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Abstract—A Travelling Salesman Problem (TSP) is an NP-
hard combinatorial problem that is very important for many
real-world applications. In this paper, it is shown, that proposed
approach solves multi-objective TSP (mTSP) more effectively
than other investigated methods, i.e. Non-dominated Sorting
Genetic Algorithm II (NSGA-II). The proposed methods use rank
and crowding distance (well-known from NSGA-II), combining
those mechanisms in a novel, unique way: competing and co-
evolving in the evolution process. The proposed modifications
are investigated and verified by the benchmark mTSP instances,
and results are compared to other methods.

I. INTRODUCTION

A
TRAVELLING Salesman Problem (TSP) is an NP-

hard combinatorial optimization problem. The goal is

to find a Hamiltonian cycle, that minimizes the sum of edge

weights in a complete weighted graph [1]. Importance of TSP

is accentuated by the fact, that it is a part of NP-complete

class of problems [2].

A multi-objective Travelling Salesman Problem (mTSP)

is an extension of TSP, where more than one objective is

considered. It can be cost or time of the travel, the length

of the route, etc. All objectives are optimized simultaneously

[3]. An mTSP with two objectives is considered in this paper.

In multi-objective optimization, there is no prioritization

of the objectives. Hence, to compare different solutions a

dominance relation is used. A solution dominates another, if it

has the value of at least one objective better, and value of no

objectives worse than that solution. The goal of multi-objective

optimization is to find all non-dominated solutions, a Pareto

Front (PF). In practice, it is often not known whether found

solutions comprise a true PF. Hence, the result of each method

is called a PF approximation.

A Non-dominated Sorting Genetic Algorithm II (NSGA-

II) [4], a classical multi-objective approach, uses two dis-

tinct mechanisms in its selection. The first one is the rank

comparison, which is based on the dominance relation, and

aims to improve the convergence of the results. The second

one is the crowding distance, which aims to increase the

diversity of the results. However, a recent Non-dominated

Sorting Tournament Genetic Algorithm (NTGA) [5] does not

utilize the crowding distance at all. The authors show increased

effectiveness of NTGA. This paper verifies the effectiveness

of both rank and crowding distance. Two methods are

presented that combine those mechanisms in a novel, unique

way. One that uses them sequentially and forces competition

between them. The other that utilizes two populations, where

the mechanisms cooperate.

A set of experiments is designed to verify the quality of PF

approximations generated by all methods. The Multi-Objective

Evolutionary Algorithm integrating NSGA-II, SPEA2, and

MOEA/D (MOEA/NSM) [12] is currently the best-known

method for mTSP. Hence, it is used to compare the results. The

results are evaluated by measuring convergence and diversity

of the PF approximation and efficiency of the method. The set

of Quality Measures (QMs) proposed in [6] is used. Moreover,

visualizations of selected results are provided and a thorough

theoretical analysis is presented.

The rest of the article is structured as follows. Section II

contains the overview of existing work related to mTSP and

multi-objective optimization. Section III provides a formal

definition of the problem. All of the proposed approaches

are described in section IV. Experiments and their results are

presented in section V. The paper is concluded and additional

remarks are given in section VI.

II. RELATED WORK

A TSP is one of the most commonly researched problems.

Many modifications to its original definition have been pro-

posed. A TSP with asymmetric distances between the cities
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[7], with multiple travelling salesmen [8], with stochastic

travel times [9] or a vehicle routing problem [10].

Due to the NP-hard nature of mTSP, researchers often tackle

it with metaheuristics. Genetic Algorithms are commonly used

(e.g. [11], [12]). Authors of [14] and [15] have used an

ant colony optimization methods. In [16] and [17] different

memetic algorithms have been researched in the context of

mTSP. It is also not uncommon to apply local search based

methods [18], [19].

Researches often approach multi-objective optimization

with genetic algorithms. They have proven to generate very

high-quality PF approximations [20]. NSGA-II [4] is one

of the most commonly used methods. It uses only a single

population, where parents are forced to compete with children.

It utilizes the rank and crowding distance of the individuals

in the selection process and to truncate the population after

every generation.

