
A GIS Data Realistic Road Generation Approach

for Traffic Simulation

Yacine Amara, Abdenour Amamra, Yasmine Daheur, and Lamia Saichi

Ecole Militaire Polytechnique, Bordj El-Bahri BP 17, Algiers, Algeria

Email: amara.yacine@gmail.com

Abstract—Road networks exist in the form of polylines with
attributes within the GIS databases. Such a representation
renders the geographic data impracticable for 3D road traffic
simulation. In this work, we propose a method to transform raw
GIS data into a realistic, operational model for real-time road
traffic simulation. For instance, the proposed raw to simulation-
ready data transformation is achieved through several curvature
estimation, interpolation/approximation, and clustering schemes.
The obtained results show the performance of our approach and
prove its adequacy to real traffic simulation scenario as can be
seen in this video1.

Index Terms—Road interpolation, Road modeling, Traffic
simulation, Vehicle virtual navigation.

I. INTRODUCTION

In recent years, applications of road traffic simulation have

become ubiquitous in everyday life: driving simulation or

racing games are increasingly attracting the attention of devel-

opers. However, the results obtained are not always consistent

with reality. When one wants to reproduce a realistic behavior,

the developer must consider the real parameters of the road.

The realization of a real-life road simulation would make

it possible to forecast the traffic generated in a given road

network. This realism, modeled on a computer, would help

managers to detect the problems present in the network,

namely congestion, accidents, user stress, an insufficient num-

ber of channels, etc. Besides optimizing traffic on the roads

without making urban changes, such as location of traffic

lights, number, and width of lanes.

The shape of the road is complex, particularly at mountain-

ous segments, severe turns, etc. Therefore, finding the best

mathematical function that will fit the shape of these sections

while taking into account compressing the number of data to

be stored is challenging.

Geometric processing applications rely on the geometric

properties of curves such as torsion, curvature, and tangents. In

our study, we chose the curvature metric in the road’s modeling

surface, since the latter embeds the information on the shape

of the road. The actual data is extracted from the Geographic

Information System (GIS), the latter known for providing the

ability to manipulate geographical information laid out on

multiple layers. The metric being chosen; our approach is then

organized as follows: extraction of the road layer as polylines

in the GIS data; curvature estimation at the neighborhood

of the points; a grouping of points in clusters according to

1https://youtu.be/t8eyphcFYHc

the sign of their curvature, and finally the approximation of

clusters by continuous mathematical functions.

Fig. 1

II. RELATED WORKS

Most of the work that has been proposed on road reconstruc-

tion is based on procedural modeling. Roads are generated by

empirical rules often based on observation. We will classify

the methods proposed in two categories: the methods taking

the input of calculated roads (procedural approaches) and the

models taking as input the data resulting from Geographic

Information Systems (GIS).

A. Procedural approaches

These approaches take as input roads derived or calculated

by mathematical or optimization methods. Both, Parish et al.

[1] and Jing et al. [2] generated models of cities in which

road networks played a key role. Their roads were built from

the central lines that are generated either by grammar rules

named L-Systems [1], or model-based methods [2]. However,

the defining laws or models to regenerate exactly the structure

of urban roads are not available. Hence, their roads often

drift from their real respective counterparts. In addition, their

methods were not designed for highways and suburban roads.

Some of these limitations have been resolved by Chen et

al. [3], where they used a tensor field from which a graph

representing the road network was calculated. This can be

modified to control locally the generated road profile. Their

method permits creating large areas but does not allow the

reconstruction of existing networks because of the problem of

scale limitation. In addition, only urban roads were considered.

Another procedural model was proposed by Galin et al.

[4, 5] based on a platform for generating mapped roads that

contain many types of features such as trees, rivers, and lakes.

Their roads resulted from a short path algorithm instead of the

real data. As a result, we obtain fictitious roads that do not

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 385–390

DOI: 10.15439/2019F223

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 385

satisfy the constraints of civil engineering. The generated roads

are erroneous and do not match the shape of the terrain. This

lack of realism is because of the shortcomings of the proposed

approaches. The major shortcoming of these works is not to

have considered the actual data as input of the problem.

