
Composition of Languages Embedded in Scala

Seyed H. HAERI (Hossein)

Université catholique de Louvain, Belgium

hossein.haeri@ucl.ac.be

Paul Keir

University of the West of Scotland, UK

paul.keir@uws.ac.uk

Abstract—Composition is amongst the major challenges faced
in language engineering. Erdweg et al. offered a taxonomy
for language composition. Mernik catalogued the use of the
Language Definitional Framework LISA for composition sorts
in that taxonomy. We produce a similar catalogue for embedded
language engineering in Scala.

We begin with techniques that are not specific to Scala. They
are applicable in any host language with a module system and
support for higher order functions. We, then, present two more
techniques to examine Scala-specific language engineering. Inter-
estingly enough, even though dealing with embedded languages,
in terms of lines of code, our material is of comparable length
to its LISA counterpart. Our work lends insight into Scala’s
serviceability for composition, as a host for embedded language
engineering.

I. INTRODUCTION

a) Language composition is a piece of reality!: Every-

day, there are new programming languages that are born by

combining ideas from older languages. Inspiration aside, that

is an act of composition in many cases. For example, roughly

put, Scala adds functional programming and ML modules with

mixin composition to Java; which, in return, is C++ without

pointers; which, in return, is C with OOP.

The taxonomy of Erdweg et al. [1] suggests a terminology

and notations for describing such compositions. According to

them, one can formalise our Scala description as:

Scala ≅ C ⊳ C++ ⊲ Java ⊳ (MLModule ⊎ Mixin) (1)

b) Observations from Chemistry: Consider the reaction:

H2SO3 + 2×NaOH −→ 2×H2O +Na2SO3 (2)

In Chemistry, two key ingredients for success in the study of

such equations are: (CI1) the availability of substances as the

subjects of study, and, (CI2) knowledge about how to perform

a desirable composition. In reaction (2), for instance, both

substances H2SO3 and NaOH need to be available. One also

needs to know how to double NaOH for the equation balance

to be right. Also, how to add NaOH to H2SO3 (like the rate

of addition, proper temperature, etc.) needs to be known.

c) Programmatic Availability & Composition: The study

of formulae like equation (1) determines the precise relative

position of languages. Using the outcome, one would be able

to add, for example, what is missing in equation (1) so that

the “≅” can be replaced by an “=”. One would also gather

that the left-out “FP⊎” is necessary right before MLModule

for the balance to be right. Such manipulations are similar

to adjusting coefficients in reaction (2) to obtain a balance.

Similar to Chemistry, two key ingredients become noticeable

here: (PLI1) programmatic availability of programming lan-

guages themselves and their belongings as the subjects of

study, and, (PLI2) knowledge about how to programmatically

obtain desirable language compositions.

By the time of this writing, (mainstream) languages are

next to inaccessible as programmatic entities. The study of

programmatic language composition, nonetheless, can be con-

ducted independently using, say, contrived languages. That is

how this paper tries to gain (PLI2).

d) Contributions: We demonstrate three techniques for

composing languages embedded in Scala. The first (Section II)

is applicable in any host language with a module system and

support for higher order functions. The second (Section III) is

based on Lightweight Modular Staging (LMS) [2]. And, the

third – which is also a new solution to the Expression Problem

(EP) [3], [4], [5] – employs (possibly restricted) abstract types.

The trick in our third technique is promoting the cases of Alge-

braic Data Types (ADTs) into their own ADT-parameterised

standalone components. We showcase each technique using

the example compositions of Mernik [6]. We, then, compare

the three techniques for their success in addressing the EP

concerns (Section V). A discussion about the related work

also comes at Section VI.

e) Coding Conventions: This paper assumes familiarity

with Scala. For each showcase, the syntax and semantics

come in separate packings called syntax and semantics,

respectively. Due to space restrictions, in our code, the name

of the showcase is only appended as a comment to the end

of the first line of the respective syntax or semantics.

For the same reason, our code is also otherwise unusually

compressed. Whilst the showcases are referred to in the prose

in CamlCase, their respective Scala package (containing the

showcase’s syntax and semantics) is named like_this

or abbreviated as lt.

