
A Framework for Autonomous UAV Swarm

Behavior Simulation

Piotr Cybulski

Military University of Technology

ul. Kaliskiego 2,

00-908 Warszawa, Poland

Email: piotr.cybulski@wat.edu.pl

Abstract—In the last several years a large interest in the
unmanned aerial vehicles (UAVs) has been seen. This is mostly
due to an increase of computational power and decreasing cost
of the UAVs itself. One of an intensively researched area is an
application of a swarm behavior within team of such UAVs.
Simulation tools are one of the means with which quality of
solutions in this matter can be measured. In this paper such
simulation framework is proposed. The proposed framework
is capable of taking under consideration interferences between
communicating UAVs, as well as interaction between UAV and
surrounding environment. Mathematical models based on which
simulation is performed were described, definition of simulation
scenario and results of exemplary simulation were also presented.

I. INTRODUCTION

T
HE unmanned aerial vehicles, commonly called as

drones, are gaining more interest by both civilian and

military organizations. From an academic perspective drones

are specially interesting because of the swarm intelligence, that

can be implemented into them. Combining the artificial intel-

ligence (AI) with the UAV swarms can significantly change

the way of providing services such as traffic monitoring,

area patrolling or, in the military area of interests, creating

a situational awareness. There are many propositions how to

approach the swarm intelligence subject so that results will

meet the requirements [1], but there is a lack of a common

framework to compare results. One of the reasons is large

variety of task types for the swarms. To name a few, search

and attack on a target[2][3][4], area patrolling[5][6], disaster

operations[7] or transportation services[8]. Currently, there are

tools for simulating specific algorithms[9] or certain scenarios

[7]. There is, however, lack of a general purpose tool for UAV

swarm simulation. In this paper I presented the simulation

framework to fill this gap.

II. RELATED WORK

Due to large interest in the area of drone swarms, there

have been developed few tools for simulating them. These are

mainly for prototyping solutions and studying how does single

UAV, or swarm of them, act in a particular scenario. Majority

of them is designed to simulate a predetermined type of

scenarios such as search and attack on target[4][9] or disaster

operations[7]. Some of currently working simulators are based

on commercial software such as Matlab[10] or X-Plane[11].

Finally, there are programming languages, the Proto[12] for

example, designed specifically for testing certain paradigms

(amorphous computing in this case) application in the UAV

swarms area.

III. PRELIMINARIES AND BASIC DEFINITIONS

Using the definition from [1] let’s define the UAV swarm

as a team of an autonomous unmanned aerial vehicles, where

behavior of a single UAV emerges from its inner state and

from surrounding environment, including neighbor UAVs.

Because of wide range of tasks for UAV swarms and scale of

solutions for these tasks, the following assumptions were made

regarding algorithms which are compatible with proposed

framework:

1) The UAV swarm is controllable in decentralized manner;

2) No common knowledge database is being used. Each

UAV has to either have necessary information, or it has

to be able to obtain it during a mission;

3) An environment in which swarm is operating is contin-

uous three dimensional space, or it must be convertible

to such.

Each simulation object “inside” framework is treated in the

same way in terms of controlling its behavior. It is possible

to combine the fully autonomous object, such as swarm’s

members, with manually controlled units (e.g. proxies between

an operator and the swarm). The later described framework is

not restricted to any particular types of a mission. However,

it is important to point out that mission objectives supported

by the framework must be evaluable solely on the situation in

the moment at which evaluation is performed. We will define

mission objectives as a set of states simulation objects must

be in. Formally a mission objective will be described in IV-C

IV. THE BASIC SWARM MODEL

The main inspiration for basic swarm model was taken from

“the asynchronous event-driven robotic network” presented in

[13]. Following are main differences between basic swarm

model and the one mentioned above:

1) A sender of a message is not known explicitly to a

receiver, they can be inferred (if there is a need for it)

from the message itself;

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 471–478

DOI: 10.15439/2019F278

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 471



2) In each simulation moment there can be generated

multiple messages by all objects.