B. GIS data approaches

To overcome the problems mentioned and to build more

realistic roads, Bruneton and Neyret [6] proposed a method

of generating large road surfaces from GIS data. They repre-

sented the roads with Bezier curves to join the sampled points

and then mapped them on the ground. Although this model

helps to perceive actual road coordinates, current roads are

no longer built from Bezier curves. Again, these models are

affected by the lack of realism. The details and constraints

related to civil engineering discipline are not taken into

account. Road networks must be defined by simple forms such

as straight lines, arcs of circles, and clothoids. This drawback

had been addressed by the following work:

1) LSGA algorithm: This work [7] introduces a new ap-

proach to construct smoothed curve pieces representing real-

istic roads. Given a GIS database of road networks, where

the sampled points are organized as 3D polylines, this method

creates horizontal and verticals curves, then it combines them

to generate the roads. The major contribution of this work is

a tree traversal algorithm that extends the sequences of the

best fit primitives and a fusion process of these primitives.

The latter must respect a certain grammar according to an

automaton. This approach offers more realistic results than

those that preceded it, and the errors are proportional to the

noisiness of input data.

2) Construction by clothoids: In [6], the algorithm for

adjusting a sequence of G2 polylines into clothoid segments

takes place in two steps: first a piecewise linear approximation

is applied, then a sequence of rigid 2D transformations is

applied in order to align the in one consistent result. Although

this method respects civil engineering constraints and models

the transition between a circular arc and a straight line with

a clothoid, its first pass through the linear segments loses the

precision when estimating the radius of curvature.

3) Automatic generation of 3D roads: This method, pre-

sented in [8], is based on a set of civil engineering rules. It

proposes a new approach for the automatic 3D generation of

high-fidelity roads. It transforms GIS data that only contains

2D information from the central axis of the road into a 3D

model of the road network. In the proposed approach, basic

road elements such as road segments, road intersection are

generated automatically to form sophisticated road networks.

But in the modeling of the axe of the road, the segments

were connected by Hermite curves, which satisfy only G1

continuity, hence the civil engineering constraints were not

respected.

The proposed model must be realistic, that is to say, that

it must meet the constraints of civil engineering and vehicle

dynamics, for this reason, our study was based on an essential

criterion which is curvature. Curvature, the inverse of the

radius of the circle tangent to the curve, is defined as the

norm of the acceleration vector of a body traveling the curve

at unit speed. It is the second derivative with respect to the

curvilinear abscissa of the body position.

III. CURVATURE ESTIMATION

A. Definition

A parametric curve is a function r : I ⊂ R → R
n, when

n = 2 it is called a plane curve. The curvilinear abscissa s
from a point r(t0), t0 ∈ I , at a given point r(t1), t1 ∈ I , is

defined by:

s(t1) =

∫ t1

t0

‖r′(u)‖ du (1)

The vector T (s) = r′(s) is called the tangent vector.

The normal vector N(s) is obtained by a rotation of 90◦

anticlockwise. The vectors T ′(s) and N(s) are collinear. That

is, there is a function k(s) such that:

T ′(s) = k(s)×N(s) (2)

called the curvature of the curve at the point r(s). The

curvature also corresponds to the variation of the direction

of the tangent vector respectively to the curvilinear abscissa:

k(s) = θ′(s), such that :

θ′(s) = ∡(
−−→
T (s),

−−−→
(1, 0)) (3)

Since our initial data is in discrete form, we performed a

local estimation using a sliding window. The latter is centered

around a point allowing to approximate all it neighbors within

the window by a second order polynomial. The interest of such

an operation is to deduce the first and the second derivatives,

to then calculate the curvature. Several approximation methods

called implicit parabola fitting proposed in [9], which have a

good performance and a fair simplicity of implementation.

