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Abstract—Photographic surveying, a fundamental procedure
in crime investigation, is typically performed using 2D cameras.
Although useful, such cameras remain limited due to the lack of
depth information. In this work, we propose a 3D reconstruction
solution that leverages the advantages of cheap RGB-D sensors to
create a 3D model of the crime scene and to provide the investi-
gator with an interactive crime scenario simulation environment.
A structure from motion approach is proposed in order to align
the captured point clouds on each other using 3D key points. An
iterative refinement and a global optimization algorithm are later
adapted for the optimization of the registered 3D model, which is
then triangulated before the underlying surface is reconstructed.
The resulting model is used for interactive crime investigation
and object dynamics simulation. The obtained results show the
effectiveness of our solution with a visually appealing rendering,
an accurate simulation and a quantitative error of less than 18cm
for the 4m×4m indoor scene. An accompanying video is provided
in order to illustrate the processing pipeline 1.

Index Terms—Crime scene modeling, 3D registration, RGB-D
sensors, Forensic computing, Interactive investigation.

I. INTRODUCTION

In the world we live today, we hear frequently about crimes

and the ways they are resolved. Freezing and preserving the

crime scene is certainly one of the most important and delicate

initial steps that the police perform upon the arrival to a crime

scene. The idea is to conserve the spatial configuration of the

objects surrounding the place where they think the crime took

place for the purpose of avoiding any contamination.

In most current cases, the investigation is carried out in the

simplest manner, that is, with paper, pencil and measurement

ribbon, to sketch an illustration of the crime scene showing the

position of the victim, as well as the other tools that could have

served the criminal. For instance, a trivial improvement of the

simple flat drawings can be a 3D representation of the scene

allowing a better understanding of the series of events that

conducted to the crime. For instance, several computer tools

have been used by experts for the creation, the visualization,

and sharing of electronic crime data among investigators. A

first 3D reconstruction method based on this software is the

design of a 3D model of the scene. Then taking pictures and

pasting them on the 3D mesh. This method is simple and does

not require much experience, however, it fails to preserve the

3D shape and dimensions of objects. Another method of 3D

scene reconstruction is a faithful recreation of the scene. The

latter requires the mastery of sophisticated 3D modeling tools

and the measurements of all the important scene objects. Its

advantage is that the resulting model is very close to reality.

1https://youtu.be/IYnJSNV7QkI

Unlike the methods mentioned above, our approach is based

on the alignment of several 3D images of the same scene, with

different points of view. This alignment is looking for spatial

transformations that merge the views into a single globally

consistent model. With such an approach, the reconstruction

of scenes is not left to the skills and performance of a human

actor; rather, it relies on real environmental measurements

while taking into account the dynamics of objects. Inter-

estingly, with a coherent 3D representation and a physics

engine, physical laws can be simulated (e.g. simulation of a

bullet’s trajectory). Otherwise, it would be possible to test

crime hypothesis without the need for deployment on the

physical scene. For this purpose, the Kinect could serve as

an affordable 3D scanner that has interesting performance in

3D shape capturing. Indeed, RGB-D cameras capture the color

and the geometry of the scene and deliver colored 3D point

clouds, but their data still needs a chain of preprocessing and

3D registration as well as surface inference in order to become

a useful representation. In our case, these sensors were placed

at the center of the crime scene and the forensic police will

take care of swiveling it in order to scan the objects of interest.

In the remainder of the paper, we first discuss the literature

of crime scene reconstruction and modeling in Section II.

Then, we present our approach to 3D reconstruction and

interaction in Section III. We validate our findings with several

quantitative and qualitative assessments in Section IV. And we

conclude with a summary of what we aimed for and what we

really achieved, as well as some future perspectives that can

enhance and extend the present work in Section V.

II. RELATED WORKS

The attempt to reconstruct crime scenes with 3D reconstruc-

tion means finds its origins in [1]; where the authors used a

mobile camera in a Structure-from-Motion (SFM) pipeline.

