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Abstract—Context is widely considered for NLP and knowl-
edge discovery since it highly influences the exact meaning of
natural language. The scientific challenge is not only to extract
such context data, but also to store this data for further NLP
approaches. Here, we propose a multiple step knowledge graph-
based approach to utilize context data for NLP and knowledge
expression and extraction. We introduce the graph-theoretic foun-
dation for a general context concept within semantic networks
and show a proof-of-concept-based on biomedical literature and
text mining. We discuss the impact of this novel approach on
text analysis, various forms of text recognition and knowledge
extraction and retrieval.

C
ONTEXT is a widely discussed topic in text mining and

knowledge extraction since it is highly relevant to mine

the semantic correct sense of unstructured text. For example in

[1], Nenkova and McKeown discuss the influence of context

on text summarization. Ambiguity does not only appear for

common language words, but especially in scientific context.

The scientific challenge is not only to extract such context data,

but also to store this data for further NLP approaches. Here,

we propose a multiple step knowledge graph-based approach

to utilize context data for NLP and knowledge expression.

We present a proof of concept based on biomedical literature

and show an outlook on further improvements towards next

generation knowledge extraction for example for training

approaches from artificial intelligence and machine learning.

Knowledge graphs play in general an important role in

recent knowledge mining and discovery. A knowledge graph

(sometimes also called a semantic network) is a systematic

way to connect information and data to knowledge on a more

abstract level than language graphs. It is thus a crucial concept

on the way to generate knowledge and wisdom, to search

within data, information and knowledge. The context is a

significant topic to generate knowledge or even wisdom. Thus,

connecting knowledge graphs with context is a crucial feature.

Here, we use a quite general definition of context data. We

assume that every information entity can also be a context

information for other entities. For example a document can

also be a context for other documents (e.g. by citing or

referring to the other publication). An author is both a meta

information to a document, but also itself context (by other

publications, affiliations, co-author networks, ...). Other data is

more obvious a context: named entities, topic maps, keywords,

etc. extracted with text mining from documents. But already

relations extracted from a text may stand for themselves,

occurring in multiple documents and still valuable without the

original textual information.

Starting with a simple document graph, in a first step we

add context meta information, see figure 1. This will lead to

a first knowledge graph which can be used for a first context-

based text mining approach. The text mining approach will add

more context data, for example from ontologies or relations

extracted from the text. The graph with the additional context

data can be used as starting basis for more detailed text mining

approaches utilizing the novel context data. This step can be

redone several time.

In addition using a graph structure has several more ad-

vantages for knowledge extraction in biological and medi-

cal research. Here scientists are for example interested in

exploring the mechanisms of living organisms and gaining

a better understanding of underlying fundamental biological

processes of life. Today the biomedical field mostly relies

on systems biology approaches such as integrative knowledge

graphs to decipher mechanism of a disease, by considering

system as a whole which is considered as a holistic ap-

proach. In that, disease modeling and pathway databases play

an important role. Knowledge Graphs built using Biological

Expression Language (BEL, see www.openbel.org) is widely

applied in biomedical domain to convert unstructured textual

knowledge into a computable form. The BEL statements that

form knowledge graphs are semantic triples that consist of

concepts, functions and relationships [2]. In addition, several

databases and ontologies implicitly form a Knowledge Graph.

For example Gene Ontology, see [3] or DrugBank, see [4] or

[5] cover a huge amount of relations and references to other

fields.

Over the last few years new domain specific languages

(DSL) and knowledge representations like BEL [6] have been

proposed to publish and store this kind of statements and find-

ings. There are still several crucial issues converting literature

to knowledge. For example the quality and completeness of

such networks has to be evaluated. And with this, to generate

new knowledge the context of concepts in a Knowledge Graph

has to be considered.

