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Abstract—Surrogate models have proved to be a suitable
replacement for complex simulation models in various applica-
tions. Runtime considerations, complexity reduction, and privacy
concerns play a role in the decision to use a surrogate model.
The choice of an appropriate surrogate model though is often
tedious and largely dependent on the individual model properties.
A tool can help to facilitate this process. To this end, we present
a surrogate modeling process supporting tool that simplifies the
process of generation and application of surrogate models in a
co-simulation framework. We evaluate the tool in our application
context, energy system co-simulation, and apply it to different
simulation models from that domain with a focus on decentralized
energy units.

I. INTRODUCTION

T
HE simulation of smart grids is a key step in the de-

ployment process of new technologies and methodologies

in the present power system for safety and costs reasons.

Co-simulation frameworks like mosaik1 assist the simulation

process in the energy domain by providing programmable

interfaces for different simulation models and realizing data

flow dependencies including synchronization issues. These

simulation models can become quite complex and can be

provided in different programming languages. This can lead

to a slowed down performance of a smart grid simulation.

Performance plays a role especially in large-scale setups, such

as in the research projects Smart Nord [1] or D-Flex [2], which

are required for the evaluation of new Smart Grid algorithms

or sustainability assessments. Furthermore, simulation models

might be supplied by industrial stakeholders and thus must be

considered as intellectual property that should not be disclosed

to partners.

A solution concerning these issues might be the use of

a data-driven abstraction of simulation models, so called

surrogate models. A surrogate model is a function that maps

input values to one or more output values. For this purpose,

machine learning algorithms can be used to determine the

relation between input and output by training with sample

data generated by the original simulation model [3]. The

creation of those surrogate models underlies several degrees

of freedom like the choice of a sampling strategy for the

input data and the choice of the surrogate algorithm. The

performance of a surrogate for a particular simulation model

1http://mosaik.offis.de/

depends not only on the specific type of that model but

also can be measured differently depending on the evaluation

function. An evaluation function measures the similarity of

outputs between surrogate and simulation model for a set of

input combinations. Based on the number of existing surro-

gate modeling algorithms, the identification of an appropriate

surrogate can be computationally quite intensive and should

be (semi-)automated to ensure replicability and comparability

of the results.

For these reasons we propose to use a tool to support the

selection of appropriate surrogate models. With the help of

various evaluation functions, we can then evaluate the perfor-

mance of different settings from specific sampling strategies

and surrogate models. Furthermore, we present the Python-

based open source tool MeMoBuilder2 to support this process.

MeMoBuilder provides a semi-automated surrogate modeling

process including comparison with the original simulation

model in a time series evaluation.

The rest of this paper is structured as follows. First, in

Chapter II we present the surrogate modeling process and

highlight the challenges that emerge from this. In Chapter III

we look at existing tools and other work in the field of surro-

gate modeling. Chapter IV focusses on the tool MeMoBuilder

which is our approach for reducing the complexity of the

surrogate modeling process. In Chapter V we will present a

case study to evaluate the tool with reflection to the defined

challenges. This paper ends with conclusion and outlook on

future work in Chapter VI.

II. CHALLENGES IN SURROGATE MODELING

The process of creating a surrogate model, which is also

called meta model or response surface, is well documented

in the literature, e. g. in Myers et al. [4]. In the following,

we briefly recap the surrogate modeling process as described

by Forrester et al. [5] to point out the challenges in this

process. We then derive the requirements that are important

for a surrogate modeling tool.