II. SCALA-UNSPECIFIC

Erdweg et al. catalogue five different ways languages can be

composed: language extension, language restriction, language

unification, self-extension, and extension composition. Mernik

offers simple DSLs to showcase those ways in LISA [7]. In

this section, we employ Mernik’s simple DSLs for the same

purpose, albeit in Scala.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 399–410

DOI: 10.15439/2019F61

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 399



A. Language Extension

A base language B is said to be extended to a language

E when the description of B is amended with a description

fragment to get E. Erdweg et al. denote that by B ⊳ E.

Consider the language Robot below (packaged under the name

robot in Scala) for a robot arm that takes commands for

moving one unit to either of the four 2D directions. The

semantics of Robot involves updating the arm’s position

(recorded in terms of the x and y coordinates) based on the

commands (lines 11 to 16).

1 object syntax {//robot

2 class Command

3 case object Left extends Command

4 case object Right extends Command

5 case object Up extends Command

6 case object Down extends Command

7 case class Commands(s: Seq[Command])}

8 object semantics {import syntax._//robot

9 class Position(var x: Int, var y: Int)

10 object position extends Position(0, 0)

11 def locate: Command => Unit = {

12 case Left => position.x -= 1

13 case Right => position.x += 1

14 case Up => position.y += 1

15 case Down => position.y -= 1}

16 def locate(cs: Commands) = cs.s.foreach(locate)

17 }

Robot is extended to RobotTime (the robot_time package)

by adding to the semantics, i.e., Robot ⊳ RobotTime:

1 package robot_time

2 import robot._; import syntax._

3 def time(cs: Commands): Int = cs.s.length

Assuming that executing each command takes one time unit,

the total time required for a set of commands is the size of

the set. The method time in line 3 above adds that piece of

semantics to Robot to get RobotTime. whereas Commands(

Right, Down, Down) in Robot has only got the semantics

x = 1, y = −2, it also has the semantics t = 3 in RobotTime.

(The coordinates are obtained by locate in line 16 of robot

and the timing by line 3 of robot_time.)

Here is a difference between our implementation of Robot-

Time and that of Mernik: The latter is done in LISA: a

Language Definitional Framework (LDF) that combines OOP

with Attribute Grammars (AGs) [8], [9]. As such, LISA’s

counterpart for time has to visit all the grammatical rules

in Robot to attribute the new piece of semantics to them. On

the contrary, Scala gave us the joy of simply equating time by

the number of the commands, regardless of the grammatical

rules involved.

B. Language Restriction

A base language B is said to be restricted to a language

R when certain parts of the B’s features are removed upon

transition to R. This is denoted by B ⊲ R. A typical usage

of that is when a language is narrowed to a core of it. That is,

certain parts of the base syntax are cancelled into combinations

of other base syntactic parts that are deemed to be equivalent.

For example, both GPH [10] and Utrecht HASKELL [11] are

developed like that.

The language RobotPositive below (packaged under

robot_positive) restricts Robot to only Up and Right

commands. (Technically, the object syntax below is not

required. Yet, we retain it for completeness.)

1 object syntax {//robot_positive

2 import robot.syntax.{Right, Up, Commands}}

3 object semantics {//robot_positive

4 import robot.syntax.{Right, Up, Commands}

5 import robot.semantics.position

6 def locate(cs: Commands) {

7 for(c <- cs.s) c match {

8 case Right => position.x += 1

9 case Up => position.y += 1

10 }

11 }

12 }

Any attempt to use the expression in the previous section

under RobotPositive will fail to compile for the availability

of Down in it, which is absent in RobotPositive. On the other

hand, Commands(Right, Up, Up) has the semantics x =
1, y = 2 under RobotPositive.

C. Language Unification

Erdweg et al. say two languages L1 and L2 are unified

to L when both L1 and L2 make sense independently from

one another and from L (as the composition’s outcome).

Furthermore, in L, neither L1 nor L2 should be dominated

by the other so that a concept of equity prevails in the

composition. The notation is L = L1 ⊎g L2, where g is the

so-called glue code required for the composition.