NTGA [5] is an extension of classical NSGA-II. The authors

have shown its efficiency for a bi-objective scheduling prob-

lem – Multi–Skill Resource Constrained Project Scheduling

Problem (MS-RCPSP). Modified selection in NTGA no longer

utilizes the crowding distance. Instead, a clone elimination

method is employed to maintain the diversity of the popu-

lation. Additionally, the size of the tournament has been ad-

justed. Moreover, children are created in a new population and

no longer have to compete with the parent population. NTGA

uses also an archive that contains current approximation of PF.

Such approach is a base of considerations in the given paper.

Recently created Multi-Objective Evolutionary Algorithm

integrating NSGA-II, SPEA2, and MEA/D (MOEA/NSM)

[12] has been successfully applied to mTSP. It uses the crowd-

ing distance, decomposition and Pareto strength. The solution

space is explored using subpopulation tables, where each

subpopulation contains the best results for a given aggregation

of criteria. Every individual undergoes a crossover, mutation,

and 2-opt optimization. At the end of each generation, sub-

populations of SPEA2 and NSGA-II are updated. Rank and

crowding distance mechanisms are considered. The authors

show that MOEA/NSM outperforms all other methods and

is the state-of-the-art population–based algorithm for mTSP.

Hence, MOEA/NSM is used in this paper for comparison.

Initial multi-objective methods focused mostly on the con-

vergence. However, recent research has shifted the focus onto

the diversity [13]. This article tries to find the balance be-

tween the two. Two methods are proposed. One that switches

the focus between convergence and diversity. The other that

emphasizes both in parallel populations.

III. PROBLEM

A TSP comprises of a set of m cities. In the problem a

salesman must visit every city exactly once and return to

the place where the travel started (initial city). The goal is

to minimize the cost of travel of that route, given the cost

of travel from city i to city j, is defined as cij and is part

of the problem definition. TSP is equivalent to finding the

minimum Hamiltonian cycle in a non-directed, weighted graph

[22], where nodes represent the cities, and weights represent

the travel costs. Total cost of travel is calculated as the sum of

edge weights and should be minimized. A symmetric TSP

is considered in this paper, where cij = cji for all cities

i, j ∈ {0, 1, ...,m− 1}
In Multi-objective Travelling Salesman Problem (mTSP)

multiple aspects of the route are evaluated [12]. It could be

cost, time, length or risk of travel. The problem with n criteria

and m cities is represented by n weighted graphs. For each

k ∈ 1, ..., n, graph Gk is a weighted graph, that represent

k − th criterion. The edge weight between cities i and j in

graph Gk is represented by c
(k)
ij . In this paper two criteria are

considered.

IV. EVOLUTIONARY METHODS

This section contains the description of all the investigated

methods. First, definitions of important terms related to the

work are given. Next, parts that are common for each method

are described. Then, reference methods are presented. Finally,

two novel modifications are described.

A. Definitions of Terms

1) Dominance Relation: The comparison of multi-objective

solutions is done with the dominance relation. Let z, z′ be two

points in the multi-objective solution space. z dominates z′

when both Eq.1 and Eq.2 are satisfied:

∀nk=1fk(z) ≤ fk(z
′) (1)

∃nk=1fk(z) < fk(z
′) (2)

Where n is the number of criteria, fk is the objective

function of k − th criterion.

2) Pareto Front: A set of all non-dominated solutions is

called a Pareto Front (PF). Since the set of globally non-

dominated points is not known, all methods create an approx-

imation of PF.

B. Representation

The representation of an individual in genetic algorithm

defines how a genome represents the solution in a given

problem. It also determines the use of genetic operators. All

methods in this paper use the same representation.

An individual, for the problem with m cities, is represented

by the permutation vector z = (m1,m2, ...,mm). Each gene

is the number of the next city on the route. In TSP the full

route must end on the same city that it started. Hence, in the

calculation of the objective functions the cost of travel between

mm and m1 must also be considered.

C. Initial Population

The first step of a genetic algorithm is the generation of

an initial population. A random initialization is used. Every

individual is initialized with a random permutation of all m

cities. An additional mechanism enforces the uniqueness of all

generated genotypes.
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D. Genetic Operators

This chapter contains the description of both crossover, and

mutation, which allow for exploitation, and exploration of the

solution space.