Afterward, the authors in [2] presented a general comparison

of 3D imaging sensors for criminal investigation. They took

into account most of the 3D techniques available at that

date. It should be noted, however, that Time of Flight (TOF)

technology, the working principle of the Kinect v2, was not

considered since the technology has not been widespread until

the last decade. The authors in [3] used an alternative dense

reconstruction approach directly on video sequences.

Initially used to solve the problem of ego-motion, Si-

multaneous Localization and Mapping (SLAM) techniques

have been a hot topic in robotics for several years. Crime

scene reconstruction works had followed through the light of

SLAM technology; where the authors of [4] investigated the
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utilization of a stereo camera rig in a SLAM based crime scene

reconstruction pipeline. Nevertheless, it is worth noting that

stereo mapping is a passive technique that reconstructs a cloud

of 3D points by matching the corresponding key points found

in both RGB images. Since it relies only on the feature points

of the environment, RGB imaging techniques are subject to

singularities when the images lack distinctive patterns (e.g.

uniformly colored surfaces, which potentially characterize

indoor scenes; thus, rendering stereo pairing difficult and

resulting in a rough and distorted 3D content).

Another approach is to design a 3D model of the scene

using 3D modeling software such as 3ds Max [5]. More

recent approaches use laser scanners [6] to reconstruct the

crime scene at a very high accuracy. An example of the laser

scanners that were used for this purpose is FARO S-350 [7].

The latter is dedicated to fast and accurate 3D indoor and

outdoor environments. Nonetheless, its high cost and lengthy

reconstruction time are two famous shortcomings of such a

technology.

In the light of the literature, and in the purpose of building

upon the previous contributions, we investigate the utilization

of RGB-D data, in an SFM pipeline with a loop closure

mechanism and a 3D triangulation and surface reconstruction

algorithm for the development of an interactive crime investi-

gation solution.

III. 3D CRIME SCENE RECONSTRUCTION

In what follows, we present our solution to 3D crime scene

reconstruction and interactive investigation.

A. Solution Overview

Figure 1a illustrates the process followed to complete our

work. As illustrates the diagram, our solution is essentially

divided into three steps: a data acquisition, where the point

clouds are delivered by the Kinect v2 RGB-D sensor. The

second step is the prepossessing of the point clouds delivered

by the sensor. The latter includes: down-sampling, filtering,

and key points extraction and description. The last step, which

is the most important, is the 3D alignment and reconstruction

that results in a coherent holistic 3D model for investigation

purposes.

B. Data Acquisition

(a) (b)

Fig. 1: Crime scene reconstruction setup. (a) Reconstruction

pipeline, (b) RGB-D data acquisition setup

This phase involves collecting data from the scene with

the Kinect, with the consideration that two successive images

overlap each other. To this end, and as the Kinect sees only

the scene within its viewport, we place it at the center of the

scene (see Figure 1b) and we have it rotated at small regular

angles. We can, therefore, acquire images at multiple views

during a complete turn for later reconstruction.

Despite the use of the rotating acquisition procedure, parts

of the scene remain occluded in the captured views. In fact,

these regions are not visible to the camera as shows Figure

2b. Such a phenomenon can be overcome by adapting the

scans to cover the holes. At this level, we focus only on the

acquisition of visible parts, because the missing parts can be

treated separately after the reconstruction finishes.

(a)

(b) (c)

Fig. 2: RGB-D images captured from the experimental 4m×
4m crime scene. (a) Panoramic view of the crime scene, (b)

Point cloud, with hidden regions, obtained from the captured

view, (d) Projection of all the views in the same reference

frame.