A. Choosing the sampling strategy

The first step of this process starts with the generation

of so-called samples through sampling strategies. We use

2https://github.com/stbalduin/memobuilder
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the term sampling strategy for the application of a sampling

design, i. e. the theoretical construction to generate sam-

ples. These consist of a set of possible input combinations

X = {x(1),x(2), ...,x(n)} for the original simulation model

f(x) and their corresponding outputs y calculated by the

simulation model. A sampling strategy defines which input

combinations will be chosen to generate samples and it is

important to pick the most relevant data to generate a good

model. Finding an appropriate sampling strategy can depend

on certain problem-specific and often contrary requirements,

e. g. being deterministic, well-balanced, guaranteeing to cover

the whole sampling space, or to work well with relatively few

samples [6]. The goal of these strategies is to cover the relevant

sample space, i. e. non-trivial (e. g. non-linear) behavior of the

simulation model is included as accurate as possible. A well-

balanced sampling design can be generated deterministically,

but may require a large number of samples. On the other

hand, a non-deterministic sampling design may work well

with fewer samples, but there is no guarantee that it will

cover the whole sample area. In both cases the orthogonality,

i. e. the correlation of inputs, has to be considered. Simpson

et al. [6] point out that the information gain of a design is

balanced against the cost of experimentation, i. e. the number

of samples, and lists several measures of merit which are

useful to compare designs.

B. Choosing the surrogate algorithm

In the following step, the surrogate model f̂(x) is created

by applying so called surrogate algorithms on the previously

generated data. We use the term surrogate algorithm for any

supervised machine learning algorithms that is capable of

creating a surrogate model. A set of samples is used as training

data (X,y) for the surrogate algorithm to adjust its parameters

in order to make the resulting surrogate model as similar

as possible to the original simulation model. The surrogate

algorithm can be picked from a large variety of machine

learning algorithms with trade-offs in their characteristics,

e. g. suitability for non-linear problems, suitability for high-

dimensional data, complexity in the application, or in the

learning phase. The latter is often partially depending on the

search for optimal hyperparameters. These kind of parameters

have to be set a priori to the learning process. To find the

most appropriate parameter values, an exhaustive searching

process with cross-validation has to be applied which means

that different splits of the samples into training set and test

set are evaluated. Furthermore, some surrogate algorithms use

kernel functions to build the surrogate model. The choice

of kernel functions and the hyperparameter tuning of these

functions also have to be optimized to the given problem.

C. Choosing the evaluation function

To evaluate the quality of the surrogate model an evaluation

function is used. In general, the error ǫ is used to describe

the deviation between original simulation model and surrogate

model: f(x) = f̂(x)+ǫ, but there are also evaluation functions

that represent the quality of the model in a different way,

e. g. correlation functions. The quality of the surrogate model

approximation can be evaluated by using samples as test

data (which should be distinct from the training data) on

the surrogate model and as well on the original simulation

model. The error ǫ can be determined by applying an eval-

uation function on both resulting outputs. The choice of the

evaluation function has a strong influence on the ranking of

surrogate models. They can be categorized into optimistic and

pessimistic functions [7]. An optimistic evaluation function

weights small errors more than large ones, hence might be

beneficial if the error fluctuates greatly. Pessimistic evaluation

function behaves the other way around, therefore they might

be useful if large errors are undesirable. But there are also

other characteristics, e. g. interpretability and independence of

(physical) units, which should be taken into account when

selecting an evaluation function for the model. It is important

to know which requirements the model has to fulfill, like how

critical small errors are or who will use the model afterwards,

to decide which criteria should be prioritized.

D. Requirements for tool support

Several degrees of freedom can be found in the defined

process steps of surrogate model creation and evaluation,

namely the choice of the sampling strategy, the choice of

the surrogate algorithm, and the choice of an evaluation

function used to evaluate this model. Each choice has its

benefits and drawbacks. To find the most suitable combination

is always depending on the given problem and cannot be

generalized [5, p. 18]. For this reason, several iterations of

sample generation, model creation, and model evaluation need

to be performed during the surrogate modeling process until

the results meet the requirements of the application context.

The multi-dimensionality of the surrogate modeling process is

summarized by Figure 1. For multiple but similar structured
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Fig. 1. Dimensions of the surrogate modeling process. Each dimension itself
can be optimized quite easily, but it becomes a trade-off when all of these
aspects shall be taken into account for optimization.

simulation models this is a quite repetitive process when

modeling surrogates, so a tool for assistance is strongly recom-

mended. Such a tool should fulfill the following requirements:

R1 Support the surrogate modeling process: The tool should

allow the surrogate modeler to address all degrees of

freedom in experimental design, choice of surrogate

algorithm, and evaluation function and thus allow for an
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application specific instantiation of the surrogate model-

ing process.