We will first of all give a preliminary overview about

information theory and management. With this, we will intro-

duce and discuss the novel approach of managing and mining
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Fig. 1: Proposed workflow to extend a knowledge graph. First starting with a document graph, the basic meta information

like authors, keywords etc. are added. This can be used as a basis for text mining which can be used to extend the graph

again, for example named entity recognition (NER) may use keywords as a context. Topic detection may also benefit from

already assigned keywords, journals or author information. The graph can also be extended by knowledge discovery processes,

for example finding parameters of a clinical trial, progression within electronic health records, etc. In any case new context

information will be added to the initial graph and improve the input of further algorithms.

the context of knowledge graphs. We demonstrate this novel

approach by applying it to common data sources. After that,

we will give a detailed list of issues that have to be addressed.

I. PRELIMINARIES

We define knowledge graphs G = (E,R) where the set

of nodes E consist of entities e ∈ E coming from a formal

structure like an ontology Ei = (V (Ei), R(Ei)). E is a union

of ontologies E = {E1, ..., En}. The relations r ∈ R can be

ontology relations, thus in general we can say every ontology

Ei which is part of the data model is a subgraph of G which

means Ei ⊆ G. In addition, we allow inter-ontology relations

between two nodes e1, e2 with e1 ∈ E1, e2 ∈ E2 and E1 6=
E2. More general we define R = {R1, ..., Rn} as list of either

inter-ontology and intra-ontology relations. Both E as well as

R are finite discrete spaces.

Every entity e ∈ E may have some additional meta informa-

tion which need to be defined with respect to the application

of the knowledge graph. For instance there might be several

node sets (some ontologies, some document spaces (patents,

research data, ...), author sets, journal sets, ...) E1, ..., En so

that Ei ⊂ E and E = ∪i=1,...,nEi. The same holds for R

where several context relations might come together like "is

cited by", "has annotation", "has author", "is published in",

etc.

We define a finite, discrete set C = {c1, ..., cm} of contexts

Ci. Every node e ∈ G and every edge r ∈ R may have one ore

more contexts c ∈ C denoted by con(e) or con(r). It is also

possible to set con(e) = ∅. Thus, we have a mapping con :
E∪R → P(C) to the power set of C. If we use a quite general

approach towards context, we may set C = E. Thus, every

inter-ontology relation defines context of two entities, but also

the relations within an ontology can be seen as context.

Every node set Ei ∈ {E1, ..., En} induces a subgraph

G[Ei] ⊂ G. With Gc[Ei] = G[Ei] ∪ N(Ei) we denote the

extended context subgraph which also contains the neighbours

N(Ei) of each node e ∈ Ei in G, which is the context of

that node. For a graph drawing perspective, if Gc[Ei] defines

a proper surface, we can think about a graph embedding of

another subgraph Gc[Ej ] on Gc[Ei].

We can create the metagraph M = (C,R′) of these

contexts. Each context is identified by a node in M . If there

is a connection in G between two contexts, we add an edge

(c1, c2) ∈ R′. This means if ∃(v1, v2) ∈ R : c1 ∈
con(v1), c2 ∈ con(v2) ⇒ (c1, c2) ∈ R′ or ∃(v1, v2) ∈
R : c1 ∈ con((v1, v2)), c2 ∈ con(v2) ⇒ (c1, c2) ∈ R′

or ∃(v1, v2) ∈ R : c1 ∈ con(v1), c2 ∈ con((v1, v2)) ⇒
(c1, c2) ∈ R′. See figure 2 for an illustration.

Adding edges between the knowledge graph G or a sub-

graph G′ = (E′, R′) ⊆ G = (E,R) and the metagraph M

in G ∪ M will lead to a novel graph. This can be either

seen as inverse mapping con−1(G′) or as the hypergraph

H(G′) = (X, Ê) given by

X = E′ ∪Gc[Ei]

Ê = {{ei, e∀e ∈ N(ei)}∀ei ∈ X}

This graph can be seen as an extension of the original

knowledge graph G′ where contexts connect not only to the

initial nodes, but also every two nodes in G′ are connected by

a hyperedge if they share the same context. See figure 3 for

an illustration.
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If C = E, this will lead to new edges in G enriching the

original graph. This step should be done after every additional

extension to the graph G. Thus we need to update both G as

well as M .

We will denote this hypergraph H on a knowledge graph G

and a metagraph M with HG|M . We might also add multiple

metagraphs M1 and M2 which will be denoted by HG|M1,M2
.

