness function for this individual.

Thus, we lead on the evolution of the population towards
to the solution with the best results for Macro-F1 over the
evaluation set.

V. EXPERIMENTS

In this section we show the experiments carried out with
our proposed deep learning hyper-parameter tuning based on
an EA. We first introduce the dataset used in our experiments,
InterTASS Corpus (see Section V-A). Subsequently, we detail
the set of pre-train vector of word embeddings used to rep-
resent the input tweets (see Section V-B). Then, we compare
the results obtained with our method to the ones given by the
neural network using the hyper-parameters defined by hand.
We also compare our models to the highest ranked model in
Task 1 of TASS-2018 Workshop (see Section V-C).

A. InterTASS Corpus

The InterTASS Corpus was presented in the TASS-2018

Workshop for Task 1, polarity classification at tweet level.
The sentiment of the tweets of the corpus are annotated in
a scale of 4 levels of polarity intensity: positive (P), Negative
(N), neutral (NEU) and no opinion (NONE). The InterTASS
Corpus is divided into three datasets: Training (1008 tweets),
Development (506 tweets) and Test (1899 tweets). The distri-
bution among the different labels is shown in Table I.

TABLE I
SIZE OF EACH CLASS IN EACH SUBSET OF THE INTERTASS CORPUS.

Training Dev. Test
P 317 156 642
NEU 133 69 216
N 416 219 767
NONE 138 62 274

According to Table I, the size of the training set is not large,
and the distribution of the classes is not balanced, because
there is a big difference among the classes P and N and the
classes N and NONE. Thus, this two facts will make harder
the classification and the optimisation of the model. According
to [39], the imbalanced of the data in machine learning may
be smoothed by oversampling the minority class. Hence, we
slightly reduced the imbalance of the corpus conducting an
oversampling method, which consisted in duplicating the in-
stances from the two minority classes. The distribution among
the classes in the training set after the oversampling is shown
in Table II.

TABLE II
DISTRIBUTION OF LABELS AFTER OVERSAMPLING THE MINORITY

LABELS.

No Oversample Oversample
P 317 317
NEU 133 266
N 416 416
NONE 138 276

As we can see from the distribution of classes in table
II, NEU and NONE are still the minority classes. However,
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the difference with the majority classes has decreased. Es-
tablishing the percentage of oversampling is a difficult task,
since the amount of data from the minority classes must be
increased without losing the representativity of the dataset. For
that reason, we choose low oversampling ratios.

B. Word Embeddings

As we indicated in Section III-A, each word is represented
with a vector from a set of pre-trained set of word embeddings.
Since the aim is to classify data from Twitter, we trained
the embeddings on a set of tweets written in Spanish6 and
using the FastText method [40]. This set of embeddings have
a vector representation for some meta-tokens of Twitter, such
as: mentions (@user), emojis7 and for the hashtags of the
embeddings training set.

The dimension of the vectors given by these embeddings is
d = 100. Since we used TensorFlow for developing our deep
learning method, we had to define a fixed size for the input
of the neural network, and to used a zero-padding approach
for those tweets shorter and larger to the pre-defined size. The
longest tweet in the training set contained 35 tokens, so shorter
tweets were filled using padding and truncated in the case of
finding a longer tweet in the validation or test set. As the
length of the embeddings is 100 and the length of the tweets
was set to be 35, the input of the model is a 35× 100 matrix.

C. Results

In this section we present the results of the evaluation, that
was conducted using the standard evaluation measures in text
classification tasks, specifically: F1 score and Accuracy. The
F1 is the harmonic mean of the Precision and the Recall, and
it provides a trade off among them. Since we are facing up a
multi-class classification problem, we used the macro-average
version of F1.