R2 Facilitate model exchange: The surrogate modeler is not

necessarily the person who will use the model afterwards.

Therefore, the tool should allow to create surrogate

models which can be easily integrated into an existing

environment (e.g a co-simulation framework) and replace

the original simulation models in order to easily integrate

these models into smart grid simulation scenarios.

R3 Allow modularity: In some setups, sampling data may

be retrieved from other sources than available simulation

models, e. g. in industry driven studies. To allow the

surrogate modeler to perform only parts of the process,

the tool should support a separation of concerns so that

the integration of simulation models for sampling and the

construction of surrogate models are independent of each

other.

Although not a specific requirement in the choice or develop-

ment of an appropriate surrogate modeling tool, the long-term

perspective of using such a tool should be the (semi-)automatic

generation of surrogate models.

III. RELATED WORK

The whole surrogate modeling process is targeted by the

Matlab Surrogate Modeling (SUMO)-Toolbox3 which auto-

mates the single steps of this process. The SUMO-Toolbox

builds a surrogate model of a given data source and needs

only a few configurations by the user like accuracy and time

constraints. However, the resulting surrogate model is bound

to the Matlab environment. To deploy the model in a different

setup, adaptions may be required and therefore requirement

R2 is not fullfilled.

A tool aided surrogate selection is described by Mehmani

et al. [8]. The authors developed the Concurrent Surrogate

Model Selection (COSMOS) Framework which can be used

to select an appropriate surrogate model. This tool focuses

on the surrogate selection itself which comprises the optimal

model type, the optimal kernel function (if needed), and

optimal values of hyperparameter (if present). Despite being

an important contribution in the domain of surrogate modeling,

some shortcomings arise with respect to requirement R1:

An easy comparison of different experimental designs is not

possible.

Although not applicable to the problem of generating a

surrogate for a given simulation model, the Waikato Envi-

ronment for Knowledge Analysis4 (Weka) proposed by Hall

et al. [9] is an important open source collection of machine

learning algorithms which aims to make these algorithms

generally available to solve practical problems. Weka provides

both a programmable and a graphical interface where no

programming skills are needed when a learnable dataset is

given. The focus of this tool is on data mining. Therefore, it

does not contain an interface to integrate a simulation model

3http://sumo.intec.ugent.be/
4http://www.cs.waikato.ac.nz/ml/weka/

and automatically generate learnable data. Nonetheless, it does

not support to address all degrees of freedom of the surrogate

modeling process (requirement R1).

Various applications of surrogate models can be found in

Koziel et al. [10], though there are no applications in the

energy domain. Other works deal with the construction of a

surrogate model for specific (simulation) models within con-

crete use cases. Pinto et al. [11] constructed a surrogate model

for multi-period flexibility provided by a home energy man-

agement system. They modeled local microgeneration units,

like photovoltaics, combined with flexible storage equipment

which can be a battery. In their study the authors proposed an

algorithm based on evolutionary particle swarm optimization

to generate feasible flexibility trajectories. These trajectories

were successfully used as training data for a support vector

data description (SVDD) machine learning algorithm.

SuMo Toolbox COSMOS Weka

R1 (Modeling process) ✓ ✗ ✗

R2 (Model exchange) ✗ ✗ ✗

R3 (Modularity) ✓ ✗ (✓)

TABLE I
SUMMARY OF THE PRESENTED TOOLS COMPARED TO OUR

REQUIREMENTS.

In our research (see Table I) we did not find a tool that

fulfills all requirements as defined in chapter II.