This graph can be seen as an enrichment of the original

knowledge graph G with contexts. It can be used to answer

several research questions and can be utilized to find graph-

theoretic formulations of research questions.

If the mapping con is well defined for the domain set the

Graph H can be generated in polynomial time. Since this is

in general not the case, this usually contains a data or text

mining task to generate contexts from free texts or knowledge

graph entities. With respect to the notation described in [7]

this problem p can be formulated as

p = D|R|f : D → X|err|∅ (1)

Here, the domain set D is explicitly given by D = G or –

if additional full-texts D̂ supporting the knowledge Graph G

exist – D = {G, D̂}. In our case the domain subset R = D.

In this case we need to find a description function f : D → X

with a description set X = C which holds all contexts. To find

relevant contexts we need an error measure err : D → [0, 1].

We have to consider several research questions. First of all:

What are meta information that can be used to generate a

context for a new metagraph? Good candidates are authors,

citations, affiliation, journal, and MeSH-terms or rather key-

words since they are available in most databases. We also need

to discuss text mining results like NER, relationship mining

etc. Having more general data like study data, genomics,

images, etc. we might also consider side effects; disease labels,

population labels (male; female; age; social class; etc.). Here

we show a proof of concept for less complex text mining

meta data. See figure 1, which describes the process of starting

with a simple document graph that can be extended with more

context data from text mining. We discuss this in more detail

within the next section.

The further research questions address the application of

this novel approach for both biomedical research as well

as text classification and clustering, NLP and knowledge

discovery, also with focus on Artificial Intelligence (AI). How

can we use the context metagraph to answer biomedical

scientific questions? What can we learn from connections

between contexts and how do they look like in the knowledge

graph? How can we use efficient graph queries utilizing the

context? It may also be useful to filter paths in the knowledge

graph according to a given context or to generate novel

visualizations. A possible question might be to learn about

mechanisms linked to co-morbidities or mechanisms being

contextualized by drug information. The meta-graph may also

contain information about cause-and-effect relationships in the

knowledge graph that are “valid” in a biomedical sense under

certain conditions. In addition, a contextualization-based on

demographic information or polypharmacy information. We

will discuss several use cases within the last section.

II. METHOD AND PRACTICAL APPLICATION

The following software was written in Java using Spring

Boot (see http://spring.io/projects/spring-boot) and Spring

Data (see https://spring.io/projects/spring-data) and integrated

in our SCAIView microservice architecture, see [8]. The

database backend is a graph database running Neo4j (see

https://neo4j.com/).

We will illustrate the following methods with example runs

on MedLine and Pubmed data. Both sources are already

included in the SCAIView NLP-pipeline. PubMed contains

29 million abstracts from biomedical literature, PMC about 4

million full-text articles.

A. Creating a document and context graph with basic context

extraction

The initial step of creating a document and context graph

with basic context extraction needs a basic definition of entity

sets E1, ..., En and their relations.

The articles and abstracts from PubMed and PMC already

come with a lot of contextual data. We may set EDocument

as the document set containing nodes, each representing

one document. In addition, we may add a set ESource =
{PubMed, PMC} as the source of a document. Thus, each

document can be interpreted as context of a data source.

All meta data are stored in new node sets. EAuthor stores

the set of authors, EAffiliation their affiliation which is

again context for the authors. Another relevant context is the

publisher, in our case EJournal. PubMed stores several classes,

for example Books and Documents, Case Reports, Classical

Article, Clinical Study, Clinical Trial, Journal Article, Review

etc. We store this in EPublicationType.

Another important context is EAnnotation storing all kind of

annotations like named entities or keywords, which come from

the MeSH tree, see [9] and https://www.nlm.nih.gov/mesh/

intro_trees.html. Thus, EMeSH ⊂ EAnnotation already comes

with a hierarchy and edges RMeSH . The value of MeSH terms

and their hierarchy for knowledge extraction was shown in

several recent studies like [10]. We will discuss the value of

MeSH as controlled vocabulary within the next section. See

figure 4 for an illustration of a single document.