1) Crossover: Crossover operator is responsible for the

exploitation of space [23]. In the process two parent indi-

viduals are used to create two children individuals. In all

methods, crossover is performed with a given probability (Px

parameter). In case of no crossover, parent genomes are copied

over to the children individuals.

An Order Crossover (OX) has been selected [24]. It tends

to retain the relative order of the genes and has been proven

to work well for the ordering problems [25]. First, a part of

the route is copied from the first parent, and then the rest of

the route is reconstructed based on the genomes of the second

parent. The part to copy is selected by randomly choosing

two cut-points of the chromosome. The part between those

two points is selected and copied to the child individual (in

the same place of the genome). The remaining genes are filled,

starting with the second cut-point, from the second parent. The

order is maintained and already existing cities are skipped.

For example, given two parent individuals p1 and p2:

p1 = (3 2 1 | 8 4 6 7 | 5 9),

p2 = (2 3 6 | 5 8 4 1 | 9 7).

The first child c1 is:

c1 = (3 5 1 | 8 4 6 7 | 9 2).

The second child c2 is generated by swapping the roles of two

parents in the crossover process:

c2 = (2 6 7 | 5 8 4 1 | 9 3).

2) Mutation: Mutation introduces a random perturbation in

the genome and is responsible for exploration of the solution

space [1]. It introduces one or more small changes within

the genome with given probability Pm. The parameter is a

probability of a mutation of a single individual.

An Inversion mutation has been selected. It performs an

inversion of a randomly selected sequence of genes. The se-

quence is selected by randomly choosing two cut-points within

the genome. All genes between those points are inversed.

For example, let’s consider a parent p with the following

genome and selected cut-points:

p = (3 2 1 | 8 4 6 7 | 5 9).

Mutation would result in the following genome c:

c = (3 2 1 | 7 6 4 8 | 5 9).

E. Selection

Selection operator is used to provide parent individuals for

the genetic operators. It pressures the evolutionary process

towards the desired results. In the case of multi-objective

optimization it is important to find the PF approximation

close to the true PF, but also to promote the diversity of the

population. However, selection must also allow for the weaker

individuals in order to avoid local optima. In multi-objective

optimization the selection is based on the rank and crowding

distance [4].

The rank is calculated based on the dominance relation.

First, all non-dominated individuals within the population

gain rank 1. Then those individuals are exempt from further

calculations. Rank 2 is assigned to non-dominated individuals

from the remaining individuals. The process is iteratively

repeated, until every individual has a rank assigned. Higher

rank means that the individual is closer to the true PF.

The crowding distance is calculated based on the distance

to other individuals. It is a volume of the largest cube that

contains only that individual. A larger value means that there

are fewer individuals in that part of the space.

Researched methods use a tournament selection. First,

given number of individuals is randomly drawn from the

population. They are compared according to given selection

operators. The best individual, according to the operators, is

returned. NSGA-II originally uses a tournament selection with

two individuals, while NTGA allows for higher values of the

tournament size. Moreover, in selection method NTGA uses

an archive that contains all non-dominated individuals found

in a given evolution process.

F. Evolutionary Process

The same evolutionary process is used in all methods.

It is used to generate a new population Pnext, from the

current population Pcurrent. It also includes a clone prevention

method and archive usage introduced by NTGA. The process

is described in pseudocode 1.

Algorithm 1 Pseudocode of the evolutionary process

1: Pnext ← ∅
2: while |Pnext| < populationSize do

3: parents← select(Pcurrent ∪ archive, operators)
4: children← mutate(crossover(parents))
5: while Pnext contains children do

6: children← mutate(children)
7: end while

8: evaluate(children)
9: Pnext ← Pnext ∪ children

10: end while

11: return Pnext

In line 1 of Pseudocode 1, the next population is initialized

to an empty collection. The loop between lines 2 and 10

performs the evolution until the next population reaches the

desirable size. In line 3, parents are selected from the current

population. NSGA-II does not use archive, but NTGA does

(see line 3) in the selection method. The comparison is

performed based on selected operators. Then, the children are

created by performing crossover and mutation on the parents in

line 4. Lines 5 to 7 describe the clone prevention mechanism.