IV. MEMOBUILDER

In this chapter we describe the architecture of the proposed

Meta Model (MeMo) Builder. Our goal was to integrate surro-

gate algorithms, sampling strategies, and evaluation functions

into one tool (requirement R1). This tool selects the optimal

from each of those and generates a surrogate model that

can be used within a co-simulation framework (requirement

R2) as a replacement for the original simulation model. The

model should also be compared with the original simulation

model and behave similarly to it. For co-simulation we choose

mosaik since it is a flexible tool which provides interfaces

to models written in different programming languages. Thus,

the surrogate modeling process is applicable regardless of

the model at hand and the modeler can concentrate on the

modeling process itself rather than integrating the model. The

surrogate model itself can also be easily integrated in mosaik.

Mosaik facilitates a time discrete simulation, i. e. each

simulation step has the same fixed length and each simulator

can decide when it will be activated. Simulation models used

in such a framework need to perform their simulation step for a

given time interval, and a defined set of inputs and parameters

as shown in Figure 2. The same applies to the surrogate

models we want to build. We developed the MeMoBuilder

as a prototype to identify challenges and benefits of the

surrogate modeling process for simulation models in energy

system, and adapt the tool to the needs identified in following

this process. Further, we wanted to explore the possibilites

of (semi-)automatic surrogate model generation of mosaik

STEPHAN BALDUIN, FRAUKE OEST, MARITA BLANK-BABAZADEH, ASTRID NIESSE, SEBASTIAN LEHNHOFF: TOOL-ASSISTED SURROGATE SELECTION FOR SIMULATION



inputst

parameters states0

outputst

statest
statest-1

Fig. 2. The simulation model is initialized with parameters and initial states0.
When simulation starts the model gets inputst for step t. The results of each
step are the statest which will be saved internally and then used in step t+1,
and outputst.

component models for power and smart grid simulation sce-

narios. MeMoBuilder provides a set of sampling strategies,

surrogate algorithms, and evaluation functions which can be

chosen to generate a surrogate model. In Figure 3 the modular

< model specific > -memobuilder

memobuilder package

MeMoTrainer MeMoSampler

memosim package

MeMoSim

scikit-learn pyDoE mosaik

Fig. 3. MeMoBuilder has a modular structure where single components can
be left out or be replaced. The core packages are the MeMoSampler and
the MeMoTrainer which only need to be adapted if different frameworks for
machine learning or design of experiments are used. The MeMoSim package
depents on the chosen co-simulation framework which is in this case mosaik.

architecture (requirement R3) and main components of the

MeMoBuilder are shown. For each simulation model, a model-

specific MeMoBuilder is configured in a YAML5 (YAML

Ain’t Markup Language) configuration file. This configuration

file is also used for other degrees of freedom like how and

which of the other MeMoBuilder components will be used in

the surrogate generation process.

In the first step of this process the MeMoSampler uses

a framework like pyDoE6 to generate the sampling designs

configured in the YAML file. According to these designs,

the simulation model is sampled within a mosaik scenario to

create one or more training sets. The use of mosaik at this

point ensures that the MeMoSampler can be applied to every

model with an existing mosaik adapter regardless for which

simulation environment it was built originally.

Next, the training sets are used to create surrogate models.

Thereby, it depends on the configuration how many surro-

gates will be generated. Each training set is used by the

MeMoTrainer for all surrogate algorithms that are configured

in the model-specific MeMoBuilder. The MeMoTrainer itself

uses the scikit-learn library7 [12] for model fitting and cross

validation of optimal hyperparameters, but other frameworks

could be integrated as well. It is also possible to use multiple

5http://yaml.org/
6https://pythonhosted.org/pyDOE/
7http://scikit-learn.org/

evaluation functions and in this case MeMoTrainer generates

a surrogate for each function.

Ultimately, there can be a whole set of surrogates and each

of these will be rated using different evaluation functions.

When the surrogate model generation is finished, MeMo-

Builder compares the simulation model with the surrogate

model in a simple simulation scenario within the chosen co-

simulation framework mosaik. The results of each simulation

step are stored in a database. Additionally, a visualization of

these results is generated and stored. Once the simulation is

finished, it is possible to see differences in the output behavior

between simulation model and surrogate model.

