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Abstract—In high-level object languages, such as Java, a
problem of unnecessary duplicates of instances can easily appear.
Although there can be a valid reason for maintaining several
clones of the same data in the memory, often it indicates that
the application can be refactored into a more efficient one.
Unnecessary instances consume memory, but in case of Java
applications can also have a significant impact on the application
performance, as they might prolong the time needed for the
garbage collection. In this paper, we are presenting a method
and a tool that allows detecting duplicity in the heap dump
of a Java application, based on the shallow and deep object
comparison. The tool allows to identify the problematic instances
in the memory and thus helps programmers to create a better
application. On several case studies, we also demonstrate that the
duplicates appear not only in the student projects and similar
programs that often suffer from poor maintenance but also in
commonly available Java tools and frameworks.

I. INTRODUCTION

J
AVA language was designed to provide fully automated

memory management and to shield programmers from

errors caused by the memory leaks. The developers are often

encouraged to design the data models based on the real

world structures and not to think too much about the internal

representation of the data they are using. This should lead

to greater efficiency of programming, but at the same time

hardware resources are often used inefficiently. Consequently,

instead of memory leaks typical in C-language programs,

programmers are creating different constructions that clog

up the operational memory and can lead to unnecessary

slowdowns of the application (or even to the termination of

the application due to insufficient memory) due to excessive

garbage collection.

In general, this problem is known as the memory bloat,

and there are many different aspects of it [1]. We had previ-

ous experience with fixing an application that was suffering

heavily from wasting memory [2], so our main goal was

to create a tool that would allow us to easily identify the

problematic objects retained in the Java heap. One of the

issues we have encountered is (often multiple) duplication

of the identical instances in the memory. Especially for less

experienced programmers, it might be difficult to identify the

problem. We hope that our tool might help them to find the

unnecessary objects in the memory of their programs. In the

same time, we wanted to investigate how often the similar

problem arises in other applications generally available in the

Java community.

A. Memory Bloat

There is no generally accepted definition of the memory

bloat, but many examples are known both from the literature

and from the real applications. In [1] Mitchell describes 15

anecdotal examples of the memory issues that might arise,

classified into four main groups, and shows how Java Virtual

Machine deals with them and how programmers might or

might not make its work more difficult. Anecdote 12 mentions

data duplication created during the communication between

Java application and the outside environment. Mitchell also

describes how different types of objects can have a significant

impact not only on the memory consumption but also on the

application speed, as the Java Virtual Machine has to perform

garbage collections. Depending on the number of retained

objects, it can significantly slow down the application.

The problem of the object duplication is partially solved

also in Java Virtual Machine itself, currently only with the

String class. Since Java version 8.20 [3] Java contains

an implementation of the string deduplication – as long as

Strings are managed by the virtual machine, they are created

in the separate part of the memory. When a new String

shall be created, it is first checked whether there already is an

instance with the same content. If so, only a reference on the

existing instance is provided. As Strings are immutable in

Java, this is a safe way of dealing with them - all operations

manipulating with Strings are in fact creating new instances,

so when a programmer wants to change the content of the

instance, a new, different instance with new data is provided.

This behaviour is possible mainly due to the simple nature

of the String object – only an array of characters needs

to be checked. However, not only Strings instances are
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duplicated in Java programs. Our intention is not to provide

a more general, runtime method for the deduplication, as the

deep object comparison can be quite time-consuming. We only

intend to provide a tool that will allow to analyze the program

memory and to discover possible duplicates. We also do not

claim that the duplicate objects can be automatically merged

just because they contain the same data - this decision has

to be made by a programmer with a deep insight into the

application. However, if there are multiple identical instances

of one class, it can be a strong indicator that the application

can be refactored into a more efficient one.

B. Motivation

Our motivation comes from two sources. First, we are

often dealing with software created by students, which usually

contains many types of problems and we were not able to find

a tool that would be able to show how many duplicates are

present in the memory of student programs. Standard profilers

such as VisualVM can be helpful, but not suitable for this type

of analysis. Furthermore, we wanted to see if this problem is

present not only in the work of inexperienced programmers but

also in software that is more widespread and freely available.

The remainder of the paper is organized as follows: Sec-

tion II deals with the related work, focused mainly on the

problem of the equality and comparison of the objects. Sec-

tion III explains how the equality of the objects is implemented

in our tool. In section IV we are showing the algorithm used

for the duplicity analysis in our implementation. The method

of validation of our implementation, as well as several results

of duplication analysis of several Java application, is presented

in section V. The last section concludes the paper and discusses

possible future work.