As long as the children already exist in the next population,

they are mutated. Eventually, the children are evaluated in
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line 8, and added to the next population in line 9. The next

population is returned in line 11.

G. Switch Non-Dominated Tournament Genetic Algorithm

The proposed method switches selections (crowding

distance and rank) to obtain an evenly distributed PF approx-

imation with high spread. Switch Non-dominated Tournament

Genetic Algorithm (sNTGA) is based on a recent NTGA [5]. It

switches between two competing selection operators - primary

SprimaryOperator and a temporary one SswitchOperator. The

former is used to obtain a diverse PF approximation, while the

latter to also guarantee the convergence of the approximation.

Both operators work in turns, and they promote different

solutions, which allows for a better exploration of the solution

space. Additionally, switch of the operators makes it easier to

escape local optima. In consequence, improved solutions can

be achieved. The time-frame, in which the operators work is

defined by the number of births and the following parameters.

• Sdelay - number of births, after which the temporary

operators is switched on. At the very beginning of the

evolution, the switch is not necessary, as the population

is still diverse, and not yet converged.

• Seach - parameter determining a single cycle of the

operators

• Sduration - number of births after which SswitchOperator

should be switch off and SprimaryOperator should be

switched back on. It should always be lesser than Seach.

Pseudocode 2 describes the sNTGA.

Algorithm 2 Pseudocode of sNTGA

1: archive← ∅
2: Pcurrent ← generateInitialPopulation()
3: evaluate(Pcurrent)
4: while stoppingCriteria() do

5: nonDominatedSorting(Pcurrent)
6: crowdingDistanceAssignment(Pcurrent)
7: updateArchive(Pcurrent)
8: operator ← selectionOperator()
9: Pcurrent ← evolve(Pcurrent ∪ archive, operator)

10: end while

11: updateArchive(Pcurrent)
12: return archive

An empty archive is initialized in line 1. In line 2, the

current population is randomly initialized. It is then evaluated

in line 3. The loop between lines 4 and 10 runs until the

stopping criteria is reached. In the article it has been set to the

given number of births. In line 5, the non-dominated sorting

is performed and the crowding distance is assigned in line 6.

The archive is updated in line 7, by adding all non-dominated

individuals, and removing those that became dominated. In

line 8 a selection operator is determined (described in pseu-

docode 3). Then the current population is evolved (described

in pseudocode 1), based on the current individuals, the archive,

and selection operators. Finally, the archive is again updated

in line 11 and it is returned in line 12, where it contains the

PF approximation.

Algorithm 3 Pseudocode of selectionOperator in sNTGA

1: switchBirthsCount← currentBirthsCount− Sdelay

2: if switchBirthsCount < 0 then

3: operator ← SprimaryOperator

4: else if switchBirthsCount mod Seach < Sduration

then

5: operator ← SswitchOperator

6: else

7: operator ← SprimaryOperator

8: end if

9: return operator

To determine the current selection operators for sNTGA, the

moment, at which operator should change is calculated in line

1. A switchBirthsCount variable is used. It is calculated as

the current number of births minus the delay parameter. If that

number is smaller than 0 (check in line 2) then the primary

operator is selected in line 3. Otherwise, a check is performed

to verify, which operator should be used, in line 4. If not

enough births have happened, then the temporary operator is

used in line 5, otherwise primary operator is used in line 7.

The selected operator is returned in line 9.

Researched sNTGA uses the crowding distance as the

primary operator and rank as the temporary operator.

H. Co-Evolutionary Non-Dominated Tournament Genetic Al-

gorithm

Both rank and crowding distance operator can be suc-

cessfully used in multi-objective optimization methods. How-

ever, since both operators work on the same population, one

operator might diminish the effect of the other operator. Hence,

a Co-evolutionary Non-Dominated Tournament Genetic Algo-

rithm (cNTGA) is proposed. The main motivation in cNTGA

is to enforce cooperation of selection methods by operating on

two separate populations connected in the evaluation process.

Thus co-evolution mechanism is applied.