We define a set of default values for the hyper-parameters of
our deep learning model. Those values were used to configure
out the model that was not optimised by the EA algorithm,
and they were also used as the initial values of the neural
model that was optimised. Table III shows the default hyper-
parameters values, which are similar of other deep learning
models from the state of the art in SA in Twitter. Likewise,
Table III shows the hyper-parameter values returned by the EA
algorithm. Some of those values are far from the default ones,
and we highlight the value for the second layer of dropout
(dr2) that is a very uncommon rate value for a dropout layer,
which is usually about 0.5. We also stress out the value for
the output units of the biLSTM layer, which is far away from
the default value, and it significantly reduces the number of
trained parameters of the neural network. Likewise, the size of
the output dimension of the CNN was also shortened. Conse-
quently, the SHADE algorithm also optimised the complexity
of the neural network.

6The tweets to train the set of word embeddings are totally different from
the tweets of the training set of InterTASS corpus.

7Thre is an embedding vector for each emoji.

TABLE III
HYPER-PARAMETER VALUE BEFORE AND AFTER USING EVOLUTIONARY

ALGORITHM.

Starting point After tuning
CNNfm 128 108
hlstm 64 28
h1 32 21
h2 16 21
dr1 0.35 0.471887870
dr2 0.35 0.0706515485
dr3 0.5 0.509543630

L2 r1 0.0001 0.000410222222
L2 r2 0.001 0.00173633267

The objective function of the SHADE algorithm was con-
figured out to optimise the F1 score on the validation set.
Table IV shows the results reached by the non-optimised deep
learning method, our baseline, and the optimised model.

TABLE IV
RESULTS OBTAINED WITH THE DIFFERENT MODELS.

Macro-F1 Accuracy
Baseline Model 0.41870 0.60242

Our proposal 0.48352 0.56398

According to Table IV, there is an improvement of more
than 6 points in the Macro-F1 after tuning the hyper-
parameters with the SHADE algorithm. The use of evolu-
tionary algorithms to tune the hyper-parameters proves to be
successful as it improves the Macro-F1 of the initial model.
However, the value of the Accuracy in the optimised model
is slightly lower than the one reached by the baseline. This
is an expected behaviour because of the imbalanced nature of
the data. Although the total number of true positives in all the
classes is slightly lower in the optimised model, the trade off
of correctly tweets classified in all the classes is better in the
optimised model as we show in Section VI.

Finally, we use McNemar statistical test [41] in order to
study if there are significant differences among the non-
optimised model and the optimised one. The test returned that
our proposal is significantly better with a p-value of 0.001
(p < 0.001).

Table V shows the position of our proposal in the compe-
tition TASS 2018. The first two ranked models elirf-es-run-
1 [7] and retuyt-lstm-es-1 [42] are based on deep learning
methods, but both of them are grounded in the use of data
augmentation techniques. Moreover, the elirf-es-run-1 system
also uses external knowledge, such as lists of opinion bearing
words in order to enrich with sentiment information of the

TABLE V
RESULTS OF InterTass-2018 Workshop task 1.

Macro-F1 Accuracy
elirf-es-run-1 0.503 0.612
retuyt-lstm-es-1 0.499 0.549
Our proposal 0.484 0.564
atalaya-ubav3-100-3-syn 0.476 0.544
retuyt-svm-es-2 0.473 0.584
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vectors of word embeddings. In contrast, our proposal does
not use any amount of external knowledge, and it only uses
to train the model the training data. Furthermore, we only
duplicated the instances of the minimum classes, which is
a less sophisticated data augmentation technique than the
one used in retuyt-lstm-es-1. Nevertheless, the results of our
optimised proposal are close to the first ones.

VI. ANALYSIS

In this section we study the performance of the experiments
explained in the previous section in a more exhaustive way.

In order to explain the results obtained in table IV, we
compute the F1 score for each class. We aim to analyse the
increases and decreases of the F1 score for each class, which
shows the behaviour of the evolutionary algorithm in the task
of optimising the F1 score. The F1 for each class can be found
in Table VI.