Having seen the language Robot, we now consider the

language ExprAdd (packaged under expr_add): a simple

ADT with two cases for natural numbers and addition.

1 object syntax {//expr_add

2 class Expr {//Expr ::= Expr + Term | ...

3 def + (t: Term): Expr = Add(this, t)

4 }

5 class Term extends Expr//Expr ::= ... | Term

6 //Term ::= n

7 case class Num(n: Int) extends Term

8

9 case class Add(left: Expr,

10 right: Term) extends Expr

11 }

12 object semantics {//expr_add

13 import syntax._

14

15 def value: Expr => Int = {

16 case Num(n) => n

17 case Add(e, t) => value(e) + value(t)

18 }

19 }

Using value in line 15 above, one obtains the semantics

5, 12, and 6 for the expressions Num(5), Num(10)+ Num(2),

and Num(1)+ Num(2)+ Num(3), respectively.

The language RobotUniExprAdd below (packaged under

robot_uni_expr_add) unifies Robot and ExprAdd by

allowing the robot arm to take commands for moving

as many units to either of the four directions as the

corresponding ExprAdd argument evaluates to. As such,

Commands(Right(Num(5)), Up(Num(2)+ Num(10)),

Up(Num(2)+ Num(2)+ Num(2)), Down(Num(4))) has

the semantics x = 5, y = 14. Check locate in line 17 below.

1 object syntax {//robot_uni_expr_add

400 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



2 import robot.syntax.Command

3 import expr_add.syntax._

4

5 case class Left(e: Expr) extends Command

6 case class Right(e: Expr) extends Command

7 case class Up(e: Expr) extends Command

8 case class Down(e: Expr) extends Command

9 }

10 object semantics {//robot_uni_expr_add

11 import robot.syntax.Commands

12 import robot_uni_expr_add.syntax._

13

14 import robot.semantics.position

15 import expr_add.semantics._

16

17 def locate(cs: Commands) {

18 for(c <- cs.s) c match {

19 case Left(e) => position.x -= value(e)

20 case Right(e) => position.x += value(e)

21 case Up(e) => position.y += value(e)

22 case Down(e) => position.y -= value(e)

23 }

24 }

25 }

D. Self Extension

This is the situation when the description of a language L

itself is used for extending it. Typically, embedded DSLs self-

extend their host language. For example, all the languages we

present in this paper self-extend Scala.

Like Mernik, we believe that demonstrating self extension

takes much more than the volume of a single research paper.

This is because bootstrapping a language L to the level where

it can handle self extension is already more involved than that

volume. Hence, we too drop demonstration of self extension.

E. Extension Composition

Extension composition is when (both or at least one of) the

language descriptions that are to be composed are themselves

compositions of other language descriptions. As such, exten-

sion composition can be regarded as higher order composition.

Six combinations of extension and unification are possible

(three distinguished by Mernik):

1) Double-Unification (⊎⊎): L1 ⊎g (L2 ⊎h L3).
2) Double-Extension (⊳⊳): B ⊳ E1 ⊳ E2.

3) Extension by a Unification (⊳ (⊎)): B ⊳ (L1 ⊎ L2).
4) Extension of a Unification ((⊎) ⊳): (L1 ⊎ L2) ⊳ E.

5) Unification with an Extension ({⊎, (⊳)}): L⊎ (B ⊳ E)
or (B ⊳ E) ⊎ L. Note the symmetry.

We now consider each combination.
1) Double-Unification (⊎⊎): To that end, we begin by

presenting Mernik’s language Dec (packaged under dec) in

Scala. Dec enables the programmer to bind a set of variables

to integer constants.

1 object syntax {//dec

2 case class ConstDefList(ds: Map[String, Int]) }

Unsurprisingly, the (Scala-automatic) semantics of ConstD-

efList("a" -> 5, "b" -> 10) is then {a 7→ 5, b 7→ 10}.