A cNTGA utilizes two populations with different selection

operators. The exchange of information is possible due to the

use of the same archive. The archive is used in the evaluation

and selection process of both populations. Additionally, at the

end of each generation, individuals of both populations are

added to the archive. The method requires only one additional

parameter KRANK – it defines the percentage of the initial

population size, that should be assigned to the population that

uses rank operator. cNTGA is described in pseudocode 4.
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Algorithm 4 Pseudocode of cNTGA

1: archive← ∅
2: PRANK , PCD ← generateInitialPopulation()
3: evaluate(PRANK)
4: evaluate(PCD)
5: while stoppingCriteria() do

6: nonDominatedSorting(PRANK)
7: nonDominatedSorting(PCD)
8: crowdingDistanceAssignment(PCD)
9: updateArchive(PRANK ∪ PCD)

10: PRANK ← evolve(PRANK ∪ archive,≥RANK)
11: PCD ← evolve(PCD ∪ archive,≥CD)
12: end while

13: updateArchive(PRANK ∪ PCD)
14: return archive

An empty archive is initialized in line 1. Then two popu-

lations PRANK and PCD are randomly initialized in line 2.

Then, they are evaluated in lines 3 and 4 respectively. The

loop between lines 5 and 12 runs until the stopping criteria is

reached. In the paper, the number of births is used. In lines 6

and 7, the populations are sorted according to the appropriate

operator. The crowding distances are assigned for population

PCD in line 8. Then, the archive is updated in line 9, with

the individuals from both populations. The populations are

evolved (pseudocode 1) in line 10 and 11 using ≥RANK and

≥CD operators. The archive is once again updated in line

13. Finally, the archive containing the PF approximation is

returned in line 14.

In cNTGA, co-evolution significantly reduces the number

of parameters (comparing to sNTGA) and results in an eas-

ier investigation process. Finally, the method decides which

selection operator is more “useful” in the given problem, not

the researcher in the tuning process.

I. Reference Methods

The researched methods are compare to three selected,

reference methods. First, a NSGA-II [4] has been selected,

as it is the most common method in the literature. NTGA

[5] is selected, because approaches described in this paper are

based on it. Finally, MOEA/NSM [12] is used as the current

best state-of-the-art method.

V. EXPERIMENTS AND RESULTS

This section presents experimental procedure to verify ef-

fectiveness of the proposed methods (sNTGA and cNTGA)

by empirically comparing results to other reference methods.

Thus, used mTSP instances are presented, Quality Measure

for multi-objective optimization and methods setup are given.

Finally, results and selected visualizations are presented.

A. Data Instances

Data instances used in the research are commonly used

in literature, e.g. 9 instances euclid*** from TSPLIB (e.g.

[21]) and {kroAB100, kroAB200} generated from DIMACS

code. Instances differ in number of cities, which affects the

complexity and size of the solution landscape.

B. Quality Measures

To evaluate the results, the QMs proposed in [6] are

used. This section contains their description along with the

description of reference points required for their calculation.

1) Euclidean Distance: Euclidean distance (ED) is the

average distance between every point on the PF approximation

and a so called Perfect Point. Where the Perfect Point com-

prises of the best values of all objectives. ED can be formally

defined by equation 3.

ED(PF ) =

∑|PF |
i=1 di

|PF |
(3)

Where PF is the Pareto Front, di is the distance from the

i’th point to the Perfect Point.

ED measures the convergence of the PF approximation and

should be minimized.

2) Hypervolume: Hypervolume (HV ) is the volume of

hypercube defined by the PF approximation and the Nadir

Point. Where the Nadir Point comprises of the worst values

of all objectives. HV can be formally defined by equation 4.

HV (PF ) = Λ(
⋃

s∈PF

{s′|s ≺ s′ ≺ snadir}) (4)

Where PF is an approximation of PF. s is the point of

approximated PF. snadir is a NadirPoint. Λ is a Lebesgue

measure, which generalizes the a volume. ≺ is a domination

relation.

Hypervolume is a measure of spread, but is also influenced

by the convergence of the PF approximation. It should be

maximized.