TABLE VI
RESULTS OBTAINED WITH THE DIFFERENT MODELS SHOWING F1 BY

CLASS.

Baseline Model Our Model
F1P 0.6691 0.6485
F1NEU 0 0.1909
F1N 0.6886 0.67452
F1NONE 0.3171 0.4202

Regarding the base model, we see a low performance of the
two minority labels (NEU and NONE). We highlight that the
base model does not classify any tweet as NEU, which means
that the model is not be able to learn anything about this label.
Likewise, the performance on the NONE label is also reduced,
which means that the base model is over-fitted to the labels
with more instances. The main improvement of the optimised
model is that it improves the performance of the classification
in the two minority classes, which improves the performance
of the overall system. Consequently, the macro-F1 score of the
optimised model is higher, as we indicated in Section V-C.

To go further into this analysis, we examine the behaviour
of both models in specific tweets of the different classes. On
the first place, we observe that there are some tweets of the
majority classes (P and N) that the base model labels correctly
and the proposed model does not. We show some of these
examples in the table VII. We highlight that the proposed
model misclassifies the tweets with the minority classes and,
it does not misclassifies among the two majority classes (P
and N).

In the same way, there are several examples of tweets of the
minority classes (NEU and NONE) that the proposed model
labels correctly while the base model does not. We show some
examples in table VIII.

This analysis explains the behaviour of the Macro-F1 and
accuracy in Table IV. The baseline model (non-optimised)
labels correctly more instances but ignoring minority classes
while the optimised model deals better with imbalance by
giving more importance to minority classes. This illustrates

the importance of choosing a good evaluation measure. De-
pending on the problem there are evaluation measures that are
more representative than others. In our problem, the measure
Macro-F1 measures the performance of the models in a more
representative way since it takes into account the imbalance.
Therefore, according to this measure, we can conclude that the
optimised model has provided better results for the imbalanced
classification problem.

VII. CONCLUSIONS

In this paper, we have stress out the difficulty of defining the
right hyper-parameters of deep learning method, which makes
harder as the complexity of the network increases. We claim
that evolutionary algorithms may be used to optimise the value
of those hyper-parameters, and we thus propose the use of the
SHADE algorithm in order to optimise a self-attentive neural
network. We evaluate our proposal in the task of SA in Twitter,
specifically of tweets written in Spanish from the InterTASS
corpus.

The results show how our optimised proposal allows to
improve the performance of the global model and the perfor-
mance on each of the four classes of the dataset. Likewise,
the resultant configuration of the neural network has less
parameters than the non-optimised, which is also positive
in the sense than optimised the efficiency of the model.
Therefore, we conclude that evolutionary algorithms, in our
case the SHADE algorithm, are suitable for optimising the
configuration of neural networks, broadly speaking, for tuning
the hyper-parameter values of deep learning methods. Accord-
ingly, this results open a research line for the meta-learning
of hyper-parameters and neural networks, where there a lot of
room of improvement.

As future work, we will study the performance of evolu-
tionary algorithms for optimising the number of encoding and
classification layers. Likewise, we will evaluate the model with
data augmentation approaches to study the synergy between
both methodologies.

ACKNOWLEDGEMENTS

This work was supported by proyect TIN2017-89517-P, by
the Spanish “Ministerio de Economía y Competitividad”, the
project DeepSCOP-Ayudas Fundación BBVA a Equipos de
Investigación Científica en Big Data 2018 and a grant from
the Fondo Europeo de Desarrollo Regional (FEDER). Eugenio
Martínez Cámara was supported by the Spanish Government
Programme Juan de la Cierva Formación (FJCI-2016-28353).

