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Abstract—On December 20th, 2016, the National Institute of
Standards and Technology (NIST) formally initiated a competi-
tion to solicit, evaluate, and standardize one or more quantum-
resistant cryptographic algorithms. Among the current can-
didates is a cryptographic primitive which has shown much
promise in the post-quantum age, Multivariate Cryptography.
These schemes compose two affine bijections S and T with a
system of multivariate polynomials. However, this composition of
S and T becomes costly as the data encrypted grows in size. Here
we present Constructive Affine Stream (CAS) Transformations,
a set of algorithms which enable specialized, large-scale, affine
transformations in O(n) space and O(n log n) time, without
compromising security. The goal of this paper is to address
the practical problems related to affine transformations common
among almost all multivariate cryptographic schemes.

I. INTRODUCTION

M
ULTIVARIATE Cryptography is a, post-quantum, cryp-

tographic primitive based on the difficulty of solving

systems of multivariate equations over a finite field [1]. At their

core, multivariate schemes define a set of (usually quadratic)

polynomials:




p1(w1, ..., wn)
...

pm(w1, ..., wn)





where all coefficients and variables are in Fq , a field with q

elements. Given a plaintext message: (x1, ..., xn) ∈ F
n
q the

ciphertext is computed by evaluating:

P(x1, ..., xn) =





p1(x1, ..., xn)
...

pm(x1, ..., xn)



 =





c1
...

cm





To decrypt the ciphertext (c1, ..., cm), one must hold the secret

key used to generate the polynomials in P in order to invert

P .

P−1(c1, ..., cm) = (x1, ..., xn)

Inverting P without the secret key is equivalent to solving

a system of multivariate equations over a finite field, known

formally as the MQ-Problem, and is proven to be NP-

Hard. However, modern constructions of these schemes rarely

use a set of multivariate polynomials on their own. Modern

constructions almost always compose the set of polynomials

with two invertible affine maps S and T [2]. So, in reality:

P = T ◦Q ◦ S : Fn
q → F

m
q

Where Q (also known as the central or core map) is the set of

multivariate polynomials and S and T are (sometimes linear)

affine maps of full-rank. While many papers focus on the

design of the central map, few describe how to effectively

generate and compose S and T , despite the importance of

this operation [3], [4], [5], [6], [7]. As the plaintext grows in

size, so too do S and T . In fact, S and T grow so fast that

their composition becomes intractable very quickly.

This poses a significant hurtle for symmetric applications of

multivariate cryptography. Consider encrypting a 1kB, 500kB,

and 1MB file. Because S and T are n× n matrices where n

is the size of the plaintext, these files require matrices 1MB

(1kB2), 250GB (500kB2), and 1TB (1MB2) in size. This rapid

inflation of S and T restricts these schemes from (reasonably)

encrypting anything larger than ~1kB (without chaining).

In this paper we present Constructive Affine Stream (CAS)

Transformations, a set of algorithms capable of efficiently

generating and multiplying S and T by any arbitrary vector.

At the same time, these transformations preserve the post-

quantum security of multivariate ciphers. We begin by present-

ing the theory behind these transformations (Sec. II), followed

by a general implementation (Sec. III). We then analyze the

asymptotics of the aforementioned implementation (Sec. IV)

and conclude by evaluating how these transformations impact

the security of multivariate ciphers (Sec. V).

II. CONSTRUCTIVE AFFINE STREAM TRANSFORMATIONS

Instead of generating, storing, and operating on a matrix

outright, a Constructive Affine Stream (CAS) deterministically

generates (via some seed derived from the private key) a

stream of integers that represent an affine matrix of full-

rank. These streams can then be used to transform a vector

progressively, in the same way a normal matrix-vector multi-

plication would, without ever having to store an actual matrix.

Furthermore, a stream (if configured with the same seed) can

be switched to generate the inverse of a given matrix so that

a previous transformation can be undone.

