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Abstract—Developing assistive, cost-effective, non-invasive
technologies to aid communication of people with hearing im-
pairments is of prime importance in our society, in order
to widen accessibility and inclusiveness. For this purpose, we
have developed an intelligent vision system embedded on a
smartphone and deployed in the wild. In particular, it integrates
both computer vision methods involving Histogram of Oriented
Gradients (HOG) and machine learning techniques such as multi-
class Support Vector Machine (SVM) to detect and recognize
British Visual Language (BSL) signs automatically. Our system
was successfully tested on a real-world dataset containing 13,066
samples and shown an accuracy of over 99% with an average
processing time of 170ms, thus appropriate for real-time visual
signing.

I. INTRODUCTION

T
HERE are 11 million people with hearing loss across the

United Kingdom (UK), i.e. 1 in 6 people, with around

900,000 of these persons having profound hearing loss [1].

Users of British Sign Language (BSL) number in the 150,000

range, with more than half of them using BSL as their first

language [2]. By stark contrast, there are far less registered

BSL interpreters, with 1540 being publicly available on the

National Registers of Communication Professionals working

with Deaf and Deafblind People (NRCPD) [3].

BSL consists of 26 hand-shapes; one being correlated to

each letter of the alphabet, as illustrated in Fig. 1. Each letter

is formed using two hands except for the letter ‘C’, using only

one hand [4].

With the current expansion of Artificial Intelligence (AI)

in daily applications [5], intelligent systems can play an

important role for sign language recognition (SLR).

However, despite a number of technologies developed for

the automated, visual recognition of gestures within the field

of Human Computer Interaction (HCI) [6], [7], only very few

studies have tackled with automated BSL translation [8].

In HCI, most of the gesture recognition systems usually

require special hardware equipments, such as depth camera

[9] or gloves [10], which are usually not available outside a

laboratory and/or have limited utility in the wild.

On the other hand, SLR systems integrating machine learn-

ing techniques such as genetic aglorithms (GA) [11] or convo-

lutional neural networks (CNN) [12] have been mainly focused

on the American Sign Language (ASL) [13], which uses static

single-hand poses (as opposed to BSL which uses two-handed

Fig. 1. Schematic overview of the British Visual Language (BSL) alphabet
right-handed fingerspelling [2].

ones) to spell individual letters. Most of the available datasets

are also only dedicated to ASL. It is worth noting that ASL and

BSL languages have little crossover in terms of their actual

constituent phonemes and are mutually incomprehensible to

one another.

Hence, compared to ASL, BSL has a smaller body of

research dedicated to visual recognition and as such, little

online BSL datasets exist. Thus, methods based on deep

learning [12], which requires hundreds of thousands of training

data samples, are not directly available for BSL.

In this work, we propose the development of an accessible,

intelligent vision system for real-time, automated BSL recog-

nition in the wild. This assistive technology is inbuilt as a

smartphone application, using computer-vision algorithms to

process the images captured in real-time by the smartphone
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Fig. 2. Overview of our sign detection process.

camera and translating the detected hand pose into a letter

using the machine learning technique called Support Vector

Machine (SVM).

This intelligent vision system uses a regular optic camera

such as a smartphone camera working with RGB flat image

data, not requiring any type of calibration or invasive sensors.

On the other hand, our system processes images at an

average rate of 170ms per image, addressing successfully the

real-time constraint. Indeed, the visual signing rate is of 2.3-

2.5 signs per second [14], enforcing real-time SLR systems to

process each sign at 2fps or in less than 400ms per image.

The study developed in this work aims to enrich the

lives of a wide range of people with hearing and/or speech

impairments and their respective circles.

The strict use of free and open source technologies in this

project along with the use of cheap, portable hardware such

as a smartphone implies that the resultant prototype could be

highly accessible to a large number of users.

The original contribution of our work is the study of the

automated BSL recognition process and includes the creation

of a BSL large-scale dataset of c. 13k samples as well as

the design, development, and deployment of a new intelligent

vision system for automated BSL recognition in real-world

environment.

The paper is structured as follows. In Section II, we present

our detection and recognition system for BSL, while in Section

III we report and discuss the carried out experiments which

results show the developed SLR system has excellent per-

formance on real-world large-scale datasets, both in terms of

accuracy and computational efficiency. Conclusions are drawn

up in Section IV.

II. OUR METHOD

The developed intelligent vision system embeds a two-step

computational process. The first step involves computer-vision

algorithms processing the input image (see Fig. 2) and results

in the visual sign detection, as described in Section II-A.