V. CASE STUDY

To test the functionality of the MeMoBuilder in a practical

environment and check the suitability of this tool against the

requirements as defined in Section II, a selection of surrogate

algorithms, sampling strategies, and evaluation functions was

identified and integrated in the MeMoBuilder environment.

A. Chosen sampling strategies

We integrated four sampling strategies of both random and

deterministic type.

a) Random based sampling strategies: Latin Hypercube

Sampling (LHS) is probably the most common strategy and

has some advantages which possibly lead to the wide accep-

tance of this method: It is well balanced while only a small

number of samples is needed [3, p. 198ff]. LHS is nearly as

easy to apply as the other random-based strategy we use, the

Monte Carlo Sampling (MCS) which is pure random selection

of sample points. Both give the chance, but not the guarantee

that the whole sample space will be covered. Furthermore, in

some setups the orthogonality of these designs is not given

[13, p. 42].

b) Deterministic sampling strategies: Besides the ran-

dom based strategies, we used two deterministic strategies.

Both, the sequence of Halton (HSEQ) and the sequence of

Sobol (SSEQ) use prime numbers to generate a sequence

of numbers, e. g. the prime number 2 generates the sequene
1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 , . . . . While HSEQ varies the prime numbers

to generate a new sequence, SSEQ permutes this sequence

using primitive polynoms. For a more detailed explanation we

refer to Lemieux [14, 157ff]. The sample space generated by

deterministic designs is typically well-balanced and has only

occasionally issues with missing orthogonality [13].

B. Chosen surrogate algorithms

As surrogate algorithms we selected five heterogeneous

algorithms from the field of interpolation, neural networks,

and other regression methods. One of the simplest surrogate

algorithm is linear regression such as LASSO which consti-

tutes a fast polynomial approximation According to Hastie et

al. [15, p. 43] this regression function can outperform more

complex methods if the data is structured linearly, a small set

of training data, or sparse data is used.

Another approach is to use lazy learners like the k-nearest

neighbors (k-NN) algorithm. As described in Yang et al. [16]

188 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



the k nearest neighbors of the learned samples are directly used

to estimate missing outputs. According to Ertel [17, p. 199],

apart from finding the correct hyperparameters, k-NN has no

actual learning phase therefore it belongs to the lazy learners.

For each estimated output, k-NN calculates the distance of

each sample to find the k nearest samples. Ertel also points

out finding the next nearest neighbors according to the given

input can be computational intensive if many training samples

are used. According to Samaniego and Schulz [18] its strength

lies in the flexibility which makes k-NN an appropriate choice

for non-linear data structures [19].

According to Cui et al. [20] Kriging is often used to

interpolate data between known data points which is done by

a combination of a polynomial model and a realization of a

normally distributed Gaussian random process. Simpson et al.

[6] state that the strength of Kriging lies in the variety of

correlation functions that can be used to shape the Gaussian

random process.

Support Vector Regression (SVR) is a type of support vector

machines with similarities to Kriging, since the heart of both

is a kernel function [21]. This algorithm uses the kernel

function in order to transform non-linear regression problems

into linear by mapping the original input space to a higher

feature dimension space [22].

An ANN is made of several interconnected neurons which

process data coming either from outside or from other neurons.

The challenge in creating ANN focuses on architectural design

and the number of neurons that should be used [6]. A well

constructed ANN can be quite powerful in this sense that

they can handle non-linear data structures [23] as well as

they can handle high-dimensional data, although this can be

computationally intensive. A mitigation of computing time

could be achieved by parallel computing [6]. For this purpose,

multi-layer perceptron regression will be used.

C. Chosen evaluation functions

To evaluate the generated surrogate models diverse eval-

uation functions were selected. As a pessimistic evaluation

function we choose the mean squared error (MSE) where

outliers are weighted quadratically in order to punish large

errors more than small errors. The mean absolute error (MAE)

is punishing outliers linearly, so it is less pessimistic than the

MSE. It is easier to interpret than the MSE since units are not

effected by this function.

We also choose the determination function R2 which is

related to the Pearson Correlation Coefficient [3, p. 113].