A. The Structure of an Affine Stream

Constructive Affine Streams (CAS) leverage a basic prop-

erty of matrix-vector multiplication; each (matrix) row is

dotted with the vector term, one at a time, independently of
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the other rows. In effect, this property allows the values of

each row to be randomly generated over the course of its

dot product with the vector term and then “thrown away.”

This randomly generated sequence of values is what an affine

stream is composed of and allows a vector to be transformed

without having to store a matrix.

However, randomly generating matrix rows doesn’t guaran-

tee that the resulting matrix is invertible. Furthermore, even if

the matrix was invertible, the values of the rows are generated

as needed and never stored, thus each matrix value is “blind”

to the values adjacent to it. This limitation prevents a matrix’s

inverse from being computed using conventional techniques.

In order to solve this problem, matrices generated by a CAS

maintain a specific structure.

A CAS generated matrix:

1) Takes the form of an upper or lower triangular matrix;

2) With non-zero values on the main-diagonal; and

3) For every row/column pair which intersect on the main-

diagonal, only one of the two (row or column) can

contain non-zero values.

While conditions 1 and 2 ensure that the matrix stream

produced is always invertible, condition 3 guarantees that the

matrix stream is invertible, one row at a time, using only values

on the main-diagonal. While the result of condition 3 may not

seem intuitive at first, consider inverting the matrix in Fig. 1

via Gauss-Jordan elimination.

A row that only contains zeros (excluding the main-

diagonal) can only eliminate values down the column which

intersects it on the main-diagonal. For instance, in Fig. 1,

r1 will only be used to eliminate values in c1. A row that

contains multiple non-zero values has nothing to eliminate in

the column which intersects it on the main-diagonal because,

by the definition above, that column will always contain zeros.

Returning to Fig. 1, r3 will never need to eliminate anything

down c3 because it is guaranteed to be “zero-valued” by

definition. However, r3’s non-zero values 5 and 4 will be

eliminated by rows r0 and r1 respectively.

Described more generally, the only rows which perform

elimination are the ones which contain a single non-zero

value: the diagonal-component. Moreover, the only columns

which contain non-zero values are the columns which intersect

one of the aforementioned rows on its diagonal-component.

Consequently, each column can be eliminated independently,

without altering adjacent columns.

Because every column can be eliminated on its own, it

follows that every column can be inverted on its own. This

result is what enables on-the-fly, row-by-row, CAS inversion.

The only information needed beforehand are the values of the

main-diagonal. With these values, each row can be inverted,

one at a time, by mapping its diagonal-component to its

multiplicative inverse and all other values (off the main-

diagonal) via:

−αi,j × α−1

j,j × α−1

i,i

where αi,j is the matrix value at the ith column and jth row.

Fig. 1. An Example CAS Stream

The derivation of this equation is fairly straight forward.

Given the following augmented matrix:






αi,i · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

αi,j · · · αj,j 0 · · · 1







we can solve for the inverse matrix value at position αi,j ,

via Gauss-Jordan elimination. Here, the rows at i and j are

normalized:






1 · · · 0 α−1

i,i · · · 0
...

. . .
...

...
. . .

...

αi,j × α−1

j,j · · · 1 0 · · · α−1

j,j







then the row at i (multiplied by αi,j×α−1

j,j ) is subtracted from

the row at j:






1 · · · 0 α−1

i,i · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 −αi,j × α−1

j,j × α−1

i,i · · · α−1

j,j







Note that in Fig. 1, the main-diagonal only contains ones.

This matrix configuration is known formally as a “Semi-Byte”

CAS and is one of the three main stream types. A Semi-Byte

CAS is trivial to invert because the main-diagonal doesn’t need

to be generated beforehand (as it is already known) and each

value off of the main-diagonal is mapped via:

−αi,j × 1−1 × 1−1 = −αi,j

B. Performing Constructive Affine Stream Transformations

Notice that the affine stream in Fig. 1 is not a consecutive

series of matrix rows. These streams take advantage of the

aforementioned matrix constraints to generate only the val-

ues necessary for vector transformation. Structurally, affine

streams are organized by column and do not contain the

zeroed half of the triangular matrix. Furthermore, they do not

contain the zeros of zero-valued columns, only their diagonal

component. For example, in Fig. 1, 8 was generated in r2,

therefore c2 must be a zero-valued column. The only value in

the stream from c2 is its diagonal component: 1.