With that, we illustrate the first class of Mernik’s exten-

sion compositions using RobotUniExprAddUniDec (packaged

under rueaud). As suggested by its name, this language is

(Robot⊎ExprAdd)⊎Dec. The Robot⊎ExprAdd portion is al-

ready presented. See robot_uni_expr_add in Section II-C.

We now show how to obtain the remaining unification.

1 import expr_add.syntax.{Expr, Term}

2 object syntax {//rueaud

3 import robot.syntax.Commands; import dec.syntax._

4 implicit class CDLInCs(val cdl:ConstDefList) {

5 def in (s: Commands) = {

6 consts = cdl.ds; new EnvComm(cdl.ds, s)

7 }

8 }

9 class EnvComm(val ds: Map[String, Int],

10 val cs: Commands)

11 var consts: Map[String, Int] = Map()

12 case class Var(n: String) extends Term}

13 object semantics {//rueaud

14 import syntax._; import robot_uni_expr_add.syntax._

15 import robot.semantics._

16 def value_ext: (Expr, Expr => Int) => Int = {

17 case (Var(n), c) => consts(n)

18 case (e, c) =>

19 expr_add.ext_semantics.value_ext(e, c)}

20 def value(e: Expr): Int = value_ext(e, value)

21 def locate(r: EnvComm) {

22 r.cs.s.foreach {

23 case Left(e) => position.x -= value(e)

24 case Right(e) => position.x += value(e)

25 case Up(e) => position.y += value(e)

26 case Down(e) => position.y -= value(e)

27 }

28 }

rueaud.syntax aims at reusing the former language

descriptions as they are. To that end, it takes a pimp my

library approach [12] on trying to implicitly (lines 4 to

10 above) give instances of dec.ConstDefList the extra

feature of being followed by commands possibly referring to

the declarations. Such declarations followed by expressions

are then instances of EnvComm. The variable consts (line 11)

is where the processed declarations are stored. The new ADT

case Var (line 12) is for looking up the value a name is bound

to. rueaud legitimises commands for moving the robot arm

as many units as a pertaining expression evaluates to (lines 23

to 26). Note that, because of Var, those expressions can refer

to declarations as well. All that together gives ConstDefList

("a" -> 5, "b" -> 10)in Commands(Right(Var("

a")), Up(Num(2)+ Var("b")), Down(Num(4))) the

semantics x = 5, y = 8 in RobotUniExprAddUniDec.

Instead of reusing expr_add.semantics.value, the

rueaud.semantics.value method uses the method

expr_add.ext_semantics.value_ext, which will be

explained shortly. This is because the former is closed on

the set of ADT cases it can handle. Hence, we resort to the

following extensible semantics of ExprAdd:

1 object ext_semantics {

2 import syntax._

3 def value_ext: (Expr, Expr => Int) => Int = {

4 case (Num(n), c) => n

5 case (Add(e, t), c) => c(e) + c(t)}

6 def value(e: Expr): Int = value_ext(e, value)

7 }

In the fashion of γΦC0 [13], value_ext above takes a

continuation argument c (line 3), which caters postponing

the closing time until the appropriately complete shape [14]

of the ADT is known (line 6 above for expr_add and

line 20 for rueaud). As such, extending RobotUniExprAdd

to RobotUniExprAddUniDec here involves manipulating the

former. See Section V for more.

2) Double-Extension (⊳⊳): The idea in RobotTimeSpeed

below (packaged under robot_time_speed) is to enable

SEYED HOSSEIN HAERI, PAUL KEIR: COMPOSITION OF LANGUAGES EMBEDDED IN SCALA 401



the user to instruct the robot arm with the speed for its

subsequent moves, until further notice. It adds a pertaining

command to RobotTime to obtain Robot ⊳ RobotTime ⊳

RobotTimeSpeed.