REFERENCES

[1] D. Zimbra, A. Abbasi, D. Zeng, and H. Chen, “The state-of-
the-art in twitter sentiment analysis: A review and benchmark
evaluation,” ACM Trans. Manage. Inf. Syst., vol. 9, no. 2, pp.
5:1–5:29, Aug. 2018. doi: 10.1145/3185045. [Online]. Available:
http://doi.acm.org/10.1145/3185045

[2] B. Pang and L. Lee, “Opinion mining and sentiment analysis,”
Found. Trends Inf. Retr., vol. 2, no. 1-2, pp. 1–135, Jan. 2008. doi:
10.1561/1500000011

262 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



TABLE VII
TWEETS OF MAJORITY CLASSES CORRECTLY LABELED BY BASE MODEL. WE SHOW THE ORIGINAL TWEET IN SPANISH AND ITS ENGLISH TRANSLATION.

Original Tweet Translated Tweet Label Labelbase Labelev.
Gracias a toda la gente que dio RT a mi mensaje
de buscar clan. He conseguido ser suplente adc en
DragonsZGaminG. Con ganas

Thanks to all the people who gave RT to my clan
search message. I have managed to be adc substitute
at DragonsZGaminG, I am looking forward to it.

P P NEU

Está tocando Bolbora en mi pueblo y yo en la cama con
38 de fiebre

Bolbora is playing in my city and I’m in bed with a
fever of 38

P P NONE

@user lo sé, lo sé ... la sigo desde hace tiempo jajajaja
es de mis favoritas

@user I know, I know... I’ve been following her for a
long time jajaja she’s one of my favourites

N N NEU

@user la experiencia en mi centro es que los docentes
(en la medida de nuestras posibilidades) las llevamos a
cabo habitualmente

the experience in my school is that we teachers (to the
best of our ability) carry them out regularly

N N NONE

TABLE VIII
TWEETS OF MINORITY CLASSES CORRECTLY LABELLED BY OUR PROPOSED MODEL. WE SHOW THE ORIGINAL TWEET IN SPANISH AND ITS ENGLISH

TRANSLATION.

Original Tweet Translated Tweet Label Labelbase Labelev.
Venga.. en el próximo tweet os muestro el equipo con
el que haré el Modo Carrera en FIFA 17

Alright... In the next tweet I’m showing the team I’m
using in the Manager Mode in FIFA 17

NONE P NONE

@user sí, las classicas de un día es lo que tienen @user yes, one day’s classical is what it means NONE P NONE
@user mejor a 3. El lunes más primeras Impresiones @user 3 is better. On Monday more first impressions NONE P NONE
¿Me podrían recomendar alguna película antigua que
les guste?

Could anyone recommend me any old film that you
like?

NONE P NONE

@user yo solo puse las evos del eevee @user I just put the evee’s evolutions NONE N NONE
Al igual solo es estrés, perdón Maybe it is just stress, sorry @user NONE N NONE
Luego lo más seguro haga periscope, alguien me va a
ver?

I will surely be in live in periscope later, is anyone
seeing me?

NONE N NONE

Estoy sola en un banco I’m alone in a bench NONE N NONE
Cada vez estoy más Chetado en el LOL I’m getting more and more cheated in LOL NEU P NEU
@user pero si ya estás pillada @user but you are already mad NEU P NEU
Soy una atrevida ay todos me lo dicen I’m daring ay everyone tell me NEU P NEU
@user pero no es lo mismo @user but it is not the same NEU P NEU
@user de aquí nace una bonita amistad Pero bueno, si
la decepción es solo por el software ni tan mal! @user
@user

@user a nice friendship grows from here.Anyway, if
the disappointment is only because of the software, it’s
alright! @user @user

NEU N NEU

Esta noche hasta el culete Tonight I’ll be off my face NEU N NEU
Mejorando esos dobles, añana más. Lástima no poder
mostrar los steps de pantalla (Por ahora)

My doubles are improving, more tomorrow. It’s a pity
that I cannot show the screen steps (by the moment)