II. RELATED WORK

There are two main areas relate to our work. The first one

is the problem of the memory efficiency of Java applications.

This problem is discussed quite extensively and many different

bad practices or problematic patterns were described in last

years. Especially with the incresing interest in the embededd

systems, the need for the memory efficient software grows [4].

The most common problem is the detection of the memory

leaks, described for example in [5] or in [6]. As the Java

is a language with garbage collection, the classical memory

leaks with inaccessible memory are rare in it, and the works

we are mentioning are focusing more on the detection of the

objects with large overhead [5]. The typical example might

be collections that contain mostly null elements. Another

approach is the design of the more efficient ways of the

garbage collection [6]. As one of the main sources of the

performance issues and memory wasting is automated ORM

(Object-Relational Mapping) when used incorrectly, it is also

possible to find approaches focusing on the analysis of the

ORM performance antipatterns and fixing them [7].

Other approaches are trying to find a way how to evaluate

overall memory health of the Java programs. One of the most

useful works on this topic is [8], where the problematic struc-

tures are described in high detail and even a metric based on

the ratio of the useful data and structure overhead is proposed

to evaluate memory health. These ideas are further expanded

in [1] and [9], where the memory impact of the complexity of

the domain model is discussed, as each reference occupy some

space. Several different antipatterns are presented, along with

the proposed solutions. Unfortunately, the patterns described

in this work are not discovered automatically, the authors rely

mostly on the manual analysis of the data structures. Another

approach to the memory optimization is based on the efficient

memory partitioning [10].

One important inspiration for our work is [11], where

both static and dynamic analysis is proposed as a tool for

evaluating the usage of Java collections (or other structures

that allows manipulation with a large number of elements).

Another approach for the dynamic analysis of the collections

efficiency is presented in the [12] – the technique proposed

here aims not only to use collections more efficiently, but

also to choose the most suitable collection for the application,

based on the runtime analysis.

The second is more focused on the instances comparison

or even automatic detection of the possibility of replacing one

instance with another. In [13], a post-mortem analysis of the

Pharo programs is proposed in order to determine if there

are some redundancies in the suitable classes with inclination

to the redundancy (such as Point or String classes),

aiming to replace the redundant ones with one instance. This

paper also contains an extensive description of different ways

how to define an object equivalence. The possibility of the

replacement of one instance with another is also examined

in [14]. In this case, not only a comparison of the objects is

performed, but authors also propose to instrument the original

program in order to observe the usage of the candidates for

the merging and automatically determine if such merging is

possible without influencing the program behaviour.

As the search for duplicates in the whole namespace is time

demanding task with a high complexity, some publications

are focusing only on the classes which are known to contain

duplicates very often. In [15], the methods used for the

String deduplication is described in high detail. Similarly,

the description of the approaches to get rid of the String

duplicates is described in [3]. As this is typically performed

at runtime, there is a great need to make these algorithms as

efficient as possible. In [16], different methods for the decision

whether the deduplication should be performed or not and their

impact on the program performance is demonstrated.

III. OBJECT EQUALITY

As was mentioned in previous section, there are multiple

ways of how the object equality can be defined. As our

application is working with the heap dump, we did not focus

on the fast pre-analysis using some form of the hash code of

the objects, such as in [17], but immediately on the analysis

of the attributes of the objects, similar as described in [18]. In

contrast with [18], we are not working directly with objects
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Class A
attr_1: int

attr_2: String

Class B
attr_1: int

attr_2: String

Class C
attr_1: int

attr_2: String

attr_3: int

equal

classes

different

classes

Fig. 1. Class equality in inheritance chain

in memory, but with their serialized form in the heap dump.

So for the comparison, we cannot use in any way methods

that are implemented in the objects, such as equals() or

compareTo().

A. Class Equality

The first aspect to consider is the class of the compared

objects. If we are comparing instances with the same class, it

makes sense to analyze the data field by field. If the values of

all fields are identical, we can consider the instances identical

as well. However, it is also possible to consider inheritance.

The inheritance in Java cannot remove any field from the

successor, only to add additional ones or to add or override

its methods. In case that the predecessor contains the same

fields as the successor, we can consider them identical from

the data point of view as well. Of course, there is a question

if such objects can be merged into one, but that is something

that can not be decided automatically during the heap analysis.