1 object syntax {//robot_time_speed

2 import robot.syntax.Command

3 case class Speed(i: Int) extends Command

4 }

5 object semantics {//robot_time_speed

6 import syntax._; import robot.syntax.{Command, Commands}

7 import robot.semantics.position

8 def locate: Command => Unit = {

9 case Speed(_) => {}

10 case c => robot.semantics.locate(c)}

11 def locate(cs: Commands) = cs.s.foreach(locate)

12 var speed: Double = 1.0

13 def time(cs: Commands): Double = {

14 var sum: Double = 0.0

15 for(c <- cs.s) c match {

16 case Speed(i) => speed = i

17 case _ => sum += (1.0 / speed)

18 }

19 sum

20 }

21 }

The new command for altering speed is Speed in line 3

above. This new command has no impact on the arm’s

position, as manifested in line 9. It is in the time calculation

where, once used, the related variable (i.e., speed in line 12)

is updated accordingly (line 16) and taken into consideration

for subsequent commands (line 17). Commands(Up, Speed

(2), Right, Left) has the semantics x = 1, y = 0, t = 2
in RobotTimeSpeed.

3) Extension by a Unification (⊳ (⊎)): We now demon-

strate RobotExtExprAddUniDec = Robot ⊳ (ExprAdd⊎Dec).
We begin by ExprAddUniDec (packaged under eaud):

1 import expr_add.syntax._

2 object syntax {//eaud

3 import dec.syntax._

4 class EnvExpr(val ds: Map[String, Int], val e: Expr)

5 implicit class CDL2CDLInE(val cdl: ConstDefList) {

6 def in (e: Expr) = {

7 consts = cdl.ds

8 new EnvExpr(cdl.ds, e)

9 }

10 }

11 var consts: Map[String, Int] = Map()

12 case class Var(n: String) extends Term

13 }

14 object semantics {//eaud

15 import syntax._

16 import dec.syntax._

17 def value_ext: (Expr, Expr => Int) => Int = {

18 case (Var(n), c) => consts(n)

19 case (e, c) => expr_add.ext_semantics.value_ext(e, c)

20 }

21 def value(e: Expr): Int = value_ext(e, value)

22 def value(ee: EnvExpr): Int = value(ee.e)

23 }

eaud is similar to rueaud in Section II-E1 and we drop fur-

ther explanation. RobotExtExprAddUniDec below (packaged

under reeaud) tries to make use of eaud.

1 object syntax {//reeaud

2 import dec.syntax._; import robot.syntax.Commands

3 class EnvComm(val ds: Map[String, Int],

4 val cs: Commands)

5 implicit class CDL2CDLInC(val cdl: ConstDefList) {

6 def in (s: Commands) = {

7 consts = cdl.ds

8 new EnvComm(cdl.ds, s)

9 }

10 }

11 var consts = eaud.syntax.consts

12 }

13 object semantics {//reeaud

14 import robot.semantics.position

15 import robot_uni_expr_add.syntax._

16 import eaud.semantics.value; import syntax._

17 def locate(r: EnvComm) {

18 r.cs.s.foreach {

19 case Left(e) => position.x -= value(e)

20 case Right(e) => position.x += value(e)

21 case Up(e) => position.y += value(e)

22 case Down(e) => position.y -= value(e)

23 }

24 }

25 }

Here are the few idiosyncrasies of reeaud: Firstly, reeaud

fails to reuse most of the syntactic facilities of eaud.

This is because the former employs declarations followed

by commands, whereas the latter employs declarations fol-

lowed by expressions. In line 11, nevertheless, consts is

reused. Secondly, even though RobotExtExprAddUniDec =
Robot ⊳ . . . , in reeaud.semantics, we do not reuse

robot.syntax. On the contrary, in line 15, it reuses the

syntax of robot_uni_expr_add (for RobotUniExprAdd).

This is because, in Robot, it is only possible to move the

arm one unit to either direction. The Scala syntax for those

two pieces of (embedded) syntax cannot coexist side by side.

See Section III-A2 for more.

reeaud.semantics.locate is similar to rueaud.sem-

antics.locate. In RobotExtExprAddUniDec,

ConstDefList("a" -> 5, "b" -> 10)in Commands(

Right(Var("a")), Up(Num(2)+ Var("b")), Down(

Num(4))) has semantics x = 5, y = 8.

