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Abstract—A lot of problems in natural language processing
can be interpreted using structures from discrete mathematics.
In this paper we will discuss the search query and topic finding
problem using a generic context-based approach. This problem
can be described as a Minimum Set Cover Problem with several
constraints. The goal is to find a minimum covering of documents
with the given context for a fixed weight function. The aim of
this problem reformulation is a deeper understanding of both
the hierarchical problem using union and cut as well as the non-
hierarchical problem using the union. We thus choose a modeling
using bipartite graphs and suggest a novel reformulation using
an integer linear program as well as novel graph-theoretic
approaches.

I. INTRODUCTION

In scientific research, expert systems provide users with

several methods for knowledge discovery. They are widely

used to find relevant or novel information. For example, med-

ical and biological researchers try to find molecular pathways,

mechanisms within living organisms or special occurrences of

drugs or diseases. In [1], we discussed a novel approach for

describing NLP problems using theoretical computer science.

Using this approach, it is possible to obtain the algorithmic

core of a NLP problem. Here, we will discuss two NP-

complete problems: Search Query Finding (SQF) and Topic

Finding (TF).

Using expert system as an input, researches usually con-

sider an initial idea and some content like papers or other

documents. The most common approach is inquiring a search

engine to find closely related information. Thus two question

are most frequently asked: "How can I find these documents?"

to adjust the search query for knowledge discovery or "What

are these documents all about?" to find the topic. Both ques-

tions are heavily related to the context of documents. Meta-

data like authors, keywords and text are used to retrieve results

of a query using a search engine.

Semantic searches are usually based on textual data and

some meta-data like authors, journals, keywords. In addition,

time and complexity play an important role, since often

relevant information is not findable or new information is

already available. For example, databases such as PubMed [2]

contain around 27 million abstracts and PMC1 includes around

2 million biomedical-related full-text articles.

Both problems are equivalent (see [1]) and can be described

as a Minimum Set Cover Problem with several constraints.

Query languages and natural languages are not only highly

connected but merge more and more (see [3] or [4]). The

goal is to find a minimum covering of documents with the

given context for a fixed weight function. The aim of this

problem reformulation is a deeper understanding of both the

hierarchical as well as the non-hierarchical problem. We thus

choose a modeling using bipartite graphs and suggest a novel

reformulation using an integer linear program as well as graph-

theoretic approaches.

There is a considerable amount of literature on both prob-

lems. Many studies have been published on probabilistic or

machine-learning-approaches, see [5], [6] or [7]. In addition, in

recent years there has been growing interest in providing users

with suggestions for more specific or related search queries,

see [8].

This paper is divided into six sections. The first section gives

a brief overview of the problem formulation and provides the

definition of MDC and WMDC. The second section analy-

ses the hierarchical problem formulation and proposes novel

heuristics. In the third section, we present a short analysis of

the non-hierarchical problem and propose an integer linear

program approach and some modified graph heuristics to

solve this problem. We present some experimental results

on artificial and real-world scenarios in section four. Our

conclusions are drawn in the final section.

II. PROBLEM FORMULATION AND DEFINITION

We follow the notation introduced in [1]. Let D be a set of

documents and let X be a set of context data. Context data

is information associated with documents, such as keywords,

authors, publication venue, etc. Both D and X form the vertex

set of a graph G. If and only if a description of a document

d ∈ D is associated with context data x ∈ X, we add the edge

{d, x} to E. The graph G = (D∪X, E) is bipartite and called

document description graph.

1https://www.ncbi.nlm.nih.gov/pmc/
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Given a subset R ⊂ D, the search-query-finding (SQF) or

topic-finding (TF) problem tries to find a good description of

R with terms in X. In general, we lack a proper definition of

what good means.

For example, given a search engine q : X → D and a

description function f : D → X, we want a solution Z ⊂ X

such that q(Z) = R and Z = f(R). If we want to obtain a

human-readable topic for R, we need a solution Z of minimum

cardinality which precisely describes all documents in R,

hence distinguishing R from D \ R without duplication and

redundancies. See Figure 1 for an illustration of the relation

between the sets X,R and the mappings f, q.