Thus, we consider instances identical in case all their fields

are identical even when they belong to different classes, as

long as they are part of the same inheritance chain and no

additional fields are added in the successors (as you can see

in Fig. 1). When such field is added, even if its value is null,

it is considered different due to the different class definition

and the matching of fields is not performed at all. You can

notice that including inheritance chains in the comparison, in

fact, broadens the definition of what are identical objects and

can lead to a higher number of identified duplicates.

B. Fields Equality

When fields are compared, it is simple to deal with the

primitive types, but more complicated to deal with the refer-

ences (see Section III. C). Although Strings are references,

Java deals with them in a special way. This enables us to treat

them in a special way as well. As they are stored in a special

part of memory and due to the string deduplication, we often

do not need to analyze the actual content of the String,

only to see if the reference leads to the same instance. When

references are different, the actual data of the String have

to be compared. This can happen, as the string deduplication

does not work for all Strings in Java application and the

instance of the String can thus appear both in the regular

heap space and in the area reserved for the Strings.

C. References Equality

Another aspect is dealing with the reference fields. The

previously described method is suitable for the objects that

are composed only of the primitive data types and Strings.

However, in Java, most objects contain also references on other

objects. In such a case, there are two different points of view.

The shallow approach would consider two references identical

only when they are pointing to the same instance. This can

be checked very easily, as in the heap dump, the references

are represented only as a long number, so we only need to

compare those.

In order to obtain a broader set of results, we have also

implemented a deep comparison approach. It means that, in

addition to the identical reference numbers, two references

will be considered identical when they point to two different

instances that are internally identical. Again, this approach

leads to a higher number of identified duplicates, but also

significantly increases the complexity of the comparison, as

it has to be used in a recursive way – the referred instances

can point to other instances and so on. This also means that

a stopping condition has to be defined, in order to deal with

cycles and to improve the performance of the comparison.

The references can create an arbitrary graph, but it can be

always reduced to a finite tree structure when the analysis is

stopped after each node of the graph is visited once. Another

option is to define a depth, in which the analysis should end. If

the instances fields contents are identical till the required depth

is reached, the instances themselves are considered identical

as well.

The last aspect we need to describe is the dealing with

arrays and collections. Java offers List and Set interfaces

and several implementations that can be used to store a large

number of data. In case when the deep object comparison is

used, no special approach is needed and the structures are

identical only when they contain identical instances in the

same order. It would be possible to broaden equality definition

even more and ignore the order of the instances within the

array, but that would require even more complex calculation

and specific implementation for each Java collection.

IV. DUPLICATION FINDER

Our implementation of the duplication finder is created in

the Java language. As we need to deal with a heap dumps in

binary HPROF format, which is created by means of JVM,

we were looking for a tool that would allow us to process

the data easily and we used a Hprof Heap Dump parser

library [19]. This library allows us to load the data from heap

dump and reconstruct the content of each instance. It also

provides access to the class descriptions so the data can be

correctly interpreted.

RICHARD LIPKA, TOMAS POTUZAK: SEARCH FOR THE MEMORY DUPLICITIES IN THE JAVA APPLICATIONS USING SHALLOW 783



File loader

Class resolving

Simpli ed

shallow

comparator

Full

shallow

comparator

Deep

comparator

Collection analyser

Results processing

Fig. 2. Tool pipeline

A. Tool Architecture

In order to allow easy modification of the analysis process

(for example to be able to switch between shallow and deep

comparison or to add additional modules searching for other

memory anti-patterns), the tool is designed as a pipeline. Our

tool sequentially reads the heap dump file and produce a basic

representation of the loaded data. The overall behaviour is

represented in Fig. 2.

These data are joined with the corresponding class descrip-

tions and then further processed according to the class descrip-

tion (so the loaded byte streams are converted for example to

long numbers or to Strings for easier processing). When the

actual class of each instance is analyzed, it is also possible to

decide if the analysis should stop or continue depending on the

class or package name – this allows us to limit the duplicity

search only on the certain classes in the memory dump and

thus save some time during the analysis.

B. Problem Identification

The prepared data are then passed to a module that is

responsible for the duplicity analysis. The matching algorithm

iterates over all loaded instances and stores them according to

their properties in the two-level structure. At first, instances

are divided according to their classes (as was described in the

previous section – so the different classes can be considered

equivalent if they are part of the same inheritance chain and

they share the same set of fields). Then, within each class,

the equivalent instances are grouped according to the values

of their fields (see Fig. 3). Depending on the settings, the

shallow or the deep comparison of the objects is performed in

this phase.