With these streams, a CAS Transformation can be applied

to a vector (vector) by iterating over a CAS stream and, for

each stream value υ, we apply:
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transform[rυ]← transform[rυ] + (vector[cυ]× υ)

Where transform is an empty vector which stores the transfor-

mation and rυ and cυ are the row/column matrix coordinates

of υ. (e.g. In Fig. 1, 8 has the (rυ , cυ) coordinates (2,0).)

III. IMPLEMENTATION

There are three (main) types of CAS: Binary, Semi-Byte

and Byte. Each type requires methods for deterministically

generating random bits and random non-zero numbers. The

bits determine where non-zero values are placed in a matrix

while the numbers determine what the values are. If the

sequence of bits and numbers can’t be regenerated, a trans-

formation can’t be inverted. For the sake of our experiments,

we leveraged Trivium ([8]) for our bit generator and a simple

linear congruential generator (LCG) for our number generator.

Note that in the implementation that follows: rand refers to

some Pseudo-Random Number Generator (PRNG) initialized

with a password which seeds the bit and number generator.

(This password can be the same one used for multivariate

encryption.) lowerTriangular is a Boolean indicating whether

the generated CAS matrix is upper or lower triangular. Lastly,

the operators ∗ and + refer to group multiplication and

addition specific to the chosen finite field.

A. Semi-Byte CAS Transformations

A Semi-Byte CAS generates an affine stream composed of

1’s down the main-diagonal and 8-bit values everywhere else.

Despite its name, matrix values aren’t limited to 8-bits and

should operate in whatever finite field is selected for encryp-

tion. (e.g. GF (28)→ 8-bit matrix values, GF (216)→ 16-bit

matrix values) To save space, the implementation described

below performs the vector transformation in-place. However,

it could easily be modified to store the values in a new vector.

Algorithm 1 Semi-Byte CAS Transformation of a vect

1: emptyColumns← [0] * vect.length

2: for i = 0 to vect.length do

3: if emptyColumns[i] == 0 then

4: for j = 1 to vect.length − i do

5: if rand.getBit() == 1 then

6: scalar← rand.getByte()

7: if lowerTriangular then

8: vect[i + j]← vect[i + j] + (vect[i] ∗ scalar)
9: else

10: vect[i]← vect[i] + (vect[i + j] ∗ scalar)
11: end if

12: emptyColumns[i + j]← 1
13: end if

14: end for

15: end if

16: end for

In order to perform an inverse transformation (relative to a

given seed) this implementation would be altered as follows:

• Line 8: vect[i + j]← vect[i + j]− (vect[i] ∗ scalar)
• Line 10: vect[i]← vect[i]− (vect[i + j] ∗ scalar)

B. Binary CAS Transformations

A Binary CAS generates an affine stream composed of only

0’s and 1’s. Its implementation is practically identical to that

of a Semi-Byte CAS Transformation. However, in the case of

Binary CAS Transformations, scalar is always equal to 1.

C. Byte CAS Transformations

A Byte CAS generates an affine stream composed of 8-bit

values. (Again, bear in mind that values aren’t necessarily fixed

to 8-bits and, in reality, are bound by the chosen finite field.)

These transformations cannot be done in-place and are the

costliest in-terms of space-complexity. Implementation details

regarding this transformation type can be found at [9].