To sum up, we need to find a minimum covering of R

with elements in X so that whenever we are forced to cover

further documents, that is, documents in D \ R, the number

of these further documents is minimal. Depending on the

considered problem and the usecase, we have to make a trade-

off between the size of the subset in X and the number of

covered documents in D \R. However, these problems are all

related to the problem of finding dominating sets in bipartite

graphs, see [9]. The latter is NP-complete, even for bipartite

graphs, see [10].

For xi ∈ X, we call Di = N(xi) ⊆ D the cover set of

xi in D. Roughly speaking, just imagine a keyword xi and

all associated documents Di. With this, we reformulate the

problem as follows:

Definition II.1. (Document Cover Problem, DC) Let D be

a set of documents, let X be a set of context data and let

G = (D ∪ X, E) be the document description graph.

Given a set of documents R ⊂ D, a solution of the DC is

a set C ⊆ D that covers at least R.

Definition II.2. (Minimum Document Cover Problem, MDC)

Let C be a solution of the DC and let α2 = |C|. Let further

α1 = r be the number of documents in C \R.

A solution of MDC is a solution of DC so that α = α1 + α2

is minimal.

We can define two objectives for minimization: α1 and α2.

Definition II.3. (α2-Minimum Document Cover Problem, α2-

MDC) Given a set of documents R ⊂ D, a solution of the

α2-MDC is a solution of DC so that α = α1 is minimal.

Definition II.4. (α1-Minimum Document Cover Problem, α1-

MDC) Given a set of documents R ⊂ D, a solution of the

α1-MDC is a solution C of DC so that α = α2 is minimal.

X ⊂ X R ⊂ D

f

q

Fig. 1: Relation between the sets X ⊂ X as description set of

documents in R ⊂ D.
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Fig. 2: A graph G = (D ∪ X, E) illustrating example II.8

We further introduce a weighted version of this problem:

Definition II.5. (Weighted Minimum Document Cover Prob-

lem, WMDC) Let D be a set of documents, let X be a

set of context data and let G = (D ∪ X, E) the document

description graph. Let w : X→ R be a weight function which

associates a weight for every element in X. Moreover, we set

D = {D1, ..., Dn}. Let α1 = r be the number of documents

in R ⊂ D and α2 = |C|.
A solution of the WMDC is a set C ⊆ D which covers

R, such that α = α1 + α2 + w(C) is minimal, where

w(C) =
∑

c∈C w(c).

Again we can find formulations for α1-WMDC and α2-

WMDC. Both problems are NP-hard, see [11].

In general, we will focus on the α2 optimization. Thus, in

this paper, we denote this version with the MDC and WMDC.

We have to distinguish between hierarchical and non-

hierarchical approaches. Both MDC and WMDC search for

a cover set c1, ..., cn which leads to a solution c1 ∪ ... ∪ cn.

This is a non-hierarchical approach. Using a search engine

this would lead to a solution c1 or ... or cn. Utiliz-

ing the cut of sets we will need a hierarchical solution

(c1∪ ...cn)∩(cn+1∪ ...cm)∩ ... . Using a search engine would

lead to a solution (c1 or ... or cn) and (cn+1 or ...

or cm)) and ....

Definition II.6. (Hierarchical Minimum Document-Cover

Problem, HMDC) Let D be a set of documents, let X be a

set of context data and let G = (D ∪ X, E) be the document

description graph. Moreover, we set D = {D1, ..., Dn}.
A solution of the HMDC problem for R ⊂ D is a minimum

cover C ⊆ D with C = C1 ∩ ...∩Cn and Ci = Ci
1 ∪ ...∪C

i
m

of R so that C \R is minimal. We use N(xi) as usual for the

open neighborhood N(xi) \ xi.

Definition II.7. (Hierarchical Weighted Minimum Document-
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Cover Problem, HWMDC) Given a set of documents D, a

set of context data X and the document description graph

G = (D ∪ X, E). We set D = {D1, ..., Dn}. Given a weight

function w : X → R that defines a weight for every element

in X.

A solution of the weighted HWMDC problem for R ⊂ D

is a minimum cover C ⊆ D with C = C1 ∩ ... ∩ Cn and

Ci = Ci
1 ∪ ... ∪ Ci

m of R, i.e.
∑

c∈C w(c) is minimal, so that

C \R is minimal.