B. Second-order curve approximation

In the implicit parabola fitting method, proposed in [9], the

curve is described by a function such that: y = f(x) or x =
f(y). The variation of x and y inside the window determines

the parameterization to adopt, in fact if the variation of x
is greater than that of y, the algorithm will select the case

y = f(x) and vice versa . In order to simplify the notation,

we will consider that p0 = (0, 0). The goal is to find f
′

0 and

f
′′

0 , which minimize:

Ex(f
′

0, f
′′

0) =

q
∑

i=−q

(yi − f
′

0xi −
1

2
f

′′

0 x
2
i)

2 (4)

The solution of this problem of least squares gives:

f
′

0 =
cg − bh

ac− b2
f

′′

0 =
ah− bg

ac− b2
(5)

386 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

such that :

a =

q
∑

i=−q

x2
i g =

q
∑

i=−q

xiyi b =
1

2

q
∑

i=−q

x3
i ,

h =
1

2

q
∑

i=−q

x2
i yi c =

1

4

q
∑

i=−q

x4
i

(6)

(a)

(b)

Fig. 2: (a) Points window, (b) Approximation by least squares

C. Curvature computation

1) Model and notation: Consider a set of points pi of a flat

smooth curve r, in this study the curve is parameterized by

the arc length, the estimate of the curvature for a plane curve

requires an approximation of the first and second derivatives

of r(s). Let a point p0 be chosen . The derivation of r in

p0 will be estimated from a window of size 2q + 1 around

p0 : p−q, p−q+1, . . . , pq (see Fig 2a). We set p0 = r(0) as the

origin, the approximation of degree two can be written in the

form:

r(s) = r′(0)s+
1

2
+ r′′(0)s2 (7)

2) The least squares approach: The estimate of r′(0),
r′′(0) is obtained by the least squares approach (Fig 2b).

The weighting wi of the point pi must be positive, relatively

important for small values of |si| and relatively small for large

values of |si|.

The arc length si can be estimated as follows: ∆lk is the

arc length of the vector pkpk+1, where k varies from −q to

q− 1. The arc length between p0 and pi can be approximated

by:

{

li =
∑i−1

k=0
, i > 0

li = −
∑

−1

k=0
, i < 0

(8)

D. Curvature computation for a plane curve

For the case of plane curves, the idea of the Independent

coordinates method [9] is to construct a parametric curve

(x(s), y(s)) that approaches the curve locally, by quadratic

functions as a function of arc length.
{

x̂(s) = x0 + x′

0s+
1

2
x′′

0s
2

ŷ(s) = y0 + y′0s+
1

2
y′′0 s

2 (9)

The derivatives x′

0 and x′′

0 are estimated by minimizing:

Ex(x
′

0, x
′′

0) =

q
∑

i=−q

wi(xi − x′

ili −
1

2
x′′

0 l
2
i)

2 (10)

The minimization of this equation can be written in the

following matrix form
[

a1 a2
a2 a3

] [

x′

0

x′′

0

]

=

[

bx,1
bx,1

]

(11)

such that :

a1 =

q
∑

i=−q

wil
2
i a2 =

1

2

q
∑

i=−q

wil
3
i a3 =

1

4

q
∑

i=−q

wil
4
i

bx,1 =

q
∑

i=−q

xiwili bx,2 =
1

2

q
∑

i=−q

wil
2
i xi

(12)

Algorithm 1: Weighted least square variables setting

I[] = a1 = a2 = a3 = bx,1 = bx,2 = by,1 = by,2 = 0
for i = -q; i ≤ q; q++ do

I[i]← I[i− 1] + ‖pipi−1‖
end

m = I[0]
for i = -q; i leqq; q++ do

I[i]← I[i]−m
w ← weight(I[i])2

a1 ← a1 + w(I[i])2

a2 ← a2 +
w
2
(I[i])3

a2 ← a2 +
w
4
(I[i])4

bx,1 ← bx,1 + w(I[i])(xi − x0)
by,1 ← by,1 + w(I[i])(yi − y0)
bx,2 ← bx,1 +

w
2
(I[i])2(xi − x0)

by,2 ← by,1 +
w
2
(I[i])2(yi − y0)

end

d← a1a3 − a22

The same procedure is applied for the calculation of y′0 and

y′′0 . The tangent T is obtained by the normalization of the

vector r′0 = (x′

0, y
′

0), while the normal vector is obtained by

a rotation of 90◦ of T .

IV. CUTTING ACCORDING TO CURVATURE

This step will aim to cut the road into a set of primitives

consisting of straight lines, left/right turns based on the value

of curvature estimated at each point as explained in the

previous step.