Input stream

Class comparator

Field comparator

Class A

instance 1

Class A

instance 2

Class B

instance 1

Class A

instance 3

...

...

...

...

Class A   map Class B   map

Class A

group 1

Class A

group 2

Class A

group 3

Class A

group 4

Assign instance

to appropriate

class

Class A

instance 3

Class A

instance 3

Compares eld by eld

Assign to group if identical

or

Creates a new group 

Fig. 3. Data structures for the equality classification

The shallow comparison is quite straightforward – the

instances retrieved from the heap dump are compared field by

field, including the references (see Fig. 4). If the instances are

identical on this level, they are considered equal and became

part of the group within the class. Each additional instance is

compared against all existing groups and either is added to one

of the groups or a new group is created if the new instance is

unique.

Deep comparison is more complicated and more time de-

manding. The algorithm is similar to the deep object compar-

ison algorithm we have described in [20], but for this purpose

modified and made faster. There are two main differences – the

first one is that we are now working with the heap dump data

and not with the instances that are in memory of the executed

application. The second is that we do not need to explore the

structures of instances completely - the first occurrence of a

difference is sufficient to claim that the compared objects are

not identical. It would be possible to use the original version of

the algorithm as well, but it would make the whole comparison

process even more time demanding.
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Class A
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= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: oat

attr_2: oat

= 1.0

= 2.0

Class B
attr_1: oat

attr_2: oat

= 1.0

= 2.0

Equal instances

Equal instances

Di erent instances

Di erent references

Fig. 4. Instances equality with Shallow comparison

In order to perform the deep comparison, a graph represen-

tation of both compared objects has to be created. In order to

do so, the whole memory dump have to be processed (we have

to be able to resolve references to create an object graph), so

it is performed after the shallow comparison is finished. But

for the purpose of the deep comparison, a modified version

of shallow comparison is done. In this case, only primitive

data types are compared to determine if the instances are

identical and the references are ignored. This, of course,

means that the instances that differ only in references will be

considered identical during this modified shallow comparison.

The reason for this is to allow faster evaluation of the deep

comparison. These "duplicates" are not reported in the result

of the algorithm, but only used in order to evaluate the equality

of the referred instances during the deep comparison faster.

Each node of the graph corresponds to an instance and

each edge corresponds to the reference. As we expect that,

in most cases, the instances will not be identical, the graph

is constructed on demand, as a modification of Breadth First

Search (BFS) algorithm. When all fields of compared instances

are identical, the references are resolved one by one (see

Fig 5). As the deep comparison is actually performed after the

shallow one, in the first step algorithm checks if the referred

objects were identical during the shallow comparison. If not,

the comparison can be terminated, as we are not looking for all

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class A
attr_1: int

attr_2: String

attr_3: Class B

= 10

= "aaa"

=

Class B
attr_1: oat

attr_2: oat

= 1.0

= 2.0

Class B
attr_1: oat

attr_2: oat

= 1.0

= 2.0

Equal instances

Equal instances

Di erent references to equal instances

Fig. 5. Instances equality with Deep comparison

differences between instances, only one difference is sufficient

to consider them unique. If the referred instances belong to

the same shallow equivalent class, other references of the

original object are analyzed. Only when all referred instances

are considered identical, the algorithm starts constructing the

next level of the graph.

Finally, the module for the analysis of the lists and arrays

is used. For this analysis, we considered using the idea of

collection health described for example in [8]. Collections

are considered to be healthy (from the memory utilization

point of view) only if they carry a sufficient amount of

data. Programmers in Java often create unnecessary large

pre-allocated structures, which are never sufficiently utilized,

so the collection contains a significant number of null

references. Such references, despite not carrying any data, still

occupy memory space. For example, default instance of the

ArrayList is created with 10 empty slots and often only

small fraction is used (more specifically, the array is allocated

when the first element is inserted to it, when the collection is

created empty, the array is not created immediately).

This analysis is currently limited only on the offsprings of

the AbstractList class, which are based on the array. As

each collection requires a different approach and implementa-

tion, we focused only on the array types and not on the linked

structures or maps. The analytical module is looking for two

parameters. First, it calculates the ratio of the space occupied

by the collection to its size. All collections that have this ratio

below 0.5 are marked as underutilized. Second, the content

is analyzed for duplicity and, if the collection is filled with

identical elements, it is marked as problematic as well.