We will discuss two examples for the non-hierarchical

problem:

Example II.8. Given an instance of the MDC with D =
{d1, d2, d3}, R = {d2, d3}, X = {x1, ..., x4} and D1 = D2 =
{d1, d2}, D3 = {d2, d3}, D4 = {d3}. See figure 2 for an

illustration.

A minimum set cover cannot include x1 or x2, but a solution

is C = D3.

Example II.9. Consider the instance given in example II.8

with additional weights w(x1) = w(x2) = w(x3) = 1 and

w(x4) = 0. A minimum solution of the weighted MDC can be

found with Z = {x3, x4}.
Let w(x1) = w(x3) = 1 and w(x4) = w(x2) = 0. A

minimum solution of weighted MDC can be either found with

Z = {x2, x4}, here w(Z) = 0 but |C \ R| = 1. If we chose

Z = {x3, x4} w(Z) = 1 but |C \R| = 0.

We will first of all focus on hierarchical approaches, dis-

cussing appraoches using dynamic programming and bipartite

graph heuristics or spanning trees. After that we will discuss

the non-hierarchical problem and solutions using an integer

linear program approach as well as some heuristics utilizing

the graph structure. We will evaluate the results on some

random instances and finish with a conclusion.

III. HIERARCHICAL APPROACHES

A. Problem Description

For some questions it is interesting to find a cover of R ⊂ D

with increasing (decreasing) or selectable exactness and the

number of named entities Z ⊂ X = f(R). If we have

a set of documents and want to obtain more others closely

related documents, we may be interested in a modification of

the similarity measure for documents or search queries. We

build covers Ci = q(Zi) of R and optimize the solution by

concatenating them with a logical AND.

B. Using unique keyword descriptions on bipartite graphs

From the graph in figure 2 we can see that the graph G =
(D∪X, E) is bipartite. The neighborhood N(d) ⊂ X of every

document d ∈ D is not necessarily unique description of this

document. Thus we can find a trivial solution of the MDCP

on R ⊂ D by

∨d∈R(∧x∈N(d)x)

We can eliminate elements with the largest error from this

list. This process can be limited by iterations as well as a

precision. For example we may limit the precision to 0.9 which

will eliminate at maximum 10% of all keywords, whereas a

precision of 0.5 will eliminate at maximum 50%.

Algorithm 1 KEYWORD-COVER

Require: Documents {d1, ..., dn} ⊂ D and descriptive el-

ements f(di) = {x1, ..., xm} ⊂ X, a weight function

w : X → R maxiter as maximum of iterations, prec as

precision

Ensure: A cover Z = (xi ∧ xj ∧ ...) ∨ (xk ∧ xl ∧ ...) ∨ ... of

R with elements in X.

f ′ = f

2: for every d ∈ R do

while iteration<maxiter AND f ′(d) > (prec · f(d))
do

4: remove x ∈ f ′(d) with maximum weight

end while

6: end for

return Z = ∨d∈R(∧x∈f ′(d)x)

If we set w : X → R as the error function err(x) =
|q(x)\R| we will find a solution for MDCP, otherwise this will

return a solution of WMDCP. The function err is a less time-

consuming approach but highly depended on the distribution

of X.

C. Dynamic programming and bipartite graph heuristic

Here, we describe a heuristic and dynamic method by

creating dominating subgraphs of a bipartite graph. Building

the bipartite graph Gb = (V = R ∪ X,E), a subgraph of

the document description graph G = (D ∪ X, E), we create

a set with documents Ra = {d1, ..., dn} ⊆ D and all their

context data (like keywords, named entities, etc.) in a sorted

list Xa = {x1, ..., xm} ⊆ X for the two sets of nodes.

The edges (di, xj) in Gb are given for all pairs di, xj iff

xj ∈ f(di). The elements in Xa should be sorted ascending

or descending by their degree. For our example we choose a

descending order, which results in an increasing precise cover.

In addition we need to build a second set Rb as tem-

porary storage for the documents and a sorted list of lists

Z = {Z1, Z2, . . . , Zk}, with the covers Zi of Ra for the

output. The algorithm in pseudocode can be found in alg. 2.