C. Filtering and down-sampling

In order to obtain a decent 3D model of the scene, and in

the sake of faster 3D mesh creation, it is important to down-

sample the raw point cloud. The down-sampling technique

that we adapted is based on the Voxelgrid method [8]. After

a consistent sampling, we obtain a less dense point cloud that

preserves the underlying geometry without redundancy. The

second preprocessing to be carried out is noise and outlier

points elimination. For this purpose, we adapted the Radius

Remove Outlier filter [9]. The latter smoothes the 3D points

and removes isolated points.

D. Alignment and 3D reconstruction

This section is essential to our contribution, the objective

here is the alignment of the different views in order to obtain

a coherent 3D scene. Our approach to point cloud alignment is

cumulative pairwise. In other words, we align a pair of point

sets at a time, then we carry on with the following pair, and so

on; until the last view (typically overlapping the first one, as

we rotated the camera in order to scan the whole scene from

the center).
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Technically the alignment of the point sets results from the

computation of a 4 × 4 transformation matrix T . The latter

embeds a 3×3 rotation matrix and a 3×1 translation vector. We

add to this matrix the so-called homogeneous coordinates for

the simplicity of computation to obtain the 4×4 transformation

matrix.

T =









r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1









For example, in order to align three point clouds A1, A2, A3

together, one first aligns the second cloud A2 with the first A1,

where the result after minimization is the transformation T1,2.

We obtain a global intermediate result G1,2 = A1 ∪T1,2 ∗A2.

Then, we align the third cloud A3 with the already obtained

global result G1,2 to obtain the final result G1,2,3 = G1,2 ∪
T1,2,3 ∗A3.

In order to perform point cloud alignment, we propose the

following scheme:

1) Initial alignment

This phase aims to find the transformation between the

different views respective to the acquired point clouds

(see Figure 2c) after the matching of key points. The

initial alignment of two point clouds (typically called

source Sr and target Tr, where Sraligned = T ∗ Sr)

begins with the extraction of characteristic points; then

the computation of the descriptors respective to these

points, followed by the estimation of correspondences.

After the rejection of bad matches, we estimate the trans-

formation that aligns the sets of points and we apply it on

the source point set. In our work, we initially adopted

the matrix Singular Value Decomposition (SVD) [10]

in order to estimate an initial guess of the underlying

transform. This preliminary result is prone to error since

it is computed fast without any sophisticated refinement

(see Figure 3a). Nevertheless, it serves as a desirable

initialization for the subsequent Iterative Closest Point

(ICP) [10] alignment algorithm which gets frequently

trapped in local minima.

2) Iterative refinement with ICP

In most cases, the initial alignment does not give

sufficiently accurate transformation. Hence, our goal

now is to refine as much as possible the already ob-

tained transformation with the ICP algorithm. The latter

finds first the closest points in both clouds of points

(correspondence estimation); then it proceeds through

the estimation of a transformation that best aligns the

matched correspondences (alignment). These two steps

(correspondence, alignment) are repeated until reaching

a termination criterion (typically, an error threshold or

a maximum number of iteration). Figure 3b shows the

outcome of applying the ICP algorithm on the SVD

result. Although accurate when aligning a few point sets,

ICP inherently leads to cumulative small errors due to

a large number of views (around 50 views for a small

room).

(a) (b)

(c) (d)

Fig. 3: Point cloud Alignment Results. (a) After initial align-

ment with SVD, (b) After refinement with ICP, (c) After loop

closure, (d) After filtering and segmentation.

The global error between all the aligned 50 views after

SVD is about 7m, which is huge for a 4m × 4m room.

Indeed, ICP greatly minimizes this error to around 1m, but

the accumulation of errors still impinges on the loop closure,

due to a misalignment between the first and the last point set,

that needs to be dealt with.

E. Loop Closure

As we mentioned earlier, point cloud alignment techniques

introduce a non-negligible cumulative error, but the closure

between the first and the last point clouds significantly reduced

the error to its lowest levels. We noticed that this is not always

the case, as when misalignment due to mis-correspondences

is encountered, the overall reconstruction is no longer re-

liable. The reconstruction error increases with distance and

misalignment is difficult to correct. Figure 4 illustrates the

accumulation of misalignments after the application of SVD

and ICP algorithms. This accumulation is more noticed at the

corners of the room.