All other relations can be added between the sets Ei,

for example RisCoAuthor, RhasAffiliation, etc. With these

information given it is – from an algorithmic point of view

– quite easy to add all context relations like RhasDocument,

RisAuthor, RhasAnnotation, RhasCitatio etc. Edges must also

store additional provenance information. See figure 5 for an

illustration.

B. Extending the knowledge graph using NLP-technologies

The initial knowledge graph can be extended by NLP-

technologies.

Terminologies and Ontologies are a widely considered topic

in research during the last years. They play an important role in
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Fig. 2: Illustration of a knowledge graph with context (left). The context is illustrated by colors surrounding nodes. At the

right the corresponding context metagraph. Every context in the knowledge graphs refers to a node in the metagraph and the

edges describe if in the original graph a edge from one context to the next exist. Contexts may also be added to edges.

G
′

M

Fig. 3: This figure describes the hypergraph H(G′) = (X, Ê) between the context metagraph M and the original knowledge

graph G or a subgraph G′ ⊂ G. This graph is sorted by contexts. The hyperedges, illustrated by sets and indicated by

non-hyperedges, connect nodes with context, but also nodes with the same context.

data and text mining as well as knowledge representation in the

semantic web. They become more and more important since

data provider publish their data in a semantic web formats,

namely RDF ([11]) and OWL ([12]), to increase integrata-

bility. The term terminology refers to the SKOS meta-model

[13] which can be summarized as concepts, unit of thoughts

which can be identified, labeled with lexical strings, assigned

notations (lexical codes), documented with various types of

note, linked to other concepts and organized into informal

hierarchies and association networks, aggregated, grouped into

labeled and/or ordered collections, and mapped to concepts.

Several complex models have been proposed in literature

and have been implemented in software, see [14]. Controlled

Vocabularies contain lists of entities which may be completed

to a Synonym Ring to control synonyms. Ontologies also

present properties and can establish associative relationships

which can also be done by Thesauri or Terminologies. See

[15] and [16] for a complete list of all models.

Here we define Terminologies similar to Thesauri as a set

of concepts. They form a DAG (Directed Acyclic Graph) with

child and parent concepts. In addition, we have an associative

relation which identifies similar or somehow related concepts.

Each concept has one or more labels. One of them is the

preferred identifier, all others are synonyms. To sum up, using

ontologies or terminologies for NER, we will have a hierarchy

within this ontology. But we may not only consider ontologies

and terminologies, but also controlled vocabularies like MeSH.

Here we have additional annotations with a different prove-

nance, one coming as keywords with the data, one obtained

from NER.

Another example is the Alzheimer’s Disease Ontology

(ADO, see [17]) EADO or the Neuro-Image Terminology

(NIFT, see [18]) ENIFT coming with their hierarchy RADO,

RNIFT . The process of NER will lead to another context rela-

tion EhasAnnotation. Since not all ontologies or teminologies

are described in RDF or OBO format we have to add data from
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Fig. 4: This figure is an illustration of a single document

within the context graph. The document node (purple) has

several gray annotation nodes, four red publication type nodes,

an orange author node with a gray affiliation. The source

(PubMed) is annotated in a green node, the journal in a yellow

node.

multiple sources. This is done by a central tool providing all

ontology data.

Another context data useful for knowledge extraction are

citations, thus edges RhasCitation between two nodes in

EDocument. The data from PMC already stores citation data

with unique identifiers (PubMed IDs). Some data is available

with WikiData, see [19] and [20]. Other sources are rare, but

exist, see [21]. Especially for PubMed a lot of research is

working on this difficult topic, see for example [22].

In addition we can consider relational information between

entities. For example BEL statements already form knowledge

graphs of semantic triples that consist of concepts, func-

tions and relationships [2]. To tackle such complex tasks

they constantly gather and accumulate new knowledge by

performing experiments, and also studying scientific literature

that includes results of further experiments performed by re-

searchers. Existing solutions are mainly based on the methods

of biomedical text mining to extract key information from un-

structured biomedical text (such as publications, patents, and

electronic health records). Several information systems have

been introduced to support curators generating these networks.