In every execution of the while loop in line 7 a new sublist

Zi ⊂ Z is created (see line 13). All of them are complete

covers of all documents in Ra, where Z0 may contain just one

element xi with N(xi) = Ra and the last Zm may contain just

all identities, that means xi with a single neighbor N(xi) = di.

There are many options to modify the algorithm for special use

cases. Choosing the ascending order for Xa and the minimum

in line 9, which is same as in the other case just means the

first xj ∈ Xa, will mostly give different results.

If after the last run of the loop Xa is empty, but there are

still documents in Ra, we receive an incomplete cover Zk. To

avoid that we add the ID’s for the last documents in Ra (in

descendind order) to Zk, or create and add an all covering x∞

(for descending order).
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Algorithm 2 HIERARCHICAL BIPARTITE COVER-

DESCRIPTION

Require: Documents {d1, ..., dn} ⊂ D and descriptive ele-

ments f(di) = {x1, ..., xm} ⊂ X, Ra with all di and

empty set Rb, sorted list X with all xi and empty list Z,

G = (Ra ∪Xa, E) with (di, xj) ∈ E if di ∈ l(xj), order:

descending or ascending, maximum iterations maxdeep

Ensure: List of covers Z of Ra = {d1, ..., dn} with elements

in X.

for every xi, xj ∈ X do

2: if N(xi) = N(xj) then

xi = {xi OR xj}, remove xj

4: end if

end for

6: k←0

while |X| > 0 AND k ≤maxdeep do

8: for every d ∈ Ra do

choose xj ∈ N(di) with max|N(xj)| (or min at

ascending)

10: for every d ∈ N(xj) do

Rb ← d, from Ra.remove(d)

12: end for

move xj to Zk

14: end for

Ra = Rb, Rb = ∅, k = k + 1
16: end while

if Ra 6= ∅ then

18: if (order = ascending): add x∞ to last Zk

if (order = descending): add f(di) for all di ∈ Ra to

last Zk

20: end if

return Z = {Z1 AND ... AND Zk}

XaRa

Z = [Z1, Z2, ..., Zs]

Rb

d1

d2

d3

dn

x1

x2

x3

xm

.

.

.

Z1 = [x1, ...]
1

2

3

4

4

4

.

.

.

.

.

.

Fig. 3: Illustration of the bipartite graph algorithm.

D. Spanning Tree Appraoch

Given a set of documents D, a set of context data X and the

document description graph G = (D ∪ X, E). We can define

Algorithm 3 TREE-DESCRIPTION

Require: Documents d1, ..., dn ⊂ D and descriptive elements

f(di) = {x1, ..., xm} ⊂ X

Ensure: A spanning tree S describing R = {d1, ..., dn} with

elements in X.

1: build list xi : l(xi) with i ∈ {1, ...,m} and l(xi) = q(xi)
2: build G = (X,E) with X = {xi, ..., xm} and (xi, xj) ∈

E iff l(xj) ⊂ l(xi) and weight w(xi, xj) = |l(xi)| −
|l(xj)|

3: m = maxx∈X l(x)
4: X = X ∪ xo

5: for every x ∈ X with l(x) = m do

6: add edge (x0, x)
7: end for

8: Calculate Minimum Spanning Tree S in G

9: return S

∀xi ∈ X Di = N(xi) as the cover set of xi in D. We set

D = {D1, ..., Dn}.

A solution of the MDC problem for R ⊂ D is a minimum

cover C ⊆ D of R so that C \R is minimal.

We can now construct a hierarchical tree using the logical

operators and and or in X. We will do this by considering

a directed graph G′ = (V,E) with nodes V = X. We

add weighted edges between two nodes xi, xj if NG(xj) ⊂
NG(xi). The weight is set to w(xi, xj) = |NG(xi)| −
|NG(xj)|. If we add a meta node x0 that is connected to all

nodes that have no nodes adjacent to them, which means to

all nodes x with δ−G(x) = 0, we can search for minimum

spanning trees, see figure 4.

Finding the spanning tree(s) in this graph G′ can be done

using breadth-first search (BFS) or depth-first search (DFS) in

O(|V | + |E|) time. Finding the minimum spanning tree can

also be done using this approach since the edges are sorted

according to their weight. This a a technical assumption and

we will have different findings on different definitions of X.