C. Result Reporting

The last part of the processing is the results reporting. As

the tool is so far only operated from the command line, the

results are presented only in the text form in the standard

output stream. The result report contains names of all classes

that have at least one set of duplicate instances (including

information about the package and the inheritance chain), the

serialized form of fields of duplicate instances and also the list

of collections that contain one of the marked problems.
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D. Complexity

The complexity of comparing each instance with each

other to determine if they are identical is implemented with

quadratic complexity with respect to the number of elements to

compare. It can be expressed as O(n2), where n is a number

of elements to compare. However we do not really need to

compare each element with each other across the whole heap

dump - we need to compare elements only within the same

class. In such case, complexity is still quadratic, but in a

form O(k · n2

k
) where k is the number of equivalent classes

and nk is a number of the instances within each class. This

makes the comparison more feasible, the number of instances

within a class is more manageable value. We have to note

here that the time even for the shallow comparison itself can

differ significantly according to the number of the fields in

compared classes. In case of the deep comparison, it depends

heavily on the complexity of the compared structures. This

have a significant impact on algorithm performance as well.

Theoreticly, it would be possible to achieve linear complexity

by calculating hash for each instance and compare only the

hash codes, but the calculation of hash for the deep comparison

would still require a complete reconstruction of the data

structures, even in cases when they differ in first few attributes

(and the comparison will quickly find differences), so we

decided against this approach.

V. VALIDATION AND RESULTS

In order to validate the functionality of our tool, we have at

first created a simple test application with a known number of

duplicates and half empty collections. The purpose was just

to figure out whether the tool will be able to find all injected

problems. Then we have continued with tests performed on

several real-life applications, to investigate whether the dupli-

cates occur in the real world software.

A. Testing Application

The testing application is able to generate an arbitrary

number of instances of simple objects, containing numerical

and string attributes, as well as simple reference structures. It

uses only two simple classes, Child and Parent that can

refer to each other. The testing application was run several

times with the different number of the created instances, in

order to verify the time complexity of the algorithm. In each

test, there were only 5 deep duplicates.

The heap dump was obtained using jmap [21] tool, using

command

jmap −dump : l i v e , f i l e =< f i l e −pa th > <pid >

in order to ensure that only "living" objects (objects that would

survive next garbage collection) are obtained and listed in the

heap dump. The time measurements were done on the PC with

Windows 10, SSD drive, Intel Core i7-4930K CPU, 3.40 GHz

and 32 GB RAM. No parallelization was used at the moment.

The analysis was limited only to the package with our data

classes, other instances were ignored. The times were obtained

as an average from 5 executions.

Fig. 6. Times required for analysis by deep comparison and shallow
comparison algorithms

In Table I, the results for the testing application are pre-

sented. From these results, the deep and shallow comparisons

can be compared both in their abilities and consumed compu-

tation time. In this simple case, our deep comparison algorithm

was able to find all duplicates, while the shallow comparison

version was not able to identify duplicates that were using

different referred instances with identical data. On the other

hand, the time required for the deep comparison grows signif-

icantly faster even when there are no significantly more deep

duplicates (see Fig. 6). Running the deep analysis thus makes

sense only if there is a strong suspicion that there might be

such kind of problem. As expected, time requirements appear

to grow quadratic in relation to the number of instances that are

there for comparison, although the measurements, especially

for the small number of instances might be influenced by the

overhead of the processing.

B. Real World Programs

We have also attempted to run the algorithm on several real-

world programs, to investigate whether if the problem with

memory duplicates will be present in them. We have chosen

four different programs – Spring Boot framework with a basic

hello-world application, Eclipse with several projects open,

IntelliJ Idea and TomEE with running map visualization server.

Due to the time complexity of the deep analysis, we used only

a shallow comparison in all four examples.

1) Spring Boot: The Spring Boot framework [22] in version

2.1.4 was used with only the very basic "Hello World" applica-

tion. The dump of the whole framework has approximately 27

MB. For the purposes of the experiment, we have decided to

limit our testing only to the classes from the org namespace.

In Table II, the results of the org namespace and its

parts are summarized. One important find is that some du-

plicates were in fact found, but there is not a great number

of them. Mostly, the duplicities were only pairs, but for

example, the Signature class had 38 identical instances

and class DefaultFlowMessageFactory 34 instances.