BELIEF, is one workflow generated for this purpose. BELIEF

build BEL like statements semi-automatically from retrieving

publications from a relevant corpus generation system called

SCAIView, see [23] and [24].

Figure 6 illustrates the relations "Levomilnacipran" inhibts

"BACE1", "BACE1" improves "Neuroprotection" and "BACE1"

improves "Memory" found with relation extraction on named

entities in a document. It is easy to see that context for a

document is now also context for the relations and vice versa.

If an entity within the relation has synonyms or is found within

another document with a different context, this might lead to a

deeper knowledge about the statement. Vice versa the context

of the document, for example if the knowledge was found

within a clinical trial, is a context to the statements.

III. APPLICATIONS

We will first of all discuss some missing data or data

integration problems as well as technical issues which need to

be solved. Afterwards we will give an outlook on NLP-based

on context information and the impact on answering semantic

questions. This is highly related to the FAIRification of re-

search data. This will lead to a short outlook on personalised

medicine.

A. Missing data

We faced several issues with data integration and missing

data. For example some publishers used OCR technologies

to convert PDF documents in XML structures. These were

usually problematic to process because some fields were

missing or wrongly filled.

We have not yet worked on the problem of author and

affiliation disambiguation. This is still a widely discussed

topic, see [25]. An interesting novel approach – also based

on Neo4j database technology – was introduced in [26]. The

authors used topological and semantic structures within the

graph for author disambiguation. Thus, we plan to integrate

state-of-the-art technologies.

In addition performance is a major problem, and the main

cause of latency for request. Thus, we had serious problems

integrating this framework in our microservice architecture,

see [8]. There are several possible explanations for this result,

both on technical as well as implementation side. Thus,

an important finding was that the storing and retrieval of

large knowledge graphs did work. Not surprisingly, for giant

and very dense knowledge graphs we need to find another

solution. We could either improve the database backend by

establishing a polyglot persistence architecture or use existing

graph databases like Cray Graph Engine, see [27]. This choice

has important implications for the further developing of this

architecture, for example SPARQL has more limitations than

Cypher. This is an important issue for future research.

However, these results were very encouraging and we will

discuss some more topics for further research.

B. Context-based NLP

This novel system extends our knowledge and the avail-

ability of context data. Context data is a very important

foundation for text mining [1]. For example, context-based

NER was discussed by [28] and there is still ongoing research,

for example on content-aware attributed entity embedding

(CAAEE), see [29]. The key strength of our approach is that in

every step of text mining and NLP all context data is available

and new data will be added. Thus, this system can be used for
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Fig. 5: This figure is an illustration of the initial document and context graph. A PubMed node is the source of document nodes

(green). There are several context annotations like article type (red), keywords (gray), authors (orange) and journal (yellow).

Authors have additional context (affiliations, gray).

Levomilnacipran

in
h
ib
its

BACE1

clinical trial

Memory

Neuroprotection
improv

es

improves

Fig. 6: This figure is an illustration of biological knowledge

within the context graph. The document node (purple) has sev-

eral yellow and orange annotation nodes which come from dif-

ferent terminologies found with NER. The relation extraction

task found the relation "Levomilnacipran" inhibits "BACE1",

"BACE1" improves "Neuroprotection" and "BACE1" improves

"Memory". These relations are illustrated with red edges.

Since the document describes a clinical trial, this is also a

context for the relations as well.

both building and validating Machine Learning (ML) and AI

approaches.

Of course the novel context data is not only suitable

for NER, but also for relation extraction. For example [30]

proposed a novel approach to context-based relation extraction.

Although our example is based on a small data set, the findings

suggest that a lot of existing data can be utilized as context

data. For example entities annotated by NER or manually

curated BEL statements may be applied as context.

Fig. 7: This figure illustrates a more complex semantic sub-

graph to query the knowledge graph. We search for two

documents having the same author and both of publication

type "Journal Article". The first document should have an

author called "Dizier", the second one a MeSH Term called

"metabolism".

Thus this research has several practical applications. Firstly,

it leads to validation and datasets for ML and AI approaches

towards text mining. Further work needs to be done to in-

vestigate how this data can be used systematically. Secondly,

it generalizes the idea of context so that it can be used for

semantic questions.