In contrast to error functions where the error should be

minimized, in R2 a value close to 1 means a high correlation

of data and therefore the surrogate is similar to the original

model. Hence, an R2 close to 0 or even negative values can

be interpreted as low correlation and thus the surrogate model

is not well modeled. The R2 is free of units which leads to

intuitive interpretations of this function. The evaluation func-

tions described above are taken from the scikit-learn library.

More information about these functions can be found in their

documentation and user guides8. In addition to the scikit-learn

evaluation functions, we choose the harmonic average error

(HAE), which is shown in Equation 1.

HAE(y, ŷ) =

(

1

n

n−1
∑

i=0

1
√

(yi − ŷi)2

)

−1

(1)

Here, the n is the number of samples, y the result of the

original model, and ŷ the result of the surrogate model as it is

the approximation of the original model. This function allows

to dominate small errors over large errors which means that

this metric allows to have few large errors if there are small

errors to compensate. Therefore, the HAE is considered to be

optimistic.

D. Chosen simulation models

We conduct our case study using three simulation models

representing different home energy system units that were

already in use for different energy system simulation scenarios.

These models will be briefly explained in the following

without going to much into detail.

The first model is a battery which has an internal state of

charge and takes the target electrical power as input. In each

step, the electrical power output is calculated depending on the

current state of charge. The output has a negative sign if the

battery "consumes" energy, otherwise the output has positive

sign.

The second model is that of a photovoltaic (PV) plant

system. The model has the module temperature as internal

state and uses several input variables like time stamp, solar

radiation, and air temperature. Based on geo and other in-

formation stored in the model, the sun position is calculated

depending on the current time stamp which is then used to

compute the electrical power output depending on current

radiation on the surface of the PV plant.

The last model is the fuel cell (FC) which produces power

and heat at the same time. We consider electrically driven

operation, i. e. the FC follows a certain power output rather

than a thermal profile in thermally driven operation. This

model has two inputs, three outputs, and the electrical power as

internal state. The inputs are the temperature of the incoming

heating water and the target electrical power for the next time

interval. The outgoing temperature of the heating water, the

thermal power, and the actual electrical power are regarded as

outputs of the model. The actual electrical power is divided

into discrete fixed electrical power stages whereas the thermal

outputs can have continuous values. It should be denoted that

the actual electrical power does not need to be the same as

the targeted electrical power due to internal restrictions of the

model.

All models were build at OFFIS and for each of them we

used MeMoBuilder to generate a surrogate model for all com-

binations of the mentioned methods which results in 4*5*4 =

80 surrogate models. We used a uniform sample size of 5,000.

8https://scikit-learn.org/stable/modules/model_evaluation.html#
regression-metrics
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MeMoBuilder implements methods to apply cross-validation

and hyperparameter optimization on this sample size. Since it

is easily interpretable, we picked the best surrogate according

to the R2 score [7]. This surrogate model will be compared

with the original model in a simulation scenario.

E. Results for the battery model

The best five surrogate models for the battery are shown

in Table II. Note that these are the best models according to

the R2. Using a different score for sorting may result in a

different order of the models. For our battery model, the best

combination consists of a Latin Hypercube sampling strategy,

an artificial neural network, and the mean squared error for

evaluation. But the MeMoBuilder also provides the results for

the other combinations. In case of the battery model we see

that support vector regression would as well be an appropriate

surrogate model. Next, a comparison in a simulation setup is

Sampling
Strategy

Surrogate
Algorithm

Train
Func.