Both classes only contain short Strings with basic frame-

work settings, but their presence in the analyzed application

shows that our tool is able to work with the real software.
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TABLE I
RESULTS FOR THE SIMPLE TESTING APPLICATION

Instance
count

Dump size [MB] Injected duplicates
Found duplicates

(shallow)
Found duplicates

(deep)
Duration

shallow [ms]
Duration
deep [ms]

120 2.1 20 15 20 221 227

440 2.6 30 25 30 493 401

920 3.0 40 35 40 725 705

1710 3.6 50 45 50 987 912

2620 4.0 60 55 60 1121 1409

3650 4.4 70 65 70 1753 2021

4910 5.4 80 75 80 2769 3517

6500 5.9 90 85 90 4379 6781

8200 6.4 100 95 100 9334 15789

10100 6.9 110 105 110 17351 35419

TABLE II
ANALYSIS OF CLASSES IN SPRING BOOT FRAMEWORK

Package

name
Classes Instances

Found

duplicates
Duration [ms]

org 2416 9093 347 14759

org.springframework 1555 6053 329 8214

org.springframework.boot 380 1506 27 4229

org.springframework.core 196 1585 5 4425

org.springframework.web 296 239 37 4108

org.springframework.boot.web 75 27 1 4002

Furthermore, as the Spring Boot framework is often used and

well maintained, we did not expect to find many problems in

it.

The second thing to notice is the ratio of classes and

instances within one class. In the whole org package the

ratio is approximately 1 : 4. For many classes, there

are only a few instances. During drill down to the sub-

packages, the ratio changes. For example in the package

org.springframework.boot.web the ratio is even re-

versed – more classes were loaded from the namespace than

was actually used to create instances.

2) Eclipse: We have analyzed Eclipse [23] in version 4.10.0

(build 20181214-0600). The IDE was only started and in

the moment of heap dump collecting was not performing

any particular task. The size of the Eclipse heap dump was

approximately 92 MB. Measurements were performed for the

packages org, com, java, sun, and ch. The results are

summarized in Table IV.

This is the largest heap we have processed and, again

like in the heap of the Spring framework, no large

problem is present. However, the tool demonstrates that

it is capable handling not only trivial examples but

also larger datasets. The most duplicated was the class

org.eclipse.swt.widgets.TypedListener

with 444 identical instances based on the shallow

comparison. Many of the discovered classes contained

large fragments of the XML configuration of the tool (like

org.eclipse.sisu.plexus.ConfigurationImpl

with 16 identical instances containing 750 characters each).

The results also show the rapid growth of the required

computational time for larger datasets, with the analysis of

java package taking more than 6 hours. In this package, 75

ms on average was required for analysis of each instance.

In comparison in the smallest package ch, only 13 ms on

average were required.

3) IntelliJ Idea: Along with Eclipse, we also tried to

perform analysis of IntelliJ Idea in version 2018.3. The dump

of this IDE was smaller than in the case of the Eclipse,

approximately 74 MB. Only packages org, com, and sun

were available within. In a similar way as in the previous

case, the IDE was not performing any particular task, it was

just started. The results are summarized in the Table IV.

In this case, despite the lower number of the classes with

duplicates, a large number of identical instances was found.

The class org.jdom.Text contained several instances with

many clones, the largest group had 11577 identical instances.

All these clones contained only several unprintable characters

(typically end of the line and some other character) and

obviously were part of the loaded DOM of some data the IDE

was requiring after starting. In this case, the tool demonstrates

that it is capable of discovering large clusters of the identical

instances. However further analysis of the source texts of the

IntelliJ Idea would be required to determine if there is a way

to mitigate this type of the duplicity. Other duplicity classes

(with only several clones) contained for example the text of

the library licenses.
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4) TomEE with Visualisation Server: The last example we

tried to analyze was Apache TomEE [22] server in version

7.1.5, with the running application dealing with the visual-

ization of the power grid. TomEE is a version of the Tomcat

server, with additional modules useful for building enterprise

applications. In this case, we have decided to focus not on the

classes from the technology itself, but on the domain objects

from the visualization server. As previous examples showed,

the frameworks that are intensively used will probably contain

fewer issues than the applications that should be executed

within them.

The size of the heap dump of the server was approxi-

mately 370 MB, significantly larger than the previous files.