The second step consists in machine-learning algorithms using

Support Vector Machine (SVM) to recognize the detected

visual sign, as explained in Section II-B.

A. Sign Detection

Let us consider a colour RGB image or video frame I(x, y)
where M x N is its size, with M, its width, and N, its height,

recorded live with the smartphone using the OpenCV Camera

Listener triggered by our application.

In the first phase, the intelligent vision system running

on the smartphone applies to the image I(x, y) a series of

mathematical operations as follows.

Firstly, the RGB image is transformed to the HSV colour

space [15]. Secondly, the image is resized and down-sampled

based on the Gaussian Pyramid as depicted in Fig. 2. Then,

the image is segmented by thresholding [16], and the mask

of the hand(s) is extracted by applying mathematical morpho-

logic operations such as eroding and dilation [17]. Next, the

Histogram of Oriented Gradients (HOG) [18] is computed as

shown in Fig. 3. HOG assembles a histogram of prevailing,

aggregated gradients throughout predefined blocks of an im-

age. Because HOG produces such histogram, the number of

features per vector is the same every time, given the input

image I(x, y) of a static size.

It is worth noting that through multiple pre-processing and

cropping layers, a resultant image of a predictable size, i.e. M

x N, is given to the HOG detector feature extraction layer.

Post-processing of the image encompasses any upscaling

and resizing that may need to be done to render the correct
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Fig. 3. Histogram of Oriented Gradients (HOG) visualisation.

information. Hence, if contour overlays are required to indicate

the detected hand shape (as displayed in Fig. 8), then upscaling

the previously down-sampled materials is done in this stage

of the process.

B. Sign Recognition

Once data has been processed into a set of frames containing

only pertinent gesture data as described in Section II-A, these

are analysed and fed into a model as explained in this Section

II-B, in order to be classified in one of the 26 classes of the

BSL alphabet.

In this work, the adopted classifier is a Support Vector

Machine (SVM), since SVM is an efficient implementation

of a supervised machine learning approach for classification

and decision making [19], while requiring only a small sam-

ple of training data [20]. SVM method is described in the

subsections, as follows.

1) SVM Hyperplane: At its core, the SVM method attempts

to find an ideal, separating hyperplane H0 (such as schema-

tized in Fig. 4) to divide a dataset of n points into separate

classes yi (e.g. class yi = +1 and class yi = −1), as follows:

H0 ≡ w
T
xi + b = 0, (1)

with xi = (x1, x2, ..., xn), the input vector, w = (a,−1), the

weight factor, b, the bias, and a such as ax1x2 + b = 0; this

equation being derived from two-dimensional vectors, but in

fact, works for any number p of dimensions.

The Support Vectors themselves are the data points closest

to this plane of division and are therefore critical to segregating

classes. Depending on the class (i.e. class +1 or class -1) they

are part of, they belong either to H1 or H2 , defined as:

H1 ≡ w
T
xi + b = 1, (2)

H2 ≡ w
T
xi + b = −1, (3)

with the (hard) margin defined as D = H1−H2 (see Fig. 4);

the hyperplane H0 being the median in between H1 and H2.

Fig. 4. Support Vector Machine (SVM) hyperplane visualisation.

(a) (b)

Fig. 5. SVM class separation using: (a) a linear kernel; (b) a radial basis
function (RBF) kernel.

Fig. 6. Min-max normalisation performed on feature data before being fed
into the SVM layer. It shows new maximum value of 1 on the lower row.

Consequently, each feature vector xi is classified as follows:

class yi = +1, if wxi + b ≥ 1, (4)

class yi = −1, if wxi + b ≤ −1. (5)

For SLR, this means finding a hyperplane (Eq. 1) between

data from an actual gesture (i.e. class yi = +1) and interstitial

hand movements which are not categorised (i.e. class yi =
−1), leading to a one-versus-all approach, and then using the

hyperplane to make predictions as per Eqs. 4-5.

2) SVM Kernels and Hyperparameters: The SVM is an

integral part of the application, and different possible kernels

could be implemented in order to gain linear separation in

the data space, in case data is linearly separable (linear

SVM), or otherwise (non-linear SVM) in a higher dimen-

sional space. In particular, Linear and Radial Basis Function

(RBF) kernels were used to test the application as reported
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in Section III. As implied by the name, the linear kernel

(K(xi,xj) = (xi · xj)) attempt to draw a line between class

data (see Fig. 5 (a)), whereas the radial kernel (K(xi,xj) =
exp (−||xi − xj ||

2/2σ2)) tries to fit a curved or radial shape

between classes (see Fig. 5 (b)). These are very different

kernels, but can often produce similar results in practice.