A. The goal

The basic swarm model shall be capable of simulating

communication between objects. Communication, if occurs,

is not altered in any way between a sender and a receiver. In

other words, interference is not taken under consideration.

B. The description of basic model’s components

A core element of the model is a simulation object. Every

entity modeled within simulation has to be considered as a

simulation object. There are two types of simulation objects:

passive and active. Passive simulation objects are aimed to

represent entities such as:

1) On-the-ground beacons;

2) The GPS;

3) An environment.

These objects play important role in the behavior of the swarm

(and not only that), but their key trait is that they are not

changing its behavior due to an interaction with “outside

world” (other simulation objects). Active simulation objects on

the other hand are designed to represent real world’s entities

like:

1) Ground and aerial vehicles (drones for example);

2) Humans;

3) Anti-aircraft systems.

Definition 1. The Simulation Object (SO) ,as the core

element of the simulation, consists of following components:

1) A logical state;

2) A physical state;

3) An identifier.

A logical state shall contain all data required to control

behavior of a simulation object. For example, a logical state

can be composed of information about whether the simulation

object is still alive, or what is its destination.

A physical state shall contain all data required to visualize

simulation object in simulation’s world, example of such data

might be its position and rotations about each of axes.

A SO’s identifier shall be unique name of this object during

simulation. Each pair of identifiers shall be comparable (on

whether they are equal or not), and for the set of all identifiers

the relation of order shall be established on.

The main reason for distinguishing logical state from phys-

ical state is to emphasize that they may differ even if they

represent the same phenomenon. As an example let us consider

a position of an object. In this case the physical state would

represent actual values, one may say the values that are correct.

The logical state in this case could represent data received from

devices such as the GPS or some on-the-ground localization

systems. It may happen that these two states will be very

different from one another, specially if simulation object will

not be able to establish connection with positioning system.

Definition 2. The Passive Simulation Object (PSO) is

an extension of the simulation object. It can send messages,

but it cannot receive any. Passive simulation object is the

simplest element that can take part in the simulation. Each

PSO contains, despite what it has inherited from SO, following

elements :

1) A physical state update function; (PSUF)

2) A physical state control function; It produces an input

for the PSUF; (PSCF)

3) A messages generation function; (MGF)

4) A messages generation function trigger; (MGFT)

5) A (logical) state transition function (STF) and its trigger

(STFT);

Definition 3. The Active Simulation Object (ASO) is

an extension of the passive simulation object. Its capabilities

extends PSO in a way that it is can receive messages. Each

ASO contains, above what it has inherited from PSO, message

receiving function.

C. Formal definitions of the basic model’s components

Let ISO denote a set of all (passive) simulation objects’

identifiers. By IASO ⊂ ISO we denote set of active simulation

objects’ identifiers, this is a subset of the set of all the

identifiers. Sets LSi, i ∈ ISO and PSi, i ∈ ISO denotes

accordingly a set of all possible logical states of simulation

object, and a set of all physical states of the same object.

For all simulation objects there is a common set of basic

physical state attributes PS0 defined as follows:

∀i ∈ ISO : PSi = XPS
i × PS0

XPS
i - a set of secondary physical state attributes used by the

ith simulation object.

Using the above definitions we can define following behav-

ior controlling functions.

Definition 4. The Physical State Update Function

PSUF i : PSi×Ui → PSi, i ∈ ISO – a physical state update

function used by the ith object.

Ui, i ∈ ISO – a set of vectors to control the ith physical state.

Definition 5. The Physical State Control Function

PSCF i : PSi×LSi → Ui, i ∈ ISO – a physical state control

function used by the ith object.

Definition 6. The State Transition Function Trigger

STFT i,j : LSi × PSi → {true, false}, j ∈ ISTF
i i ∈ ISO–

a trigger of the jth state transition function used by the ith

object.

Definition 7. The State Transition Function

STF i,j : PSi×LSi → LSi, j ∈ ISTF
i i ∈ ISO– the jth state

transition function used by the ith simulation object.