3) Pareto Front Size: Pareto Front Size (PFS) is the

number of points on the PF approximation. It is the measure

of diversity and should be maximized.

4) Spacing: Spacing (S) is the average distance between

the consecutive points on the PF approximation. S can be

formally defined by equation 5.

S(PF ) =

√

√

√

√

1

|PF |

|PF |
∑

i=1

(di − d)2 (5)

Where PF is the approximation of the PF. di is the distance

from the i− th point the next consecutive point.

S is the measure of uniformity and should be minimized.

5) Ratio of Non-dominated Individuals: Ratio of Non-

dominated Individuals (RNI) is the value of PFS divided

by the number of births. It measures efficiency of the method

and should be maximized.

6) Purity: Purity is used for a direct comparison of two PF

approximations. It is the number of points that remain non-

dominated, when combined with the PF approximation from

another method. Purity should be maximized.

PAWEŁ B. MYSZKOWSKI ET AL.: NON-DOMINATED SORTING TOURNAMENT GENETIC ALGORITHM 71



C. Parameters

Each method is tuned experimentally (like cNTGA,

sNTGA) or optimal configuration has been used based on

publications (e.g. MOEA/NSM [21] or NTGA [5]). Each

method is limited by number of births (a number of all visited

points). All configurations are presented in Tab. I.

For all investigated methods this value is given according

to number of cities as follows:

• 100 cities – 10 mln births,

• 200 cities – 13 mln births,

• 300 cities – 16 mln births,

• 500 cities – 22 mln births,

Such biths limitations are connected to the size of landscape

(number of cities) and limit of computational time required by

experimental procedure.

All investigated methods (NTGA, sNTGA, cNTGA and

NSGA-II) have been implemented in Java using standard

libraries. An exception is MOEA/NSM, where authors of [21]

code1 has been used.

D. Experiments

Averaged results from 50 runs of 5 methods for 11 instances

are presented in Table II. The comparison shows that in each

case the best values of RNI have been achieved by cNTGA

or sNTGA. Proposed methods also outperform others in PFS

context – they give 2–3 times larger number of points in

approx. PF.

NSGA-II created interesting results – in 6/11 cases the best

ED and S values have been achieved – it is connected to

the fact, that this method gives very narrow PF approx. that

is located in the “centre“ (see Fig.1 or Fig.2). Other cases

(5/11) are occupied by NTGA, what confirms that ED prefers

methods that focus on PF “centre“.

In opposite cases (4/11) better S values were obtained by

cNTGA with much large PFS value. Almost every time (9/11

cases) the best value of HV was achieved by MOEA/NSM.

All results have been averaged and presented in Table

III. Two proposed methods (sNTGA and cNTGA) compete

successfully with MOEA/NSM. In case of ED, all mentioned

methods give results that are almost the same. The Wilcoxon

signed-rank test showed that results of these three methods are

not statistically different.

Results presented in Table III show that MOEA/NSM gives

better approx. PF in HV context. The difference between

sNTGA and MOEA/NSM results is statistically significant –

Wilcoxon signed-rank test (W0.05 = 66 > Wc = 13) confirmed

that.

For other QM’s, two proposed methods – cNTGA and

sNTGA – give results (ED, RNI and S) that are not

statistically different. The exception is HV , where sNTGA

outperforms cNTGA and it is statistically significant (W0.05

= 65 > Wc = 13). However, both methods outper-

form MOEA/NSM. E.g. comparing results for cNTGA and

MOEA/NSM Wilcoxon signed-rank test gives: PFS (W0.05

1MOEA/NSM code: https://github.com/MOEA-NSM/moea-nsm

= 66 > Wc = 13), RNI (W0.05 = 64 > Wc = 13) and S (W0.05

= 66 > Wc = 13).

E. Visualizations and approx. PF analysis

To visualize approximations of PF, selected graphs have

been prepared. They present the “averaged” PF – modified

version of empirical attainment function (EAF) [26]. Each

graph contains data of PF from 50 independent runs of selected

method.

For smaller instances (i.e. euclidAB100) the results of 5

investigated methods are very similar. Hence the visualization

has been omitted. Only two methods – NSGA-II and NTGA

– give worse results: approx. PF is dominated by others and

have larger standard deviation.