In the finalised prototype, the RBF kernel has been adopted

based on the resultant test data accuracy (see Table 1). After

being trained offline with 20 samples per class, the SVM is run

live within the smartphone application. The maximum itera-

tions before terminating the SVM is set to 100. The parameters

have been chosen by cross-validation on the training set.

3) Normalisation: Min-max normalisation has been per-

formed on feature data before being fed into the SVM layer.

Normalisation is important, since it flattens the data to an

appropriate scale, in this case from 0 to 1.

The formula given for min-max normalisation is that a data

point has the set’s minimum subtracted from it, and then

this value is divided by the set’s maximum minus the set’s

minimum. Accordingly, a value A for B is then derived as:

A =
B −min(B)

max(B)−min(B)
. (6)

Figure 6 shows a small example of a row of matrix data

being set to new normalised values by applying Eq. 6. Within

this example, the far right non-zero, previously maximal value

is set to the new scale maximal value which is 1. The other

values in the matrix are then scaled according to their relation

to this new maximal value.

III. EXPERIMENTS AND DISCUSSION

Our intelligent vision system was validated by running a

series of experiments and assessing them quantitatively as

reported below.

The effectiveness of the prototype has been measured using

the following metrics [5]:

precision (P ) =
TP

TP + FP
, (7)

recall (R) =
TP

TP + FN
, (8)

specificity (S) =
TN

TN + FP
, (9)

accuracy (ACC) =
TP + TN

TP + TN + FP + FN
, (10)

where TP is the True positive rate, FP is the False Positive

rate, FN is the False Negative rate, and TN is the True

Negative rate.

Another common metric is the F1-Measure or F1 score

which is the harmonic mean of the precision and recall and

which could be used when a balance between precision and

recall is needed and when the class distribution is uneven (i.e.

high TN + FP ). F1 score is defined as follows:

F1-Measure = 2
P ∗R

P +R
. (11)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Samples of our system performing successfully BSL sign recognition
of the (a) B letter; (b) S letter; (c)-(d) L letter, in images with different
illumination conditions; (e)-(f) M letter in images with different yaw rotations;
(g)-(h) N letter in images with different pitch rotations.

As BSL fingerspelling datasets are difficult to find openly, a

BSL dataset was created using the dataset creator application

developed for this project.

This dataset is unique in the study, as it comprehends BSL

phonemes consisting of two-handed gestures. Dataset samples

are shown in Fig. 7. This BSL dataset contains 2,600 images

of sign classes from A to Z. It is worth noting that H and J
letter images were taken with last endpoint of motion gesture

as an approximation. The images are in the Portable Network

Graphics (.png) format and have a 640x480 size, a resolution

of 72dpi, and a bit depth of 24. Moreover, the lighting is

varying, and it also contains an even 50% mixture of signs
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(a) (b) (c) (d)

Fig. 8. Samples of our system performing hand detection in images with (a) cluttered background; (b) patterned background; (c) high luminance; or (d) high
exposure.

with sleeves up and down, in order to introduce variation to

the training model.

The dataset has been created in Python language, using

the Dataset Creator application. The Python language has

been chosen due to its lightweight nature and portability, but

also because OpenCV wrappers are available for it. Indeed,

the OpenCV ’Cv2’ library for Python is used to access the

webcam data when creating the image dataset and is therefore

well suited to the integration with the rest of the project

applications.

The prototype is written in Java and uses OpenCV 3.4.3. as

well as the Java Native Interface (JNI) platform to enable Java

running on the Java Virtual Machine (JVM) to interact with

native platform applications written in lower-level languages

such as C++. Hence, this JNI interface for the OpenCV

dependency provides a critical interface into low-level hard-

ware operations to run OpenCV processes through the C++

library. This interface enables thus the more computationally

expensive parts of the application to run more efficiently and

thence, provides a better user experience on the low-end phone

hardware.

The training of the classifier has been performed using

520 samples (i.e. 26 classes with 20 samples per class) on

a computer with features such as AMD FX-8320 3.5GHz (8

cores, 8 threads), 32nm architecture, 8Gb dual-channel DDR3

@ 802MHz, Windows 10 Home, 931Gb Western Digital SATA

(7.2k rpm).

For the training function of the Offline Trainer, the datasets

used the same imaging kernel as our smartphone application

and they were processed image by image using a recursive

Image Runner class; this Image Runner taking an input direc-

tory and processing each image in the parent folder and any

subfolder.