Definition 8. The Messages Generation Function Trigger

MGFT i : PSi × LSi → {true, false} – a messages

generation function trigger used by the ith simulation object.

In order to define last two functions we need to define one

additional set:

M∞ – set of all messages.

Definition 9. The Messages Generation Function

MGF i : PSi × LSi × ISO → 2M
∞

, i ∈ ISO – a message

generation function used by the ith object.

472 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Definition 10. The Communication Capability Function

Ecomm :
∏

i∈ISO PSi → 2I
SO

×ISO

– a communication

capability function.

Interpretation: ∀i, j ∈ ISO :< i, j >∈ 2I
SO

×ISO

←→ ith and

jth simulation objects can communicate with each other (they

can exchange messages with one another).

Definition 11. The mission objective of UAV swarm

Let ITi ⊂ N, i ∈ ISO denote a set of tasks for the ith object

identifier.

Additionally let

Mi = {Ti,j : PSi × LSi × Z→ {true, false}}j∈IT
i

denote a set of tasks for the ith object. Interpretation of the

function Ti,j is as follows. If physical and logical state, at

the moment of function execution, meet the criteria of jth

task then the function returns true, otherwise it returns false.

Having defined tasks for the ith simulation object, a mission

objective is the set of all tasks for every object, that is:

M =
⋃

i∈ISO

Mi

A mission objective is considered as completed if all tasks for

every object are accomplished.

∀i ∈ ISO∀j ∈ ITi : Ti,j(psi(t), lsi(t), t)

where:

psi(t) : Z+ → PSi – a function returning physical state of

the ith object for a given simulation moment.

lsi : Z+ → LSi – a function returning logical state of the ith

object for a given simulation moment.

t ∈ Z+ – the simulation moment at which task condition is

being checked.

D. The simulation

In the following section we will use defined herein notation

for description of simulation steps. Notation:

∀x ∈ X : func1(x), i = x;X ⊂ Z

is equal, in C# programming language, to:

f o r e a c h ( i n t x i n X)

{

func1 ( x ) ;

i =x ;

}

Let’s define the basic swarm model simulation as follows. For

subsequent t ∈ Z+, where Z+ is the set of positive integer

numbers:

1) ∀i ∈ ISO update physical state of the ith object:

ui(t) = PSCF i(psi(t), lsi(t))
psi(t) = PSUF (psi(t), ui(t))

2) ∀i ∈ ISO check if the ith object generates messages:

di(t) = MGFT i(psi(t), lsi(t))
3) Based on previous check, generate messages:

∀i ∈ ISO : di(t) == true⇒
M∞

i (t) = MGF i(psi(t), lsi(t), i)

4) Generate communication graph:

c(t) = Ecomm(
∏

i∈ISO psi(t))
5) Each active simulation object receives all messages from

all objects it can communicate with:

∀i ∈ IASO∀ < i, j >∈ c(t)∀m ∈ M∞

j (t) : lsi(t) =
MRF i(psi(t), lsi(t),m)

6) Every simulation object updates its logical state:

∀i ∈ ISO∀j ∈ ISTF
i : vi,j = STFT i,j(lsi(t), psi(t))

∀i ∈ ISO∀j ∈ ISTF
i ∀vi,j == true : lsi(t) =

STF i,j(lsi(t), psi(t))
7) The logical and physical state of all objects at the end

of each iteration becomes their initial state in the next

iteration:

lsi(t+ 1) = ls(t)
psi(t+ 1) = psi(t)

V. THE EXTENDED MODEL WITH STIMULI

The basic model was extended by adding sets of stim-

uli. The main reason for this was to allow the sim-

ulation objects to interact with fragments of the en-

vironment rather than directly interact with each other.

All definitions from the basic model remains unchanged.

A. The goal

Main goals of the extended model were:

1) To allow an interference in communication between the

objects to occur;

2) To add an influence of observer’s position on content

of received message. For example we can consider a

loudness of a sound, that will be percepted differently

by objects located in different places.