Fig. 4: The evolution of the cumulative error after SVD, ICP,

and Loop Closure.

F. Filtering and segmentation

It is important that the point cloud after alignment bears

little noise. For instance, the alignment algorithm filters some
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Input: N point clouds C =
⋃N

i=1
Ci.

Output: Optimal transformation (T̂ ) that minimizes

the global misalignment (f ) between the Ci .

1) Calculate the correspondences between a given pair

of clouds S , D; such that (S,D) ∈ C×C and S 6= D.

a) Initialize S′ = ∅, D′ = ∅.

b) For each point p ∈ S; ∀q ∈ D:

i) Calculate the distances between p and q.

ii) The point q of minimum distance corresponds

to p.

iii) Remove p from S, and it to S′ .

iv) Remove q from D, and it to D′ .

c) Choose two subsets S′′ and D′′ of S′ and D′,

respectively, such that the elements of S′′ and D′′

are those of S′ and D′ with a distance below a

given threshold.

2) Estimate T :

T̂ = arg min
T

(
∑

∀S 6=D∈C

‖ D − T ∗ S ‖2)

3) Repeat 1 and 2 : until the following criterion is

satisfied ( f(T̂ ) is the global alignment error between

all the N views after applying the transformation T̂ ) :

‖ f(T̂ ) ‖26 ǫ

Algorithm 1: Loop closure Algorithm

of the noise but, if the cloud carries a lot of points not

belonging to the model, the result of reconstruction may not

be convincing to the investigator. After filtering our resulting

point cloud with the Region Growing Segmentation filter [9]

we obtained the result in Figure 3d.

G. 3D triangulation and surface reconstruction

This step consists in creating facets from the point cloud by

connecting the non-ordered points to each other in a triangular

topology. To this end, we first apply Delaunay triangulation

algorithm [9] for the creation of a smooth mesh. Figures 5a,

5b show our scene after surface reconstruction.

When we zoom in on the different parts of the scene

(Figure 5b), we notice that surface reconstruction is generally

of good quality except in some minor regions. These regions

are typically characterized by a low density of 3D points

resulting in a poor quality triangulation. To solve this problem,

we captured 2D colored images during the acquisition phase,

which will subsequently be used to fill the holes.

IV. RESULTS AND DISCUSSION

In this section, we analyze the performance of our Loop

Closure algorithm applied to improve the performance of 3D

point cloud alignment. In order to demonstrate the intake

of Loop Closure, we focus only on visual results and the

variation of the cumulative error after the application of the

three alignment algorithms. Figures 3c, 3d illustrate the final

(a) (b)

(c) (d)

Fig. 5: Result After 3D Reconstruction. (a) Scene overview,

(b) Zoom in the corner, (c) Real scene measurement, (d) 3D

model measurement.

result of our scene after the alignment of all the views, we

can see with the naked eye that the scene is closed, and the

algorithm enhances the preceding result. We can also say that

the alignment mean squared error has decreased considerably,

it results in a misalignment of 18cm which is small given the

4m× 4m area of the room. The graph in Figure 4 illustrates

this improvement.

A. Implementation

The implementation of our proposed solution was achieved

in C ++ using the PCL library 2, and Matlab 2017b on

Windows 10 operating system. The different tests were carried

out on a machine equipped with an Intel Core i5 processor of

2.30GHz and 6GB Ram.

In order to quantify the accuracy of our reconstruction, we

compare the actual size and dimensions of scene objects to

those obtained in the reconstructed model. This assessment is

performed through cloud compare software3.