R
2

Score

HAE
Score

MAE
Score

MSE
Score

LHS ANN MSE 0.998 2.67·10−3 0.024 0.005

HSEQ SVR MSE 0.992 1.5·10−10 6.535 873.0

MCS SVR MSE 0.992 3.76·10−3 5.872 802.0

MCS SVR HAE 0.992 2.78·10−3 5.909 750.5

LHS SVR MSE 0.991 2.27·10−2 6.766 863.2

TABLE II
BEST FIVE SURROGATE MODELS OF THE BATTERY ACCORDING TO THE R

2

SCORE. THE COMPARISON USING DIFFERENT SCORES REVEALS THAT

SVR SCORES POORLY DESPITE A VERY GOOD R2 SCORE WHEN THE MSE
IS CONSIDERED.

done. Both models are supplied with a schedule of electrical

power targets. The results are plotted in Figure 4. We see

for the electrical output (P_el) the surrogate model is quite

accurate most of the time. Only at the last part the value seems

to oscillate. For the internal state of charge, the surrogate

model results are accurate for the first 30 - 35 steps. At

that point, the target power value is set to zero which is not

correctly handled by the surrogate model. After that point the

deviation of the prediction increases. At about step 150 the

state of charge of the surrogate model reaches zero which may

be the reason for the oscillating power output of the surrogate

model.

The results show the difficulties of modeling internal states

which converge to certain boundaries like minimal and maxi-

mal state of charge. Therefore, we could use the MeMoBuilder

to investigate further combinations, e. g. other sampling strate-

gies as the peripheral areas of the sample space seem to be

not sufficiently covered by the Latin Hypercube strategy, but

this is beyond the scope of this paper.

F. Results for the photovoltaic plant

In Table III the best five surrogate models for the PV

plant are shown. The best combination in this case is a Latin

Hypercube sampling, an ANN, and the R2 score, but the same

combination with a Monte Carlo sampling differs only very

slightly after the decimal point. However, in this case the LHS

Fig. 4. Co-simulation of surrogate and original battery model comparing their
electric power output and the state of charge. The grey line is the original
model and the black dashed line is the surrogate model.

model is better not only at R2, but also according to MAE

and MSE scores. In the simulation, both models are provided

Sampling
Strategy

Surrogate
Algorithm

Train
Func.

R
2

Score

HAE
Score

MAE
Score

MSE
Score

LHS ANN R
2 1.0 2.21·10−2 0.573 1.168

MCS ANN R
2 1.0 1.0·10−10 1.041 3.257

MCS ANN MSE 0.999 1.5·10−10 1.108 3.111

SSEQ ANN MSE 0.999 2.3·10−1 0.639 1.533

HSEQ ANN R
2 0.999 2.0·10−10 0.633 1.37

TABLE III
BEST FIVE SURROGATE MODELS OF THE PV PLANT ACCORDING TO THE

R
2 . ANNS CONSISTENTLY DELIVER THE BEST RESULTS EVEN WHEN

SORTING BY ONE OF THE OTHER SCORES.

with time stamp, radiation, and air temperature. The results are

shown in Figure 5. The electrical power output prediction of

the surrogate model is very accurate as long as there is actually

energy generation. When there is no generation, the surrogate

model predicts negative values. The module temperature seems

to be captured quite accurate as well. However, the surrogate

model is always one step late, but this has no visible influence

on the power output.

Overall, the results for the PV plant are satisfactory in our

opinion. Small flaws like the negative power output could be

handled e. g. applying a max(0, ŷ) function on the output.

Therefore, no further investigations are necessary for this

model.

G. Results for the Fuel Cell

The results of the surrogate generation for the fuel cell

sorted according to the R2 score are shown in Table IV. The

best combinations in this case are a Monte Carlo sampling

with Kriging trained by the mean average error, and a Monte

Carlo sampling with Kriging trained by the R2 score. In the
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Fig. 5. Co-simulation of surrogate and original PV model comparing their
electric power output. Grey line: orignal model, black dashed line: surrogate
model.

simulation, the first configuration is used for comparison with

the original model.

Sampling
Strategy

Surrogate
Algorithm

Train
Func.