C. Answering semantic questions and FAIRification of data

Semantic questions can be formulated as subgraph struc-

tures of the initial knowledge graphs. For example we may ask:

"Which articles have been authored by Pacheco?". This will
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lead to a subgraph with two nodes v1, v2 where v1 = Pacheco

and an edge (v1, v2) = isAuthor. We may think of much more

complex examples, see figute 7 for an example.

In general these semantic subgraph queries (or: graph

queries) have an input Q = (V,E) ⊂ G and output

all subgraphs H ⊂ G with H ≃ Q. Thus, the problem

of answering semantic questions is a generalization of the

subgraph isomorphism problem. We know already subgraph

isomorphism is NP-hard, see [31]. It would be interesting to

find a general formulation of the generalization or restrictions

that can be applied to this problem. Since Cypher already

provides us with the possibility to query graph substructure,

further research might explore the runtime or might lead to

novel heuristics to solve this efficient.

Whilst this work did not consider the impact of novel

ontologies and terminologies, it did substantiate the impact of

them on context data. This is an interesting step towards the

FAIRification of data. Wilkinson introduced his FAIR guiding

principles in [32] referring to the findability, accessibility,

interoperability, and reusability of data, especially for research

data. A consequent application of the context idea leads to

meta data as context on data which can afterwards be used to

make meta data searchable even if the data itself is protected.

Thus, the inclusion of context into an information system

like SCAIView will make the data findable and accesible. In

addition, if interoperable ontologies are available, this data will

also be interoperable. This will already solve the three out of

four issues addressed by FAIR data.

D. Perspectives for Personalised Medicine

Hypothesis generation and knowledge discovery on biomed-

ical data are widely used in medical research and digital health.

For example researchers search for genomic or molecular

patterns, diagnosis or build longitudinal models. In addition,

the massive data available build the basis for a multitude of

predictive and personalised medicine ML and AI approaches.

A reasonable approach to tackle reproducible research in

predictive medicine could be to use a standardized and FAIR

context graph for biomedical research data. Thus, it would be

necessary to annotate not only biomedical literature but also

research data like moleculare data, imaging data, genomics and

electronical health records (EHR) with context information.

This information system can be used to retrieve data by con-

text (cohort size, settings, results, ..) and by content (imaging

data, genomic or moleculare measures, ...). For example, this

system may answer questions like “Give me a clinical trial

to reproduce my results or to apply my model” or “Give me

literature for phenotype A, disease B age between C and D

and a CT-scan with characteristic E”.

Here we presented a novel approach that annotates research

data with context information. The result is a knowledge

graph representation of data, the context graph. It contains

computable statement representation (e.g. RDF or BEL). This

graph allows to compare research data records from different

sources as well as the selection of relevant data sets using

graph-theoretical algorithms.

IV. CONCLUSION AND OUTLOOK

Here we discussed a proof-of-concept of a biomedical

knowledge graph combining several sources of data as context

to each other. We processed data from PubMed and PMC. This

initial knowledge graph was extended with results from text

mining and NRL-tools already included in our software. Thus,

we were able to provide both small datasets as well as large

collections of data.

We faced several issues with data integration and missing

data, for example because the input data had a bad quality. In

addition we have not yet worked on the problem of author and

affiliation disambiguation. The directly leads to the question

how our approach can be evaluated. For every kind of input

data another evaluation method needs to be established. With-

out this, the quality of the knowledge graph is directly linked

to the quality of input data. Before establishing a productive

system, this question needs to be properly addressed.

We introduced several applications, for example context-

based NLP, answering semantic questions and FAIRification

of data, perspectives for Personalised Medicine. The gener-

alisability of these ideas is subject to certain limitations. For

instance, the question of interoperable ontologies or ontologies

covering the issues of interoperability of data is still not

examined. In addition, there is still no FAIR-data information

system available.

This has thrown up many questions in need of further

investigation. Nevertheless, it is not keen to make an outlook

on the impact of such a FAIR and semantic information system

and data structure on context data for personalised medicine.
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