IV. ASYMPTOTIC ANALYSIS & PERFORMANCE

Compared to typical matrix-vector multiplication, CAS

Transforms are quite efficient. In terms of space complexity,

both Binary and Semi-byte CAS Transforms require only

Θ(n) space to store the columns flagged as zero-valued

(emptyColumns). Byte CAS Transforms require 2n space for

transformations and 3n for inversions, giving both operations

a lower-bound of Ω(n).
Computing time-complexity is slightly more complicated

due to the probability involved in CAS generation. While nor-

mal matrix-vector multiplication is an n2 operation (for square

matrices), CAS Transformations effectively “skip” zero-valued

columns as they only operate on their diagonal component.

Because these columns are skipped, we can compute the

average upper-bound of a CAS Transform by multiplying

the height of the columns by the average number of non-

zero columns. However, this requires a function which can

approximate the average number of non-zero columns a CAS

will generate given a matrix size.

While there are several approaches that could be used to

derive this function, we chose a statistical approach as it

seemed to yield the best estimates. This approach involved

randomly generating 5000 (Binary) CAS matrices at each size

ranging from 1×1 to 3000×3000 and computing the average

number of non-zero columns at each size. Each matrix was

generated using its own instantiation of Trivium initialized

with the first 160-bits of a SHA-256 hash derived from a

(randomly generated) alphanumeric password. Plotting these

results, it appears that the number of non-zero columns grows

in a logarithmic fashion. Indeed, once we fitted a logarithmic

curve to the data we found that it fit perfectly (Fig. 2a).

This would seem to indicate that the runtime of a CAS

Transformation is on average O(n log n). To verify this result,

we plotted the average length of a CAS stream. Using the

same parameters, (5000 trials over 3000 sizes) we found that

the average length of a CAS stream perfectly fits an n log n
curve (Fig. 2b). Note, this run-time applies to all CAS types

because all types generate their matrix structure using the same

bit generation algorithm (in our case, via Trivium).

With the proper implementation, these transformations have

the potential to reach impressive speeds and are limited pri-

marily by their chosen bit and number generation algorithms.
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(a) Fitted Curve = 1.436*log(n)-0.2286
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Fig. 2. Runtime Statistics & Time Plots

Our naïve C implementation (run on a computer with an Intel

Core i5-3570 processor running at 3.40GHz using 16GB of

RAM, with Windows 10 Pro) achieved respectable speeds

on its own (Fig. 2c). However, it could be made to operate

even faster with an optimized Trivium implementation. In

theory a CAS stream could even be cached and applied

over blocks. Observe that our speed tests further support our

time-complexity analysis as the speed plots reflect our time-

complexity plot.

V. SECURITY

In practice, one CAS Transformation alone isn’t enough to

sufficiently “mix-up” an input vector. In fact, any triangular

matrix on its own isn’t enough. The use of single triangular

matrices can even break certain multivariate schemes. For

example, the multivariate scheme based on the family of

expander graphs D(n, q) is rendered totally insecure when S

and T take the form of lower-triangular matrices. (For more

details about this family of graphs see [10].) To illustrate this

insecurity, consider Example 5.1.

Example 5.1 (The “Poor Mixing” Vulnerability):

Plaintext = [x1, x2, x3, x4]

Password = [2, 1, 10, 5]

T =









1 0 0 0
0 1 0 0
1 0 1 0
0 1 1 1









, S = T−1 =









1 0 0 0
0 1 0 0
−1 0 1 0
1 −1 −1 1









(Note: Often S = T−1 but it is not a general rule.)

The resulting polynomials produced using S, T , and the

polynomials generated from D(n = 4, q) graphs (traversed

with Password) are:

p1(x1) = x1 + 18

p2(x1, x2) = −18x1 + x2 − 201

p3(x1, x2, x3) = −18x
2

1
− 201x1 − 18x2 + x3 − 513

p4(x1, x2, x3, x4) = 36x2

1
+ 621x1 + 18x2 + x4 + 3261

For the sake of simplicity, these polynomials are not bound to

any specific finite field GF (q). (All work is shown at [9].)