B. The description of extended model’s components

All the definitions from IV-C stays unchanged, below are

listed only new elements of the model.

Definition 12. The stimulus

A stimulus is a carrier of messages. By analogy we can

exemplify it as radio waves.

Definition 13. The Passive Simulation Object using

Stimuli (PSOuS)

A passive simulation object using stimuli is an extension of

the PSO, by allowing it to emit stimuli based on previously

generated messages.

It keeps limitations from the PSO, so it cannot receive any

messages. Due to the above mentioned reason, it cannot

receive any stimuli as well.

Each PSOuS consist of (regardless of what it has inherited

from the PSO):

1) Stimulus emitting functions;

2) Selector of stimulus emitting function.

Definition 14. The Active Simulation Object using Stim-

uli (ASOuS)

A ASOuS is an extension of both the PSOuS and the ASO.

It can generate messages, emit stimuli, receive them and

receive messages.

PIOTR CYBULSKI: A FRAMEWORK FOR AUTONOMOUS UAV SWARM BEHAVIOR SIMULATION 473



Fig. 1. Class diagram with the hierarchy of simulation object types.

Each ASOuS despite of what it has inherited from the

PSOuS and the ASO, has stimuli receiving function.

A class diagram presenting the simulation object types

hierarchy is presented on the figure 1.

C. Formal definitions of the extended model’s components

Let IS denote a set of stimuli types identifiers, and by

Si, i ∈ IS we denote a set of ith type stimuli. Each set of

stimuli must define following operations:

+i : Si × Si → Si – the addition of the ith type stimuli;

Pi : PS0×Si → Si – the perception of the ith type stimulus;

To clarify, each set of stimuli defines above operations only

for its own type. Additionally, each set of stimuli must define

a neutral element of itself.

∀i ∈ IS∃!ei ∈ Si∀s ∈ Si : +i(s, ei) = s

Finally, there must be a definition of perception operation on

a subset of stimuli:

P 2
i : PS0 × 2Si → Si, i ∈ IS

Definition 15. Stimulus Emitting Function

Let’s denote a set of all stimulus emitting functions kept by

ith simulation object as SEM∞

i . Formal definition of of the

SEM∞

i set is as follows:

{SEM i,j,l : PSi × LSi ×M∞ → Sj}l∈Z+
, j ∈ IS i ∈ ISO

SEM∞

i – a set of all stimulus emitting functions kept by the

ith simulation object.

SEM i,j,l – a lth stimulus emitting function being used by the

ith simulation object. The stimulus emitted by this function is

of the jth type.

Definition 16. Selector of Stimulus Emitting Function

SoSEM i : PSi × LSi × M∞ × 2SEM∞

i → 2SEM∞

i , i ∈
ISO j ∈ IS– a selector of stimulus emitting function used by

the ith object.

Definition 17. Stimuli receiving function

SRF∞

i = {SRF i,j,l : PSi × LSi × 2Sj → M∞}l∈Z , i ∈
ISO, j ∈ IS

SRF∞

i – a set of all stimuli receiving functions used by the

ith object.

SRF i,j,l – a lth stimuli receiving function kept by the ith

object. This function accepts stimuli of the type j.

Definition 18. Functional assigning corresponding stim-

uli type to emitters and receivers

ST : SRF i,j → IS , i ∈ ISO j ∈ IS – a functional

assigning a stimulus type to a stimuli receiving function.

ST : SEM i,j → IS , i ∈ ISO j ∈ IS– a function assigning

stimulus type to a stimulus emitting function.

D. The simulation

All the definitions from IV-D remains unchanged. In order

to describe the simulation process of the extended model, first

we need to define the following function:

Definition 19. The stimuli set at simulation moment

function

si : Z+ → 2Si , i ∈ IS – a function assigning each subsequent

simulation moment its corresponding set of ith type stimuli.

The simulation is performed according to the following

steps.

