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Abstract—Support Vector Regression (SVR) is a powerful
supervised machine learning model especially well suited to the
normalized or binarized data. However, its quadratic complexity
in the number of training examples eliminates it from training
on large datasets, especially high dimensional with frequent
retraining requirement. We propose a simple two-stage greedy
selection of training data for SVR to maximize its validation
set accuracy at the minimum number of training examples and
illustrate the performance of such strategy in the context of Clash
Royale Challenge 2019, concerned with efficient decks’ win rate
prediction. Hundreds of thousands of labelled data examples were
reduced to hundreds, optimized SVR was trained on to maximize
the validation R

2 score. The proposed model scored the first place
in the Cash Royale 2019 challenge, outperforming over hundred
of competitive teams from around the world.

Index Terms—Support vector regression, greedy backward-
forward search, data editing, hyperparameters optimization)

I. INTRODUCTION

Support Vector Machine (SVM) is a supervised machine

learning (ML) model developed as far back as in 1963 [1]

on the basis of Vapnik-Chervonenkis computational theory

of learning [2]. Its introduction brought a breakthrough in

back then emerging machine learning domain through the

proposition of wide-margin linear separation of classes of data

in higher-dimensional input space that otherwise were not

separable. Since its original proposal multiple incarnations and

advancements have been added, most notably introduction of

the non-linear SVM classifier with the kernel trick in [3] and

soft margin maximization in [4], [5], shaping SVM to more

or less the model we see and use till today.

Support Vector Regression (SVR) extends the original ca-

pability of the SVM model into the regression space, while

sharing the same model fundamental and properties as SVM

does for classification: for instance in margin-maximizing

hyper-plane characterization, tolerance of errors etc. With

its ground breaking wide-margin generalization capabilities

SVM as well as SVR dominated the ML field for decades

demonstrating significant improvements in supervised learning

problems across many application areas: [1]-[7]

In the face of exponential growth of data in terms of

its variaty, dimensionality and size, we observe today, SVM

(SVR) quadratic complexity in the number of training exam-

ples, practically eliminates it from direct applications on large

datasets starting from hundreds of thousands of data points,

especially if frequent retraining is required [7], [8]. High cost

involved in computing large number of support vectors in SVR

training process is a critical drawback compared to simpler

supervised ML models, which although unable to demonstrate

such generalization ingenuity, are simply able to complete in

a reasonable time: [9], [10], [11].

Many SVM (SVR) model efficiency improvements have

been proposed recently in an attempt to re-enable the model

for the big data world: from simplifications like elimination

of linearly dependent support vectors [12], through selective

probabilistic examples removal [13], up to support vectors

elimination through smoothed separable case approximation

[11] or k-mean clustering [8] and more related techniques.

Based on the observation that a vast majority of the SVM

(SVR) predictive power comes from fairly small number of

key data-structure-capturing examples, an obvious attempt to

eliminate huge computational cost of training SVR could

be reduced by carefully selecting a small set of the critical

training data points. In an attempt to address this challenge

we have proposed a simple two-stage greedy search process

that returns an ordered list of most predictive data points of-

fering the most predictive SVR model based on incrementally

added number of training examples. Combined with automated

robust SVR hyper-parameter selection we aspire to achieve

a fully automated SVR model construction with a flexible

complexity control mechanism. The strength of our model

has been thoroughly evaluated in the context of Clash Royale

Challenge 2019. This international contest was concerned with

construction of the most efficient SVR model to predict win

rates of the most popular decks of Clash Royale: a card-

based online video game that surpassed 2.5B revenue in the

three years since launch. Our parallelizable double-search

process was able to reduce the original set of 100000 examples

down to 1500 key training data points, which SVR can be

trained with near-optimal validation R2 score. Our method

scored the first place in the challenge outperforming more

than hundred of participating competitive teams from around

the world and offering the gaming platforms an efficient new

model for rapid accurate estimation of players win chances to

better stimulate their immersion and maintain challenging and

immersive engagement.

The remainder of the paper is organized as follows. The

Clash Royale Challenge 2019 is described in Section II.