Notice that each subsequent polynomial introduces one new

variable (xi). So, given the piece of ciphertext c1 produced by

p1(x1), it would be trivial to compute the plaintext piece x1

by solving x1 = c1 − 18. Then, given x1, we could solve for

x2 in p2(x1, x2) by plugging in x1 and c2. This process can be

repeated until all xi’s have been solved for and the plaintext

message is revealed (without use of the private key).

To eliminate this vulnerability, a lower and upper triangular

CAS Transformation can be combined to form a “Square

CAS Transformation.” This is simply achieved by applying an

upper and lower triangular CAS Transformation to a vector, in

any order. Because matrix multiplication is associative, this is

equivalent to multiplying a vector by the product of an upper

and lower triangular CAS matrix. In fact, simulations have

shown that a combined upper and lower CAS Transformation

correspond to multiplication by a matrix A, such that for all

i 6= j P (ai,j = 0) ≈ 0.65 and i = j P (ai,j = 0) ≈ 0.35 [9].

Illustrated below are the corrected polynomials which lever-

age an upper and lower triangular matrix for both S and T :

p1(x1, x2, x3, x4) = −54x
2

1
− 216x1x2 − 108x1x3 − · · ·

p2(x1, x2, x3, x4) = 18x2

1
+ 72x1x2 + 36x1x3 + · · ·

p3(x1, x2, x3, x4) = −18x
2

1
− 72x1x2 − 36x1x3 − · · ·

p4(x1, x2, x3, x4) = 36x2

1
+ 144x1x2 + 72x1x3 + · · ·
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(a) Original Images (b) Encrypted using Triangular CAS Transforms (c) Encrypted using Square CAS Transforms

Fig. 3. Image Encryption Tests

A Square CAS Transform can easily be inverted by applying

the inverse of its lower and upper triangular components in

reverse order. That is, given a vector σ, its transformation σ′,

and a triangular CAS Transform T (x):

Tlower(Tupper(σ)) = σ′, T−1

upper(T
−1

lower(σ
′)) = σ

We can visualize this “poor mixing” vulnerability by en-

crypting image data. In Fig. 3, the images in (a) are com-

posed with an upper-triangular (Semi-Byte) CAS T , passed

through a set of polynomials (from D(n, q)), and then com-

posed with another upper-triangular CAS S to produce the

images in (b). Clearly, a large amount of information is

exposed. However, if we utilize a square (Semi-Byte) CAS

for both S and T we produce the images in (c). (Additional

tests with alternate configurations can be found at [9].)

While in theory more than two CAS Transformations could

be applied to a single vector, Square CAS Transforms on their

own have shown to be sufficient.

To further validate the security of Square CAS Transforms,

we analyzed the average order of each (square) CAS type.

This statistic is of particular interest as there is theoretical

evidence which suggests that large order matrices provide

better security [11]. (The order of a matrix Mn×n over a finite

field is the smallest positive integer k such that Mk = In.)

At present, the resources required to compute k over large

matrices has restricted our ability to collect large samples of

data. However, our initial tests indicate that the order of a

Binary matrix rarely exceeds k = 120. In contrast, Semi-Byte

and Byte matrices have both exhibited k’s in the millions and

even billions [9]. This suggests what one might already expect;

Semi-Byte and Byte Transforms are considerably stronger than

Binary Transforms, making them the preferred choice for most

implementations.

VI. CONCLUSION

As quantum computers march closer towards their full real-

ization we must be prepared with a new set of cryptographic

primitives which remain secure in the post-quantum age.

Multivariate Cryptography is one of the handful of primitives

which has shown real promise but still requires more research

and development before it can be realistically implemented. In

this paper we formalized the notion of CAS Transformations,

a set of algorithms capable of performing specialized, large-

scale, affine transformations in O(n) space-complexity and

O(n log n) time-complexity. While there is still more to be

learned about these transformations, they have demonstrated

real potential; capable of increasing the speed and scale at

which Multivariate Cryptography can be applied.
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