ABDENOUR AMAMRA ET AL.: A GIS DATA REALISTIC ROAD GENERATION APPROACH FOR TRAFFIC SIMULATION 387

Algorithm 2: Coefficient computation

x′

0 ← (a3bx,1 − a2bx,2)/d
y′0 ← (a3by,1 − a2by,2)/d
x′′

0 ← (a1bx,2 − a2bx,1)/d
y′′0 ← (a1by,2 − a2by,1)/d

κ← (x′

0y
′′

0 − y′0x
′′

0)/ ‖(x
′

0, y
′

0)‖
3

T ← (x′

0, y
′

0)/ ‖(x
′

0, y
′

0)‖
N ← sign(κ)(−Ty, Tx)

For this, we will execute the following processes in the

order indicated. We first start with a classification in two

primitives only, that is to say left/right turn, we continue by

extracting the sections which are straight lines independently

of the primitives obtained previously and we thus finish by

eliminating the isolated points, which are of the right type

because a primitive of the right type must have a minimum

number of two points. In what follows we will detail the

procedure for filtering the curvature values according to the

order of execution of the steps.

A. Preprocessing

In order to facilitate the different treatments, an initial

marking of all the points of the curve has been carried out. For

this, we assigned to each point whose curvature is positive the

number +1, and -1 for those whose value of the curvature is

negative, and we stored the result in a table named ”ids” which

will be subsequently updated by the results of the different

processing.

B. Left and right turns detection

Our approach was based on a local estimate of the curvature

sign near the point considered. A sliding window of size w
has been used to estimate the global sign of the values inside

the window by summing the values previously assigned, so

the classification of the types of sections will be carried out

as following :

• The sum is positive, so it is a right turn and the point is

marked +1.

• The sum is negative, so it is a left turn and the point is

marked -1.

• The zero sum is not a possible case because the size of

the window around the point is odd.

This step is very important because it allows to assign a

point to a given turn even if the sign of its curvature does not

correspond, because it is the trend of the whole neighborhood

is taken into consideration.

C. Straight line detection

Straight line detection is based on the value of the estimated

curvature. Indeed, we know that a line is characterized by a

null curvature. Since the values of the estimated curvature are

not all accurate and contain noise, a threshold δ has been set.

If the curvature norm is below this threshold, the point will

be assigned to a straight line primitive. Points satisfying the

relationship |K(s)| < δ will be assigned the number 0.

D. Elimination of isolated right point

Knowing that a marked point of a straight line can not be

isolated, the solution is to go through all the points of the line

and to modify those which are of marking different from their

neighbors according to the signs of the curvature at this point,

i.e. +1 marking if the curvature is positive, -1 otherwise.

Algorithm 3: Primitive assignment

while i < ids.size() do

gpts gpt

gpt.type ← ids[i]

gpt.id ← i

gpt.nbr ← 0

for i = 0; i < ids.size(); i++ do

if gpt.type 6= ids[i] then

Break

end

gpt.nbr++

end

end

V. TURNS APPROXIMATION WITH SECOND ORDER

POLYNOMIALS

A. Preprocessing

In order to interpolate curves with polynomials, a data

structure has been created to facilitate processing on the one

hand and to save the results obtained on the other hand.

This data structure (”gpts”) consists of an integer field named

”type”, which will contain the type of the primitive according

to the marking carried out in the previous step. An integer field

named ”id”, which will contain the identifier of the first point

of the primitive. An integer field named ”nbr”, which will

contain the number of points belonging to this primitive as

well as two other fields ”paramX” and ”paramY”, which will

be used to store the coefficients of polynomials associated with

turns. The structure being created, the fields were subsequently

assigned according to algorithm 3.