The two-stage greedy data selection strategy is presented in

Section III, followed with experimental results’ discussion in

Section IV and the concluding remarks in Section V.
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II. COMPETITION DESCRIPTION

Clash Royale is a popular video game combining the

elements of collectible card game and tower defense genres

(https://clashroyale.com/). The game involves selecting a deck

of 8 playable cards used to attack opponents as well as

defend against their cards. The Clash Royale Challenge 2019

is focused on efficient prediction of win rates of the most

popular Clash Royale decks in the 1v1 ladder games using

support vector regression model. Specifically the intention was

to find out whether it is possible to build an efficient win-rate

prediction model on a relatively small subset of decks, whose

win rates were estimated in the past.

The competition training dataset included 100000 decks

comprising exactly 8 cards out of the total of 90 unique

possible cards with accompanied win rates computed over

160 million games. The validation set of just 6000 randomly

selected decks with win rates was also provided and crucially

was extracted from the same period as the true testing set to

be used as final evaluation in the competition.

The objective of the competition was to provide 10 subsets

of 600,700,..,1500 decks from the training set along with the

SVR hyper-parameters of omega, C and gamma, that once

trained would result in the highest average R2 score (Eq. 1)

obtained on the testing set unavailable to the competitors. Only

preliminary results obtained on the small fraction of the testing

set are published on the leaderboard during the competition.

R2 = 1−

∑
i(yi − fi)

2

∑
i(yi − yi)

2
(1)

III. GREEDY 2-STAGE DATA SELECTION FOR SVR

A. Data preparation

Estimation of future average win rates for every deck was

enforced to be done with support vector regression model

trained on the bag-of-cards represented decks and their histor-

ically computed win rates. Given 90 unique cards the training

dataset was transformed to a binary matrix X [100k×90] of

100k (examples) by 90 (card presence indicators), while the

output vector Y [100k×1] contained corresponding win rates.

Similarly, the validation set X
[6000×90]
V and its corresponding

outputs Y
[6000×1]
V were prepared in the same way. Since the

validation set was collected from the same period as the unseen

testing set it has been decided that the evaluation of any

model performance will be obtained using R2 score computed

exclusively on the validation set XV against its outputs YV .

What it means is that at any point none of the data examples

the model is build on will be used to evaluate its performance.

Subsequent tests and the leaderboard score feedback positively

validated this design choice as a robust generalization feature.

B. Hyperparameters’ setting

The support vector regression model used in the competition

used radial basis function (RBF) kernel of the form:

G(xi, xj) = exp(−γ||xi − xj ||
2) (2)

In the light of big discrepancies between the training,

validation and the leaderboard sets used in the competition

we have decided not to optimize γ parameter to the data

during training, but rather use the recommended heuristic of

setting it to the median distance to the nearest neighbor among

randomly selected small subset of the training data.

The constraint to the alpha coefficients, C, was set to the

outlier-free estimate of the response Y standard deviation

by setting C = IQR(Y )/1.349, where IQR(Y ) is the

interquartile range of the response variable Y.

Similarly the ǫ parameter is set to 0.1 of the outlier-free

estimate of Y ’s standard deviation ǫ = IQR(Y )/13.49.

C. Greedy online backward-forward data selection

SVR training works the fastest with the small number of

examples, hence it appears the best option is to ensure the

addition of the new data point to the training set maximally

improves model’s validation performance. Selecting the best

new data point requires, however, an exhaustive evaluation

of all available remaining data points, which is computa-

tionally expansive. A balanced strategy, which we called

greedy online backward-forward selection involves a round

of sequential additions of any points that improve the current

SVR performance followed with rounds of removals that do

the same, i.e. improve the current SVR validation performance.

To strengthen the reduction side of the process the backward

search for removals is repeated until not a single data point’s

removal improves SVR performance. Such imbalance ensures

quicker accumulation of valuable data points and pruning

the dataset to the bare minimum, before resuming with the

addition, that overall further speeds up SVR training. The

advantage of such search is its ability to very quickly find

fairly well performing set of training points. The drawback

is that it is sequential - hence not parallelizable and lacking

the high performance quality of the full exhaustive addition /

reduction process. In the competition this search was applied

initially to reduce the original set of 100k examples down to

8000 most predictive data points.

D. Greedy round-exhaustive forward data selection

Greedy round-exhaustive forward data selection follows the

simple strategy of adding the best possible data point at each

round i.e. adding the point that maximally improves the SVR

validation performance. Such search ensures near-optimal

performance at the higher computational cost of testing the

addition of all other remaining data points before selecting the

best at each round. The advantage of such search is also the

fact that it is deterministic hence parallelizable at each round.