As pointed out by Mernik, so long as functional-

ity is the only concern, RobotUniExprAddUniDec ≡
RobotExtExprAddUniDec. The difference, both in LISA and

Scala, is in the language descriptions, and the combinations by

which they are obtained. Unlike its LISA counterpart, nonethe-

less, obtaining RobotExtExprAddUniDec in Scala involves

intermediate material that is not reused in the final product.

4) Extension of a Unification ((⊎) ⊳): RobotUniExprAd-

dExtRobotTime below (packaged under rueaert) extends

RobotUniExprAdd (Section II) by a timing facility. The time

required for carrying out a command of moving in one direc-

tion equals what the pertaining expression evaluates to (lines 9

to 12). The method time below is a simple fold operation on

the given sequence of commands, based on that explanation.

RobotUniExprAddExtRobotTime = (Robot ⊎ ExprAdd) ⊳

RobotTime.

1 object syntax {//rueaert

2 import robot_uni_expr_add.syntax._

3 }

4 object semantics {//rueaert

5 import expr_add.semantics._

6 import robot.syntax.Commands

7 import robot_uni_expr_add.syntax._

8 def time(cs: Commands): Int = (0 /: cs.s){

9 case (s, Left(e)) => s + value(e)

10 case (s, Right(e)) => s + value(e)

11 case (s, Up(e)) => s + value(e)

12 case (s, Down(e)) => s + value(e)

13 }

14 }

402 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Commands(Right(Num(5)), Up(Num(2)+ Num(10)),

Up(Num(2)+ Num(2)+ Num(2)), Down(Num(4))) has

the semantics x = 5, y = 14, t = 27 in rueaert.

5) Unification with an Extension ({⊎, (⊳)}):

Take RobotUniExprMul = Robot ⊎ ExprMul, where

ExprAdd ⊳ ExprMul. The language ExprMul extends

ExprAdd by a new ADT case for multiplication (Mul).

What is unique about ExprMul amongst the visited extension

combinations is that, upon extension, it changes the syntactic

categories of the ADT cases it borrows from ExprAdd.

(And, in fact, it also provides a new syntactic category, i.e.,

Factor.) As presented in Section III-B, this can impose

a great deal of complexity when language extension is

implemented using inheritance. Here is ExprMul (packaged

under expr_mul).

1 import expr_add.syntax.{Expr, Term, Add}

2 object syntax {//expr_mul

3 //Term ::= Factor | ...

4 class Factor extends Term

5 implicit class TermTimesFactor(val t: Term) {

6 def * (f: Factor): Term = Mul(t, f)

7 }//Term ::= ... | Term * Factor

8 //Factor ::= n

9 case class Num(n: Int) extends Factor

10 case class Mul(left: Term,

11 right: Factor) extends Term

12 }

13 object semantics {//expr_mul

14 import syntax._

15 import expr_add.

16 ext_semantics.{value_ext => add_value}

17

18 def value_ext: (Expr, Expr => Int) => Int = {

19 case (Num(n), c) => n

20 case (Add(e, t), c) =>

21 add_value(Add(e, t), c)

22 case (Mul(t, f), c) => c(t) * c(f)

23 }

24 def value(e: Expr): Int = value_ext(e, value)

25 }

In line 1, ExprMul imports the syntactic entities it borrows

from ExprAdd: the ADT case Add and the syntactic categories

Expr and Term. It then introduces its new syntactic category

Factor in line 4. Next, in lines 5 to 7, it provides the syntactic

sugar for multiplication. Note how it, afterwards, declares

numbers to now be of the category Factor – as opposed to

Term in expr_add.syntax. The rest of expr_mul should

be straightforward except for the Scala syntax of lines 15

to 16. Those lines abbreviate expr_add.ext_semantics

.value_ext to add_value in expr_mul.semantics. In

line 21, expr_mul reuses add_value for the solo ADT case

that it borrows from expr_add, i.e., Add.