For each left-handed or right-turn type primitive, we will

proceed to the parameterization according to the length of the

arc, so we will have two polynomials according to x and y
such that:

{

x(s) = a0 + a1s+ a2s
2 + a3s

3

y(s) = b0 + b1s+ b2s
2 + b3s

3 (13)

The polynomials in question will be of degree 3, this choice

can be justified by the absence of inflection points since the

primitives have been classified according to their (there is not

a transition in the same road segment). They are convex or

concave curves hence the choice of the polynomial regression

that is a statistical analysis that describes the variation of an

dependent random variable, called here x or y, according to an

independent random variable, called here s, being the length

of the arc. We seek, by regression, to bind the variables by

388 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

a polynomial of degree 3. The calculation of the coefficients

therefore amounts to solving a system of equations that can

be expressed in the following matrix form:










x1

x2

...

xn











=











1 s11 s21 · · · sm1
1 s12 s22 · · · sm2
...

...
. . .

...

1 s1n s2n · · · smn





















a0
a1
...

am











(14)

The number m = 3 corresponds, in our case, to the cubic

polynomial regression. We will treat the case of the polynomial

x(s) generated and it is the same for y(s). The problem is

therefore to find the vector ~a in the equation:

~x = S~a (15)

The solution is given by:

~a = (STS)−1ST~x (16)

B. Error criterion

Given the needs and requirements of the realism imposed

on the generated road, we set ourselves the objective of

approximating the GIS input data with lines and polynomials

of third degrees such that the maximum deviation between the

two curves does not exceed 2.0m, in this part we discuss the

calculation of error as well as treatments to be undertaken in

the case of exceeding this limit.

1) Error computation: The error d is estimated as the

distance between the approximate point p = (x, y) and the

entry point p = (x, y), it is deduced according to the following

formula:

d =
√

(x̂(s)− x(s))2 + (ŷ(s)− y(s))2 (17)

The maximum value of this error must not exceed δ for each

of the points of the different right or polynomial primitives.

dmax < δ (18)

2) Error processing: Primitives whose error exceeds the

required threshold must be modified, for this our approach is to

generate from the initial primitive two primitives such that the

number of points constituting each primitive is equal to half

the number of points of the primitive. For a given primitive

Cm one generates two primitives Cm/2 and C ′

m/2, and the

same treatment will be executed on the two new primitives in

a recursive way, this will assure us:

• Compliance with the error limit required for each final

primitive obtained,

• The generation of a minimal number of primitives,

VI. RESULTS

The results obtained when applying our method are sum-

marized in Figure (3). The figures show the stages of our

approach. Figure (3a) shows a sample of a road polyline. In

Figure (3b), the curvatures were estimated by the least squares

method. Note that this representation is more exploitable than

that of Figure (1), and that there is less disturbance in the

values of the curvatures due to windowing.

A. Curvature estimation by the implicit parabola fitting

method

In order to overcome the problems encountered when

calculating the curvature by cubic splines, we opted for an

estimation of the latter by the least squares. Compared with

spline, the quality of curvature values improved significantly.

Indeed, most points follow the trend of the turn where they

belong as can be seen in Figure (3b). Nevertheless, in the

case of more complex turns, outliers appear. Hence, we have

proposed to neglect them, and to mark a window by a single

sign of curvature relative to reality.

B. Clustering

Figure (3c) shows that the points of the input road were

grouped into three basic categories: left turn, right turn, and

straight line. We note that the results are more refined, because

this step corrects any possible residual error of the previous

section. Moreover, it allows noise reduction, by defining the

straight line segments from a given threshold, since the SIG

data being noisy, we cannot obtain zero curvature values.

This step allowed us to have the same signs of curvature for

a given type of cluster. Nevertheless, at this stage the clusters

are not connected to each other, a major problem on which

the approximation will be based in the following phases.

To overcome the problem of connection, we fix first the

ends of the primitives, then we approximate the calculated

model of the initial points. In this perspective, the Bezier

curves with a least squares approximation prove to be an

adequate choice. Indeed, the first and last control point are

superimposed on their correspondents in the initial data, then

the other points are calculated by minimizing the differences

between the model and the initial data. The main disadvantage

of this method is that it guaranties only C0 continuity between

two clusters of successive points, which does not satisfy civil

engineering constraints. Moreover, in some complex turns, it

remains difficult to follow the shape of the cluster by a third

degree polynomial.

Figure (3g, 3h) represents the constructed road. The initial

data points circled and clustered. Note that the resulting model

does not deviate from the input road polyline. The curves

in magentas represent the edges of the road, the input data

(polylines) are in red, and the model (at the central axis) is in

blue. Figure (3h) illustrates the mapping of the road to the geo-

referenced satellite image corresponding to the road section.