Finding minimum spanning trees is in general NP-complete,

see [12]. See algorithm 3 for pseudocode.

As we can see, even this simple approach needs a complex

heuristic. Although finding minimum spanning trees is usually

in FP , we can construct more complex examples that areNP-

complete. It would be very beneficial to find problems that are

in P .

IV. NON-HIERARCHICAL APPROACHES

A. Problem Description

Looking for non-hierarchical approaches we want to find a

minimum cover C ⊂ D wihtout step by step optimization by

connecting partial results with logical AND. We here present

two ways to do this, first by using an integer linear program

and second by using a small modification of the bipartite graph

algortihm.
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Fig. 4: Illustration of set representative in the graph G′ = (V,E) and weight w(xi, xj) after adding the meta node x0, with

l(xi) := |NG(xi)|. Not all edges and nodes have been added.

B. An Integer Linear Program Approach

Numerous ILP-formulations for the set-cover problem can

be found in literature, for example [13] or [14]. To meet

definition II.6 of MDC we need to adjust the formulation.

Given a set of documents D, a subset R ⊂ D, a set of

context data f(R) = X ⊂ X and the document description

graph G = (D ∪ X, E). We can define ∀xi ∈ X Di = N(xi)
as the cover set of xi in D. We set D = {D1, ..., Dn} and

e(Di) = Di \R as the error of the description term xi.

A solution of the MDC problem for R ⊂ D is a minimum

cover C ⊆ D of R so that C \R is minimal.

min
∑n

i=1 xi +
∑n

i=1 xie(Xi)
subject to

∑
i:v∈Xi

xi ≥ 1, ∀v ∈ R

xi ≥ 1 ∀i = 1, ..., n
xi ∈ Z ∀i = 1, ..., n

(1)

Here the vector x gives a set Z ⊂ X which gives a

minimum cover q(Z) = C ⊂ D of R so that C\R is minimal.

The weighted MDC problem was introduced in definition

II.7. Given a weight function w : X→ R that defines a weight

for every element in X the ILP (1) changes as follows:

min
∑n

i=1 w(xi) +
∑n

i=1 xie(Xi)
subject to

∑
i:v∈Xi

xi ≥ 1 ∀v ∈ R

xi ≥ 1 ∀i = 1, ..., n
xi ∈ Z ∀i = 1, ..., n

(2)

A solution of the MDC problem for R ⊂ D is a minimum

cover C ⊆ D of R, i.e.
∑

c∈C w(c) is minimal, so that C \D
is minimal.

C. Dynamic programming and bipartite graph heuristic

We can use algorithm 2 to construct a non-hierarchical

solution. This algorithm has already been used to computed k

covers of Ra, which can be used to find a cover with minimal

Algorithm 4 BIPARTITE COVER-DESCRIPTION

Require: Documents {d1, ..., dn} ⊂ D and descriptive ele-

ments f(di) = {x1, ..., xm} ⊂ X, Ra with all di and

empty set Rb, sorted list X with all xi and empty list

C, G = (Ra ∪Xa, E) with (di, xj) ∈ E if di ∈ N(xj),
maximum iterations maxdeep

Ensure: A minimum covers Z of Ra = {d1, ..., dn} with

elements in X.

for every xi, xj ∈ X do

2: if N(xi) = N(xj) then

xi = {xi OR xj}, remove xj

4: end if

end for

6: k←0

while |X| > 0 AND k ≤maxdeep do

8: for every d ∈ Ra do

choose xj ∈ N(di) with max|N(xj)|
10: for every d ∈ N(xj) do

Rb ← d, from Ra.remove(d)

12: end for

move xj to Zk

14: end for

Ra = Rb, Rb = ∅, k = k + 1
16: end while

if Ra 6= ∅ then

18: add x∞ to last Zk

end if

20: return Z = mini∈{1,...,k} Zi,

error Z = mine(xi) Zi, that means for q(Z) = C C \ R is

minimal. The pre-sorting of the context data list X results in

covers of ascending cardinality, so the number of iterations

k may be a limit for maximum cardinality. The pre-sorting

can be removed, which results in more balanced and random
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covers, whereof one with minimum error can be chosen.

V. EXPERIMENTAL RESULTS

We tested our novel approach within two scenarios. First

of all, using an artificial random instances with |D| = 150
documents and a given subset R with 20 example documents.