Unlike the greedy online search, it also ensures the important

property of incrementally monotonic set performance i.e. its

first n data points are the best n points of the set. While it

is near-intractable to perform such search on the whole set

of 100k data points, after reducing it with the fast but sub-

optimal greedy online search and together with the parallelized

evaluation implementation, it resulted in a relatively fast

process of finding incrementally best performing set of 1500
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data points. From this set, exploiting the above-mentioned

property of incremental performance monotonicity, choosing

the best subsets of 600,700,..,1500 was readily given by taking

the incrementally growing chunk of the data. The backward

side of the greedy backward-forward search was abandoned

for this search simply due to its much higher computational

cost and relatively low effectiveness since high quality forward

search left very little improvement capability for the backward

search at the too high computational cost.

E. Fine-tuning for further generalization improvements

Despite model’s leading leaderboard score, further attempts

have been made to further improve its generalization abilities

encouraged by still rather big R2 score discrepancies obtained

for training, validation and leaderboard sets. Beside already

mentioned robust data-dependent hyper-parameters setting,

significant improvement has been also achieved through in-

jecting a little bit of the training set into the validation set such

that the validation set gained extra 4000 data points and now

amounted to 10000 points in total. The added data have been

naturally removed from the training set to avoid training and

validating on the same data points. Injection of the data chunk

from different period improved validation set diversity and

boosted its representativeness, which was reflected in a slight

improvement of the leaderboard R2 score by about 0.01. The

increase in the evaluation cost on the larger validation set was

to a degree offset by selection from the smaller training set.

The composition balance between the training and validation

set sizes in the extended validation set was guided by an

intuition but certainly further research on optimality of this

balance could be conducted with likely further improvements.

IV. EXPERIMENTAL RESULTS

The above described 2-stage data selection process has

been executed on the standalone PC/laptop. The faster greedy

online b-f selection has been executed on average perfor-

mance laptop since it is not parallelizable and yielded fairly

quickly the results in a form of about 8000 preselected data

points. Throughout this fast search various fine-tuning and

generalization boosting strategies in the section above have

been tested that led to the chosen automated setting of the

SVR hyperparameters and blending the validation set with

a small chunk (4000 points) of the training set. Then the

greedy round-exhaustive forward search has been executed

on the pre-selected 8000 data points to select incrementally

near-optimal set of best 1500 points. It has been executed

on the standalone DELL PC with 20-cores Xeon processor

and the 20-workers parfor parallelization utilized to train and

evaluate SVR models in each round of data addition. With

such setup the execution was also relatively fast and most

importantly yielded intermediate results that were mixed with

simple complementary selection that yielded incremental score

progress on the leaderboard, reassuring the generalization

validity of the strategy. The validation set R2 score obtained

on the subset of preselected 8000 points reached in excess of

Table I
TIMELINE OF MODEL PERFORMANCE IMPROVEMENTS

Component online exhaustive hyperparameters validation mix

R2 score 0.237 0.258 0.266 0.274

0.6, while the validation scores obtained for the submission-

ready 10 solutions of 600, 700, ..., 1500 were in the range of

0.4−0.5. The final leaderboard score of the best solution was

almost 0.275 and was the top score among over 100 teams

submissions. Although a huge model overfitting has been

observed - evident in a form of big differences between the

validation set and leaderboard set scores, the consistency and

monotonicity of the score improvements achieved throughout

submission of the intermediate search results reassured the

strategy validity and allow to expect good results.

Based on the feedback from the leaderboard during the

competition, Table I reflects the incremental improvements of

the R2 score of the proposed model with gradually added

component features throughout the contest duration.

V. CONCLUSIONS

We have proposed a simple yet robust 2-stage greedy search

strategy for selecting a small subset of the incrementally most

predictive data points tested with SVR model deployed to learn

decks’ win rates within Cash Royale Challege 2019. With

the 1st place scored by our model we have demonstarted an

extreme efficiency of the proposed data editing strategy, which

relatively quickly squeezed out the wining accuracy out of only

essential 1% of the original 100k dataset, SVR model would

otherwise be completely intractable to train on.
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