As can be seen, the model provides a smooth representation

of the road surface. We see that complex shapes such as

turns are well approximated. In addition, our model meets the

C2 continuity (imposed by road civil engineering), along the

road without oscillations or other erratic behaviors that would

compromise the visual comfort during the simulation.

VII. CONCLUSION AND FUTURE WORKS

The objective of this work was the realistic modeling of the

road surface by taking into account a number of civil engi-

neering and vehicle dynamics constraints. We chose curvature

ABDENOUR AMAMRA ET AL.: A GIS DATA REALISTIC ROAD GENERATION APPROACH FOR TRAFFIC SIMULATION 389

as a parameter describing the shape of the road in order to

approach the profile of the latter as closely as possible.

We proceed through the estimation of curvature by a win-

dowing approach because of the discrete nature of GIS data.

In order to approach the reality, we grouped the points into

clusters according to their neighborhood’s curvature to obtain

basic forms of the road namely left/right turns and straight

lines.

This being done, the next step was to find the mathematical

functions as well as the appropriate conditions and constraints

to approach the initial data with functions that respect C2

continuity conditions.

The results obtained are satisfactory insofar as our road

reconstruction approach takes into account the real constraints,

moreover the model obtained is of C2 continuity, which

reflects the smoothness of the position, speed and the acceler-

ation of the simulated vehicle.

As perspective, we plan to improve and refine this work by

considering road intersections, since the latter are frequently

encountered in real-life situation.

REFERENCES

[1] Yoav IH Parish and Pascal Müller. “Procedural modeling

of cities”. In: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques. ACM.

2001, pp. 301–308.

[2] Jing Sun et al. “Template-based generation of road

networks for virtual city modeling”. In: Proceedings of

the ACM symposium on Virtual reality software and

technology. ACM. 2002, pp. 33–40.

[3] Guoning Chen et al. “Interactive procedural street model-

ing”. In: ACM transactions on graphics (TOG). Vol. 27.

3. ACM. 2008, p. 103.

[4] Eric Galin et al. “Authoring hierarchical road networks”.

In: Computer Graphics Forum. Vol. 30. 7. Wiley Online

Library. 2011, pp. 2021–2030.

[5] Eric Galin et al. “Procedural generation of roads”. In:

Computer Graphics Forum. Vol. 29. 2. Wiley Online

Library. 2010, pp. 429–438.

[6] Eric Bruneton and Fabrice Neyret. “Real-time render-

ing and editing of vector-based terrains”. In: Computer

Graphics Forum. Vol. 27. 2. Wiley Online Library. 2008,

pp. 311–320.

[7] Hoang Ha Nguyen, Brett Desbenoit, and Marc Daniel.

“Realistic road path reconstruction from GIS data”. In:

Computer Graphics Forum. Vol. 33. 7. Wiley Online

Library. 2014, pp. 259–268.

[8] Jie Wang, Gary Lawson, and Yuzhong Shen. “Automatic

high-fidelity 3D road network modeling based on 2D GIS

data”. In: Advances in Engineering Software 76 (2014),

pp. 86–98. DOI: 10.1016/j.advengsoft.2014.06.005. URL:

https://doi.org/10.1016%2Fj.advengsoft.2014.06.005.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Processing steps of the proposed algorithms. (a) Raw

road in polyline form, (b) Curvature obtained by least squares

according to the normal, (c) Cutting of the road (left, right

turns and straight lines) according to curvature values, (d)

Turns detected by the cutting algorithm, (e) Polynomial fitting

of the detected turns, (f) 3rd degree polynomials approxima-

tion of a given turn, (g) Result: generated road surface, (h)

Mapping of the result on a real road

[9] Thomas Lewiner et al. “Curvature and torsion estimators

based on parametric curve fitting”. In: Computers &

Graphics 29.5 (2005), pp. 641–655. DOI: 10 . 1016 / j .

cag.2005.08.004. URL: https://doi.org/10.1016%2Fj.cag.

2005.08.004.

390 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