We created instances with a fixed number of 80 or 40 normal

distributed keywords which had a significant impact on the

output. In addition we used N iterations, which lead to

a different precision. The second scenario is a real-world

example using set R of 10 random documents out of a human

curated topic. We tested against complete PubMed Database

using SCAIView. Thus |D| ≈ 29, 000, 000.

Within the random instances we were unable to describe

a single document by its random keywords. This approach

usually returned more than 100 documents. The reason for

this rather contradictory result is still not entirely clear, but

the normal distribution of keywords may be responsible for

this result. The algorithms Tree-Description and Hierarchical

Bipartite Cover-Description performed quite well, see figure 5.

In general, we found Hierarchical Bipartite Cover-Description

to work better and faster.

Changing to the real-world scenario the situation changes

significantly. Given a set of 10 documents, Hierarchical Bipar-

tite Cover-Description usually returned more than 6,000,000

documents, Tree-Description more than 5,000,000 before

reaching the search-query length limitations. Vice versa we

found, that the combination of keywords described a single

document very well – even within nearly 3 million documents

in D. The keywords using MeSH-terms in PubMed are man-

ually curated and seem not to be normally distributed.

The output of Keyword-Cover for 10 random examples with

|R| = 10 is presented in figures 6 and 7. The precision was

iterated from 0.9 to 0.4. The output scales very well and is

quite stable till precision 0.5 where we found between 12

and 36 documents. For precision 0.4 we found 28 till 676

documents.

We can see, that we have found a novel solution for search

query finding on literature that performs quite well on real-

world data. Our work clearly has some limitations. It is

not clear, why the proposed algorithms perform significantly

different in both scenarios. Despite this we believe our work

could be the basis for solving the SQF and TD. Further

work needs to be performed to the distribution of descriptive

elements to documents to establish whether they can be used

to generate search queries and topic descriptions that are

significant enough.

VI. CONCLUSIONS

We presented a novel formulation of both search query and

topic finding problems as Minimum Set-Cover Problems. We

proposed a weighted and unweighted version of the Minimum

Document-Cover Problem as well as a hierarchical version

using both AND as well as OR and the non-hierarchical version

only using and.

With this we get a solution that uses on the one hand as

much descriptive elements as possible to get as less documents

in D but not in R.

The search queries are not human readable. For example

the tree-approach returns queries in the form MeSH_Terms:

D000818" AND ( "MeSH_Terms: D051381" OR

"MeSH_Terms: D009538" OR "MeSH_Terms:

D017207" OR "MeSH_Terms: Q000494" OR

"MeSH_Terms: D006624" OR "MeSH_Terms:

D011978" OR "MeSH_Terms: D000109" OR

"MeSH_Terms: D008297" OR "MeSH_Terms:

Q000187" OR "MeSH_Terms: Q000502" OR

"MeSH_Terms: Q000378" OR "MeSH_Terms:

D008464" OR "MeSH_Terms: Q000187" OR

"MeSH_Terms: Q000187" OR .... This can be

easily translated into something human-readable. But still it

is a good probability that further research has to be done on

how to shorten this to be both precise as well as significant.

In general this is both: a correct solution of clustering

labeling of R on X obtained by f as well as a possible solution

of a search query so that q(Z) = R. It is not necessary an

optimal solution of SQF or CLF problem, since reordering the

keywords may result in better solutions.

The bipartite graph algorithms can be modified for many

different use cases. All hierarchical algorithms can also be

modified by adding weights. As described, there are many

possible variations like sorting the context data list by min-

imum or maximum degree. The number of iterations k also

has a big impact on the result. Another possible optimization

is the pre-sorting by weighting the xi with maximum |N(xi)|
and minimal D \R.

This paper has underlined the importance of finding the

computational core of NLP problems. We have managed to

find a Minimum Set-Cover reformulation of SQF and TF

which lead to an accurate solving of both on real-world data.

The current study was unable to reproduce this success on

random input data. Thus it is recommend that further research

should be undertaken to examine the impact of keyword (or

descriptive elements) distributions on documents. Neverthe-

less these results have been very encouraging to integrate

this feature in SCAIView and to do further research on the

optimization and extension of this heuristic.
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