Graph presented on Fig.1 shows results for more com-

plex instance, euclidAB300. Methods cNTGA, sNTGA and

MOEA/NSM compete successfully. NTGA gives the worst

solution. Quite interesting are results of NSGA-II – approx.

PF is too short but focused in central region of PF.

The more difficult instance (see Fig.2, euclidAB500) sug-

gests that MOEA/NSM is effective in the central area of PF

– QM’s S and HV confirm that. However, in other areas,

sNTGA and cNTGA can compete and give very good results –

a large number of points. Moreover, PF approximation created

by NSGA-II is very short but of very high quality and focused

in the central area.

To get a more detailed image of results Purity measure

have been (see Tab. IV) used to compare gained approx. PF,

where methods are compared in pairs. Results show that it is

quite difficult to select the method with the best results. Fig.??-

Fig.1 showed that MOEA/NSM gives better results in “centre”

region, cNTGA wins in other regions. Using Purity measure,

it gives domination of MOEA/NSM in 53.9% but cNTGA

dominates in 54.3%. Detailed analysis of the data shows that

cNTGA “wins” in instances with 500 cities and fails in 300

cities – it can be a suggestion that births limits cNTGA to

much and such aspect should be investigated more carefully

in further research. It is worth mentioning that cNTGA and

sNTGA give significantly larger PF approx. (see PFS values

in Tab.II or Tab.III) what can disturb a little interpretation of

Purity values.

Another conclusion gained from Tab.IV is that cNTGA

outperforms results of sNTGA in each instance – approx. PF

“dominates“ in 62%. Moreover, sNTGA does not compete

with MOEA/NSM so successfully, and is ”dominated“ in

59.8%.

F. Summary

cNTGA and sNTGA methods are effective and can compete

with MOEA/NSM results (e.g. better PFS and S values).

However, there is a strong need to focus the methods in central

area of PF. Moreover, proposed methods have better efficiency

than MOEA/NSM – the RNI confirmed that. The last but

not least, is the conceptual aspect – cNTGA and sNTGA are

methods that have only few parameters, are easy to understand

and tune.
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TABLE I
CONFIGURATIONS FOR INVESTIGATED METHODS

NSGAII MOEA/NSM NTGA cNTGA sNTGA

mutation (Pm) Swap, 10% Swap, 10% Inversion, 0.5% Inversion, 0.25% Inversion, 0.5%

crossover (Px) OX, 80% OX, 80% OX, 40% OX, 70% OX, 60%

tournament size (Tsize) 2 2 25 25 25

pop_size (K) 500 100 500 500 500

additional parameters

P obj1 , P obj1 20 KRANK 60% Sdelay 4 000 000
P pon 40 Seach 1 000 000
Mt 100 Sduration 750 000
Nt,St 50
P2OPT 10%

Fig. 1. Comparison of average approx. Pareto Fronts for data instance euclidAB300

VI. CONCLUSIONS AND FUTURE WORK

This article introduces two new methods based on recent

NTGA. The first one is sNTGA, which uses the rank and

crowding distance operators sequentially. The second one

- cNTGA utilizes two subpopulations, where one of them

uses rank, and the other one uses crowding distance in their

respective selection methods. Both subpopulations cooperate

by performing the selection on a shared archive of non-

dominated individuals.

The methods are compared to the state-of-the-art

population-based MOEA/NSM. Proposed methods require

fewer parameters and it is argued that they are less complex.

Additionally, the results are evaluated with a set of QMs on

the selected instances of TSP.

Another promising trend in literature is specialization and

hybridization of metaheuristics. Proposed methods could be

extended by some local search techniques like 2-opt or/and

genetic operators that are considered to be more effective in

TSP, like Edge Crossover Operator [27].

It is shown that MOEA/NSM achieves better results in

the ’centre’ of the PF approximation. A different selection

method that would emphasize the convergence in that area

could be beneficial. Also, research on the different multi-

objective problems in the context of sNTGA and cNTGA is

an interesting direction for future work.
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Fig. 2. Comparison of average approx. Pareto Fronts for data instance euclidAB500
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