For each subsequent t ∈ Z+:

1) See the step 1 of IV-D;

2) See the step 2 of IV-D;

3) See the step 3 of IV-D;

4) For every message generated by each simulation object

select a set of emitters:

∀i ∈ ISO∀m ∈ M∞

i (t) : SSEL
i (t) = SSEL

i (t) ∪ {<
SoSEMi(lsi(t), psi(t),m, SEM∞

i ),m >}
5) Using each selection made in previous step generate

messages:

∀i ∈ ISO∀ < SSEMs,m >∈ SSEL
i (t)∀sem ∈

SSEMs : j = ST (sem), sj(t) = sj(t) ∪
{sem(psi(t), lsi(t),m)}

6) With every stimuli receiver of each object perform

perception operation on the appropriate set of stimuli:

∀j ∈ IS∀i ∈ ISO∀srf ∈ SRF∞

i : ST (srf) == j ⇒
mr

i (t) = mr
i (t) ∪ srf(psi(t), lsi(t), sj(t))

7) Each simulation object receives all messages generated

by its receivers in the previous step:

∀i ∈ ISO∀m ∈ mr
i (t) : lsi(t) =

MRF i(psi(t), lsi(t),m)
8) See the step 6 of IV-D;

9) See the step 7 of IV-D.

VI. THE FRAMEWORK ARCHITECTURE

The framework architecture will be described according to

[14]. The entire tool for the simulation of the UAV swarms can

be divided into two web services and a client application. The

client application is responsible for performing the simulation.

Two web services provided by the framework, the first one

to register every simulation moment, and the second one to

visualize results of the simulation in 3D, are designed to

reconstruct the course of the simulation later on (with vastly

lower computational cost).

In the following architecture description we will primarily

focus on the client application, because it is the only element

that require implementation from a framework’s user.

474 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Fig. 2. The diagram of the main conceptual classes

A. The logical view

The Figure 2 shows main conceptual classes that allows

performing and saving simulation of the basic model results.

The classes mentioned above are:

• SimulationApp – is the facade aimed to control the

simulation. It is also responsible for management of the

threads required to perform the simulation;

• PresentationEngine – is responsible for communication

with the web service and saving simulation state on a

server;

• SimulationEngine – supervises the course of the simula-

tion and communicates with the presentation engine;

• SimulationObjectsManager – is the main element respon-

sible for calculations needed by the simulation. It is also

the element of which implementation quality impacts the

performance of the simulation process the most;

• DataCollectionController – is the class responsible for

registering the subsequent simulation moments;

• ActiveSimulationObject – is the class that represents the

active simulation object. It contains all the elements

depicted on the Figure 1

• PassiveSimulationObject – is the class that represents the

passive simulation object. It contains all the elements

depicted on the Figure 1.

The ActiveSimulationObject (usingStimuli) and PassiveS-

imulationObject (usingStimuli) classes are the only the com-

ponents that requires further implementation.

B. The process view

In the client module we can distinguish 2 main processes, as

is depicted in Figure 3. The first process calculates subsequent

states of the simulation, the second one communicates with the

web services so the results from the first one can be saved.

It is worth mentioning that the above perspective is simpli-

fied, it doesn’t involve any optimization (such as paralleliza-

tion of calculation for every simulation object).

C. The physical view

From the physical point of view, the client module instances

can be located on the same device as the server is. Although,

it is suggested to not share location of both modules.

Multiple client modules can be instantiated on one com-

puter. It is also highly recommended for the computer that

the database will be on to have sufficiently fast storage drive.

It should be remembered that accessing the drive will occur

much more often when reconstructing (visualizing) simulation,

than when it is being performed (registered). The exemplary

configuration is presented in the Figure 4.

D. The developer view

The framework can be divided into 2 main modules, the

client module that is doing the calculation, and the web module

that registers the simulations, and it allows to access them later

on.

The framework user needs to implement components such

as functions to control physical state and messages genera-

tion/receiving function, they are all located in client module.