R
2

Score

HAE
Score

MAE
Score

MSE
Score

MC Kriging MAE 0.997 3.3·10−10 1.598 30.72

MC Kriging R
2 0.997 3.3·10−10 1.598 30.72

MC Kriging MSE 0.996 4.5·10−10 2.461 43.15

LHS Kriging MSE 0.991 3.5·10−10 1.957 76.74

LHS Kriging R
2 0.991 3.3·10−10 1.957 76.74

TABLE IV
BEST FIVE SURROGATE TRAINING FOR THE FUEL CELL SIMULATION

MODEL ACCORDING TO THE R
2 SCORE. THIS RANKING SHOWS THAT

KRIGING IS DELIVERING THE BEST RESULTS FOR THE R
2 SCORE. .

The input schedule for electrical power is based on the

standard load profile for households provided by the BDEW9

and for heating water we modeled a simplified schedule for

the needs of a household.

The simulation result is shown by Figure 6 for the outputs:

actual electrically power (P_el), thermal power (P_th), and

the outgoing heating water temperature (T_out). The surrogate

roughly follows the behavior of the original model in the

output variables P_th and T_out. However, since the electrical

power P_el is divided into discrete power stages and internally

the gradient of the power is restricted so the surrogate has dif-

ficulties to reproduce the behavior especially in the transition

to other power stages. The example of the fuel cell shows the

difficulty of creating adequate surrogate models for models

with complex internal states.

Overall, the surrogate model is satisfactory to a limited

extent. If thermal power and temperature are the outputs of

interest, this model performs well. For the electrical power

output, however, further investigations are required.

9Bundesverband der Energie- und Wasserwirtschaft e.V

Fig. 6. Co-simulation of surrogate and original FC model. The electrical
output of the model has discrete values which can be seen in the upper chart.
In the middle and lower chart, the thermal outputs are shown. Grey line:
original model, black dashed line: surrogate model.

VI. CONCLUSION AND FUTURE WORK

We motivated why we need surrogate models, what the

challenges of the surrogate modeling process are, and which

requirements a tool has to meet in order to support this process.

We presented the tool MeMoBuilder that semi-automates the

surrogate modeling process while testing different combina-

tions of sampling strategies, surrogate algorithms, and training

and evaluation functions to face the challenges arising when

building an appropriate surrogate model. MeMoBuilder is fully

compatible to the co-simulation framework mosaik and can be

used on every model which can be integrated into mosaik. An

integration with other co-simulation frameworks is possible by

implementing the appropriate interface between MeMoBuilder

and the target framework.

Further, it is possible to separate the process of sampling and

the process of training. So all the requirements as described

in Section II are fulfilled. We used this tool to explore

the surrogate modeling process for three different simulation

models and presented the results as case study.

Our major findings are a) that specific surrogate models

are more suitable for concrete simulation models than other

and b) the complexity of surrogate modeling can be reduced

by using a tool like the MeMoBuilder. The accuracy of the

presented models range from bad to good which may depend

on the choice of sorting the models according to the R2.

The MeMoBuilder provides information on which surrogate

models perform well according to different criteria and gives

recommendations in form of scores by different evaluation
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functions.

There are still open issues which need further investigation.

All provided sampling strategies and surrogate algorithms are

rather generic. For some models this works quite well, for

others a more specialized sampling would probably lead to

better results (e. g. battery state of charge behavior). Also,

the sampling designs itself are not optimized. This will be

implemented in the future. Furthermore, only regression mod-

els are supported. Original models with discrete output are

interpolated in the surrogate model, thus allowing values to be

taken that do not exist in the original model, as shown in the

fuel cell experiment. A better choice would be a classification

model, but that requires training of different surrogate models

for different outputs or a manual discretization of the outputs.

We tried to construct the artificial neural network as a universal

approximator that is generalized for many simulation models

and works with a limited amount of samples. Nevertheless,

there could be more suitable architectures for the individual

simulation models especially with more advanced architec-

tures like long short-term memories or convolutional neural

networks.

Future studies will investigate if reducing the sample size

still leads to an acceptable result since the dimensionalities

of our simulation models are small. Additionally, a more

advanced simulation scenario will be developed which tests the

surrogate models and possible interactions with other simula-

tion models. The next step will be integrating more specialized

sampling strategies, support for classification models, and to

use these surrogate models in larger scaled setups.
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