The testing of the prototype has been run on a ZTE Blade

V7 smartphone. This is a low-end budget Android phone (sub-

£100) for the purposes of encouraging efficient programming

and aiding in the overall availability of the end product.

This phone model’s specifications are as follows: Android 6.0

(Marshmallow) OS, Chipset Mediatek MT6753 (28nm), Octa-

core 1.3 GHz Cortex-A53 CPU, Mali-T720MP3 GPU, 16 GB,

2 GB RAM of internal memory, and camera features such as

13 MP, PDAF, Dual-LED dual-tone flash, HDR, panorama,

with 1080p @30fps video recorder.

The testing function of the offline trainer is entirely auto-

mated. After a training run is complete, the associated test

data is run through the previously trained model. These test

images have been subtracted from the initial training dataset

in order to not render the testing redundant. Each test image is

classified with a predicted letter, and then evaluated against the

actual class of the input image. With this data, the outcome

of the tests in terms of True Positive (TP ), True Negative

(TN ), False Positive (FP ), and False Negative (FN ) rates are

computed. The output of these test operations goes to result

log files for analysis and computation of Eqs. 7-11 for each

run. Average recognition results can be found in Tables 1-2.

Tests have been carried out in the wild and included 13,066

sample images. BSL uses mainly two hands to represent a

letter of the alphabet. However, the letter ‘C’ is signed using

one hand only. Thence, we performed tests for both one and

two hands, as illustrated in Fig. 8.

We reported in Tables 1-2 the primary data obtained by

processing the approach presented in [21] and our method,

respectively, on the BSL large-scale dataset. The approach of

[21] involves visual features such as Edge Orientation His-

togram features (EOH), whereas our system uses Histogram

of Oriented Gradients (HOG) features; the classifier being the

Support Vector Machine (SVM), with a linear and a radial

basis function (RBF) kernel, respectively.

We can observe that our method combining HOG features

and the SVM classifier with a RBF kernel outperforms the

state-of-the art approaches in regards of both recognition

accuracy and computational efficiency, while performing in

the wild.

Furthermore, our method has been compared to available

secondary data in the literature. The work of [11] studies

Genetic Algorithms (GA) as classifiers for gesture recognition

(using only 6 different gesture classes), achieving 98.6%

accuracy, but reaching time frameworks in the range of dozens

of seconds for the overall image processing. Moreover, [11]

requires hundreds of samples for training and has only been

tested on 100 samples.

On the other hand, [8] uses a Hidden Markov Model (HMM)

and has a BSL recognition accuracy rate per letter of 84.1%,

whereas our BSL recognition accuracy rate per letter is 99%

and our processing time of 170ms (i.e. less than the 400ms

mentioned in the study of [14]) ensures a real-time visual sign

recognition pace.
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TABLE I
SIGN RECOGNITION PERFORMANCE USING DIFFERENT METHODS.

Method Features SVM Kernel Precision Recall Specificity Accuracy F1-Measure

[21] EOH Linear 0.853 0.867 0.994 0.988 0.852

[21] EOH RBF 0.855 0.868 0.994 0.988 0.854

Our HOG Linear 0.863 0.874 0.994 0.989 0.861

Our HOG RBF 0.869 0.880 0.995 0.990 0.867

TABLE II
AVERAGE PROCESSING TIME OF THE DIFFERENT METHODS PERFORMING SIGN RECOGNITION.

Method Features SVM Kernel Average Processing Time (s)

[21] EOH Linear 0.178

[21] EOH RBF 0.178

Our HOG Linear 0.173

Our HOG RBF 0.170

IV. CONCLUSIONS

The paper proposes an assistive technology performing

British Sign Language (BSL) alphabet translation in real-time

and in real-world conditions, with an accuracy of over 99%.

The design aims to provide an inclusive and accessible solution

consisting in an intelligent vision system for automated BSL

fingerspelling recognition, without being invasive or finan-

cially expensive. The algorithms developed within this system

include Histogram of Oriented Gradients (HOG) method and

the Support Vector Machine (SVM) technique. The resulting

smartphone application has been successfully tested on a large-

scale dataset in the wild. Its excellent performance leads, on

one hand, to an accessible, assistive HCI product for non-deaf

people wishing to learn BSL and/or to communicate using

BSL with deaf persons, and on the other hand, to a potential

HRI product for companion robots having the task to assist

hearing and/or speech impaired people.
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