NEU N NEU

a mí me sigues y no soy guapo You follow me and I’m not handsome NEU N NEU

[3] E. Martínez-Cámara, M. T. Martín-Valdivia, L. A. Ureña López,
and A. Montejo-Ráez, “Sentiment analysis in Twitter,” Natu-

ral Language Engineering, vol. 20, no. 1, p. 1–28, 2014. doi:
10.1017/S1351324912000332

[4] S. Mohammad, S. Kiritchenko, and X. Zhu, “NRC-canada: Building
the state-of-the-art in sentiment analysis of tweets,” in Second Joint

Conference on Lexical and Computational Semantics (*SEM), Volume

2: Proceedings of the Seventh International Workshop on Semantic

Evaluation (SemEval 2013). Atlanta, Georgia, USA: Association for
Computational Linguistics, Jun. 2013, pp. 321–327. [Online]. Available:
https://www.aclweb.org/anthology/S13-2053

[5] L. Hurtado, F. Pla, and D. Buscaldi, “ELiRF-UPV at TASS 2015: Sen-
timent analysis in twitter,” in Proceedings of TASS 2015: Workshop on

Sentiment Analysis at SEPLN co-located with 31st SEPLN Conference

(SEPLN 2015). Alicante, Spain: Spanish Society for Natural Language
Processing, 2015, pp. 75–79.

[6] M. Cliche, “BB_twtr at SemEval-2017 task 4: Twitter sentiment
analysis with CNNs and LSTMs,” in Proceedings of the 11th

International Workshop on Semantic Evaluation (SemEval-2017).
Vancouver, Canada: Association for Computational Linguistics, Aug.
2017. doi: 10.18653/v1/S17-2094 pp. 573–580. [Online]. Available:
https://www.aclweb.org/anthology/S17-2094

[7] H. L. González, José-Ángel and F. Pla, “ELiRF-UPV at TASS 2018:
Sentiment analysis in twitter based on deep learning,” in Proceedings of

TASS 2018: Workshop on Semantic Analysis at SEPLN (TASS 2018) co-

located with 34nd SEPLN Conference (SEPLN 2018). Sevilla, Spain:
Spanish Society for Natural Language Processing, 2018, pp. 37–44.

[8] A. Ambartsoumian and F. Popowich, “Self-attention: A better building
block for sentiment analysis neural network classifiers,” in Proceedings

of the 9th Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis. Brussels, Belgium: Association
for Computational Linguistics, Oct. 2018. doi: 10.18653/v1/P17
pp. 130–139. [Online]. Available: https://www.aclweb.org/anthology/
W18-6219

[9] N. Majumder, S. Poria, A. Gelbukh, M. S. Akhtar, E. Cambria,
and A. Ekbal, “IARM: Inter-aspect relation modeling with memory
networks in aspect-based sentiment analysis,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics, Oct.-
Nov. 2018, pp. 3402–3411. [Online]. Available: https://www.aclweb.
org/anthology/D18-1377

[10] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, pp.
13:1–13:35, Sep. 2015. doi: 10.1145/2792984. [Online]. Available:
http://doi.acm.org/10.1145/2792984

[11] R. Tanabe and A. Fukunaga, “Success-history based parameter adapta-
tion for differential evolution,” in 2013 IEEE congress on evolutionary

computation. IEEE, 2013. doi: 10.1109/CEC.2013.6557555 pp. 71–78.
[12] M. C. Díaz-Galiano, M. A. García-Cumbreras, M. García-Vega,

Y. Gutiérrez, E. M. Cámara, A. Piad-Morffis, and J. Villena-Román,
“TASS 2018: The strength of deep learning in language understanding
tasks,” Procesamiento del Lenguaje Natural, vol. 62, pp. 77–84, 2019.
doi: 10.26342/2019-62-9

[13] S. Tabik, D. Peralta, A. Herrera-Poyatos, and F. Herrera, “A snapshot of
image pre-processing for convolutional neural networks: case study of
MNIST,” International Journal of Computational Intelligence Systems,
vol. 10, no. 1, pp. 555–568, 2017.

[14] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter:
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