The client module consists of a set of dynamically loaded

libraries (DLLs), while the web module is made of a WAR

file that can be deployed on webservers like Payara[15] or

Glassfish[16].

E. The scenarios

The simplified scenario of the basic model’s simulation was

presented in the Figure 5. It is important to notice that steps

1-5 include, omitted on the picture, returning values needed

for presentation layer from a manager.

Similarly the extended model’s simulation scenario will

only differ in number of steps it requires.

VII. THE FRAMEWORK IMPLEMENTATION

The framework for the UAV swarms simulation was im-

plemented in two technologies. The client module was im-

plemented using C# (.NET Framework 4.7.2), and the web

module was developed using JEE with frontend PrimeFaces

framework in version 6.2. A 3D visualization of the simulation

results is being performer with ThreeJS library.

The main reason why the client module was developed

in the different language than the web module was the type

erasure mechanism in the Java.

The following components are delivered as part of the

framework:

• A basic implementation of physical state;

• A basic implementations of physical state control and

update functions;

• A set of basic stimuli types;

• A tool for image-to-environment generation.

VIII. AN EXEMPLARY SCENARIOS SIMULATION

The scenario of a UAV swarm mission consist of three

elements:

1) Generating a map of a mission environment;

2) Configuring the simulation objects;

PIOTR CYBULSKI: A FRAMEWORK FOR AUTONOMOUS UAV SWARM BEHAVIOR SIMULATION 475



Fig. 3. The diagram of processes in the client module

Fig. 4. The exemplary physical configuration

3) Setting up the mission objective for the simulation

objects.

The mission environment map generation is a matter of two

things. The first thing is to set parameters of the map, its width,

depth, maximum heightens etc. The second step is to select

an image that represents the map. All these can be done with

the provided tool (see Figure 7).

The simulation objects configuration is essentially about

Fig. 5. The simulation of the basic model scenario

implementing functions described in IV or/and V.

The exemplary simulation scenario aimed to check whether

a homogenous set of an unmanned aerial vehicles will be capa-

ble to reach a certain destination while avoiding environmental

obstacles.

The environmental map was generated using bitmap de-

picted in the Figure 6.

Interpretation of the Figure 6 in the context of the map of

environment is as follows:

• Height along the X axis will depend on the brightness of

pixels along width of the picture;

• Height along the Z axis will depend on the brightness of

pixels along height of the picture;

476 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Fig. 6. The map of the mission environment used in the exemplary simulation
scenario

Fig. 7. The tool for mission environment generation

• The origin of the coordinate system (on the map) corre-

sponds to the upper left corner in the picture.

The real world dimensions of the generated map were 2.5

meters by 2.5 meters. Maximum height (corresponding the

white area in the Figure 6) was also set to 2.5 meters.

Four homogenous aerial vehicles have been placed on the

map. Each of them had a goal to reach position (assuming xyz

coordinate order) at point (2.5,0.1,2.3).

The simulation was performed using the extended model

with one type of stimuli, let’s call it collision type stimuli. A

structure of the collision type stimulus is as follows:

S1 = {x : x ∈ R3 × {true, false}}

The results confirmed possibility of performing the sim-

ulation with scenario described earlier. Three out of four

objects reached their destination, the one that did not make

it failed because of a flaw in an algorithm and not because

of the framework. Below are listed figures showing particular

simulation moments. The Figure 8 shows the beginning of the

simulation, while Figure 9 shows middle of the simulation

and the Figure 10 shows the simulation state at the end of the

simulation process.

It is worth to mention that a map of the environment can be

generated from any bitmap file. For example, more “advanced”

map was generated using the file from Figure 11

Fig. 8. The screenshot with results of a simulation in 14th simulation moment

Fig. 9. The screenshot with results of a simulation in 109th simulation
moment

Fig. 10. The screenshot with results of a simulation in 431th simulation
moment

PIOTR CYBULSKI: A FRAMEWORK FOR AUTONOMOUS UAV SWARM BEHAVIOR SIMULATION 477



Fig. 11. An example of a mission area

Fig. 12. A more advanced mission area – first view from the simulator

The mission environment generated from the Figure 11 was

depicted on Figure 12 and Figure 13.