B. Cloud Compare

This utility permits us the measurements of distances be-

tween 3D points. To make this comparison, we took real

measurements of some objects in the crime scene, and we

measured their respective reconstructed counterparts using

Cloud Compare as shown in Figure 5c, 5d. Table I contains

some measured dimensions of objects that were present in

the crime scene. We notice clearly that our model gives

enough accurate results, which were validated by investigators.

These measurements mean that there is little overall difference

between our model and the actual scene, where to 98% both

measurements were similar. In addition, measurement error is

more important in the larger objects due to the decreasing

accuracy of the depth map delivered by the sensor.

2http://www.pointclouds.org
3https://www.danielgm.net/cc/
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Measurements in centimeter (cm)
Objects Real 3D Model Error
Room width 384 400.4 16.4
Nightstand 46 46.6 0.6
Radiator 36 36.8 0.8
Chair 43 43.9 0.9
Cupboard door 74.5 75.7 1.2
Entrance door 99 99.2 0.2
Shelf 80.5 81 0.5
Table 85 86.1 1.1
Window 58 58.6 0.6
Bed width 97 97.4 0.4
Bed length 204 205.5 1.5
Electric socket 39 39.2 0.2

TABLE I: Comparison between actual measurements and

model measurements.

C. Crime scenario

A good 3D reconstruction of the scene helps the investigator

in the investigation, we simulated a crime scene that can enrich

our work. This scenario is intended to reproduce the hypothesis

prior to the action of committing the crime. To this end, we

used Unity software 4, which is a multi-platform game engine.

This software allows us to introduce virtual objects into our

scene and then to make animations and to create scenarios. In

our case, we used two virtual persons (victim and criminal)

as shows Figure 6. We programmed these characters in order

to obtain a scenario as close as possible to reality.

(a) (b)

Fig. 6: Unity 3D simulated crime scenario: (a) Before, (b)

After the crime.

D. Technical issues

We noticed during the deployment of our solution several

technical problems. The first one concerns the stage of data

acquisition, the Kinect sensor uses infrared rays to infer the

depth of objects. Nevertheless, there are some hidden parts

that could not be captured by the sensor. Another problem was

encountered in the global alignment process, this problem is

due to the accumulation of the errors. Correspondence esti-

mation algorithms that are based on the feature descriptor are

not optimized, which brings to bad matches, all of this leads

to misalignment. The surface reconstruction stage generally

gives good results, with the exception of the hidden or sparse

regions. The last problem was noticed in Unity 3D during the

simulation of crime scenarios, as the game engine accepts only

three scene formats (.obj, .fbx, or .unity), we were obliged to

4http://www.unity.org

convert our model and to lose some scene’s color and geometry

consistency.

V. CONCLUSION

We presented an RGB-D solution for accurate crime scene

reconstruction and interactive scenario simulation. We leverage

the potential of the cheap Kinect v2 TOF sensor in order

to scan the crime space. Based on a set of key points we

applied a preliminary alignment of the different views with

SVD optimization. The latter is known for its speed but poor

accuracy. However, it delivers a good guess for the subsequent

iterative refinement algorithm (ICP). Afterward, we addressed

the loop closure problem with a bundle adjustment algorithm.

Once all the views registered in the same reference frame,

we proceeded through the triangulation and surface recon-

struction. The resulting model is used for interactive crime

investigation and object dynamics simulation. The obtained

results show the effectiveness of our solution and its adequacy

to the context being treated. We demonstrated the performance

of our finding on a real scene. An accompanying video

illustrates the whole chain of processing is available 5.

As perspectives, we aim to extend the capabilities of the

proposed solution to work outdoors. Regarding the external

reconstruction performance of Kinect v2, we need to address

the sensitivity to sunlight. Moreover, since our solution is

better suited for offline processing, it would be interesting to

investigate possible acceleration techniques for rapid on site

reconstruction through the utilization of graphics processors

and highly parallel techniques. Finally, the theory behind our

work can be exploited for large scale reconstruction as well,

after taking into account the required computational burden

and the intervention of the different reconstruction elements.
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