When the dump was collected, the server was working with

4 users at the moment, so 4 sessions with data models

were loaded. We were focused on the proprietary package

cz.zcu.laps.pnp.domain, which contains domain data

of the application. The data were organized in the form of

a graph, composed of the nodes representing elements of the

power distribution network and power lines between them.

Each user is able to work only with one model at one

time. As the graph structure was maintained by the different

package (JGraphT library), the nodes have no references to

other objects except enums, so the only shallow analysis was

required.

The package contained 48 different classes and 49096

instances. Further analysis showed that the instances are

distributed only among 6 classes of the domain model. The

shallow analysis of this namespace took 3.22 hours on the

same machine. In this case, the structure of the results was

quite different – in each class, multiple triplets of identical

instances were discovered.

Further manual analysis of the result showed that the

problem, in this case, was in the different sessions. As we went

through the triplets, it became obvious that they are part of the

same graph – in fact, the duplicates were not only the nodes of

the graph, which were discovered by our tool, but the graphs

themselves. The reason for this was that two of the users were

visualizing the same graph and the server maintained a copy of

all the data for both sessions and also – as a form of the cache

memory – a third copy not related to any session. As only the

visualization was required from the server, it would be possible

(in this particular case) to merge all data and maintain only

one copy for every user who needs it. This issue is similar to

the problems described in [7], as the graphs are also mainly

products of the ORM. However, in this case, we cannot really

speak about the ORM antipattern, the problem is more in the

design of the data structures and lack of sharing data between

users in the moments when it is possible.

However, our tool was not able to discover this issue

directly, as no package from JGraphT was analyzed, so

there was no overview of the whole structure during the

analysis. This shows obvious limitation when only part of

the namespace is analyzed – the data structures that are

keeping data are not part of the analysis and even if the deep

comparison is used, the identical structures will not be visible.

TABLE III
ANALYSIS OF CLASSES IN THE ECLIPSE IDE

Package
name

Classes Instances
Found

duplicates
Duration [ms]

org 9647 141970 756 5007822

com 919 27906 865 90271

java 1155 313405 39 23596884

sun 929 28092 20 91228

ch 244 539 5 7335

TABLE IV
ANALYSIS OF CLASSES IN THE INTELLIJ IDEA IDE

Package

name
Classes Instances

Found

duplicates
Duration [ms]

org 2016 157743 283 8425230

com 7687 77927 261 1290908

sun 1119 15620 31 26023

Furthermore, for such big structures as the graphs in our case

(49096 instances are in fact only data in 5 graphs, without the

overhead of the JGraphT library), the deep analysis would be

quite time demanding – especially if parts of the graph would

be shared and only some parts would be changed. On the other

hand, this type of the situation – data shared or cloned on the

server among several sessions – can be an example when the

analysis of the duplicities is useful.

VI. CONCLUSION AND FUTURE WORK

In the paper, we have presented an algorithm and tool

designed to search duplicates in the memory space of the

Java applications. The analysis is based on the exploration

of heap dump and comparing primitive fields of the objects

with the same class. We have implemented both shallow and

deep comparisons and demonstrated their functionality on the

sample application. According to the results, the algorithm

is capable of finding the duplicates that are present in the

memory for both simple objects from the testing application

and also in the data obtained from four real-world applications.

The quadratic complexity of the algorithm, along with the need

to compare deep structures, prevents processing a large number

of instances, but even on the real heap dumps the algorithm

was able to perform the analysis within hours. As this type

of the analysis is not something that needs to be performed

often, but mainly in the situation when there is a problem with

resource consumption, we believe that the tool is practically

utilizable.

Main goal of our immediate future work is to implement

the parallelization of the task. The shallow comparison should

be simply parallelizable, as when all instances from the heap

are loaded to the memory of the analyzer, the comparisons

need to be performed only within each class and thus can be

distributed among the working threads.

As for deep object comparison, the problem is more difficult

there, as all instances need to be present in the memory when
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a graph of referred objects should be constructed. However, if

sufficient memory is available, the task can be still distributed,

as each worker can obtain the whole copy of the heap and then

work on the analysis of objects within a particular class. The

question remains if the communication between such workers

would allow making the process faster, for example, if the

sub-graphs of the compared objects are already processed

and the information about their equality is available. This

approach would require to determine a sequence, in which

objects should be compared and evaluated, in order to have

simpler objects processed before the complex one.
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