Each map can be rendered in two modes : solid and mesh.

The map from Figure 12 shows the solid rendering mode,

while Figure 13 depicts mesh rendering mode.

IX. CONCLUSIONS

The goal of this work was to present the framework for

the UAV swarm simulation with any scale and any type of

tasks that may be set for it. Two simulation models, that

are acceptable by the simulator, were presented, as well as

their goals and limitations. The framework allows to perform

simulation with user-defined map of environment, this is

particularly useful when combined with the second model.

Results of an exemplary simulation scenarios were also

presented.

There are two direction for future work on this framework.

The first one is to design a script-like language so that a

simulation objects configuration can be done without need

of programmatic implementation. The second direction is to

allow the simulation objects to be configured with languages

other than C#, this would probably end up in designing a

meta-framework for the tool presented here.

Fig. 13. A more advanced mission area – second view from the simulator

REFERENCES

[1] A. Kolling, P. M. Walker, N. Chakraborty, K. P. Sycara, and M. Lewis,
“Human interaction with robot swarms: A survey,” IEEE Transactions

on Human-Machine Systems, vol. 46, pp. 9–26, 2016.
[2] C. Gao, Z. Zhen, and H. Gong, “A self-organized search and attack

algorithm for multiple unmanned aerial vehicles,” Aerospace Science

and Technology, 2016.
[3] M. Kim, H. Baik, and S. Lee, “Response threshold model based uav

search planning and task allocation,” Journal of Intelligent & Robotic

Systems, 2014.
[4] H. Cheng, J. Page, and J. Olsen, “Dynamic mission control for uav

swarm via task stimulus approach,” American Journal of Intelligent

System, vol. 2, pp. 177–183, 01 2013.
[5] G. Wang, Q. Li, and L. Guo, “Multiple uavs routes planning based

on particle swarm optimization algorithm,” International Symposium on

Information Engineering and Electronic Commerce, 07 2010.
[6] W. Zhenhua, Z. Weiguo, S. Jingping, and H. Ying, “Uav route planning

using multiobjective ant colony system,” in Conference on Cybernetics

and Intelligent Systems, pp. 797 – 800, 10 2008.
[7] T. Ahmed, D. Feil-Seifer, T. Jiang, S. Jose, S. Liu, and S. Louis,

“Development of a swarm uav simulator integrating realistic motion
control models for disaster operations,” 10 2017.

[8] M. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, and
M. P. Goncalves, “Defending against intrusion of malicious uavs with
networked uav defense swarms,” pp. 103–111, 10 2017.

[9] J. Wang, Y. Tang, J. Kavalen, A. Abdelzaher, and S. P. Pandit, “Au-
tonomous uav swarm: Behavior generation and simulation,” in Confer-

ence on Unmanned Aircraft Systems (ICUAS), pp. 1–8, 06 2018.
[10] S. Rasmussen, J. Mitchell, P. Chandler, C. Schumacher, and A. Smith,

“Introduction to the multiuav2 simulation and its application to cooper-
ative control research,” pp. 4490 – 4501 vol. 7, 07 2005.

[11] R. Garcia and L. Barnes, “Multi-uav simulator utilizing x-plane,” Jour-

nal of Intelligent and Robotic Systems, vol. 57, pp. 393–406, 01 2010.
[12] J. Bachrach, J. Mclurkin, and A. Grue, “Protoswarm: A language

for programming multi-robot systems using the amorphous medium
abstraction,” vol. 2, pp. 1175–1178, 01 2008.

[13] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic

Networks. Applied Mathematics Series, Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[14] P. Kruchten, “Architectural blueprints – the 4+1 view model of software
architecture,” IEEE Software 12, 1995.

[15] “https://www.payara.fish/.”
[16] “https://javaee.github.io/glassfish/.”

478 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