1 object syntax {//robot_uni_expr_mul

2 import robot.syntax.Command

3 import expr_add.syntax.Expr

4 import expr_mul.syntax._

5

6 case class Left (e: Expr) extends Command

7 case class Right(e: Expr) extends Command

8 case class Up (e: Expr) extends Command

9 case class Down (e: Expr) extends Command

10 }

11 object semantics {//robot_uni_expr_mul

12 import robot.syntax.Commands

13 import syntax._

14

15 import robot.semantics.position

16 import expr_mul.semantics._

17

18 def locate(cs: Commands) = cs.s.foreach {

19 case Left(e) => position.x -= value(e)

20 case Right(e) => position.x += value(e)

21 case Up(e) => position.y += value(e)

22 case Down(e) => position.y -= value(e)

23 }

24 }

The above implementation of RobotUniExprMul (packaged

under robot_uni_expr_mul) takes tightly after RobotUni-

ExprAdd (in Section II-C). We, therefore, do not provide

a dedicated walk-through. Commands(Right(Num(5)* Num

(2)), Down(Num(4)+ Num(2)* Num(3))) has the seman-

tics x = 10, y = −10 in robot_uni_expr_mul.

F. Language Specific?

To investigate the extent to which Scala-specific language

features impact upon our design, we intend also to com-

pare against realisations in other languages. To this end, we

have prepared a C++ implementation which adopts the Scala

approach outlined so far. Respecting the dynamic polymor-

phism of the Scala original, the C++ implementation utilises

shared_ptr smart pointer to manage the memory allocation

and runtime typing of expressions; allowing the vector

container member object of the Commands class to store

different expression types. User-defined integral and string

literals also allow a notably concise syntax for the Num and Var

instantiations; e.g., Commands{Right{"a"_s}, Up{2_n +

"b"_s}, Down{4_n}}. Future work will explore this further.

Note that we are keen in the solution of this section not

to employ Scala’s built-in open recursion. Due to unrelated

reasons, however, Scala compilers might still employ open

recursion internally to compile our code. Nonetheless, our

code does not require that Scala idiosyncrasy. Testimony to

that lack of requirement is our C++ code. Note that whilst

open recursion is automatic in Scala, in C++, one needs to

explicitly use “this->” for the late-binding of open recursion.

III. LMS-BASED

Rompf and Odersky [2] coin Lightweight Modular Staging

(LMS) for Polymorphic Embedding [15] of DSLs in Scala.

They employ a fruitful combination of the Scala features

detailed in [16] that, as a side-product, offers a very simple

yet effective solution to EP. In this paper, we use LMS for

that EP solution. The essence of LMS is the use of Scala

traits for extensibility and super calls for reuse. With their

mixin nature, Scala traits can extend one another, enjoying the

benefits of inheritance. In particular, an ADT can be inherited

upon trait extension. But, the heir trait can also add its own

new ADT cases. On top of that, super calls enable reusing

methods on the cases of the original ADT. Whereas the new

cases can be handled by the same method, albeit overridden

by the heir trait.

In the package eaud below (for ExprAddUniDec), for

implementing both the syntax and semantics, traits are used

– as opposed to objects in Section II. Instead of importing

members from other languages, it now extends those other

languages to acquire the same members via inheritance. In

SEYED HOSSEIN HAERI, PAUL KEIR: COMPOSITION OF LANGUAGES EMBEDDED IN SCALA 403



Scala terms, eaud.syntax is, for instance, said to be mixing

in expr_add.syntax and dec.syntax, in line 1 below.

In line 4, then, eaud.semantics overrides value. In

line 5, it handles the new ADT case eaud.syntax introduces.

All those other ADT cases that eaud inherits are, in line 6,

relayed to the upper levels of inheritance.

1 trait syntax extends expr_add.syntax with dec.syntax {

2 ... /* like eaud.syntax in Section II-E3 */ ...}

3 trait semantics extends syntax with expr_add.semantics {

4 override def value: Expr => Int = {

5 case Var(n) => consts(n)

6 case e => super.value(e)} ...}

This is how LMS facilitates both simplicity and extensibility.

(Note that we needed not to resort to value_ext.)

LMS has been successfully employed for languages in a

multitude of applications. For the benefits of LMS, the reader

is invited to consult those works. Given that we did not come

to observe new benefits, we will not get into that here. We

rather dedicate this section to the difficulties we faced over

employing LMS for embedded language composition.

A. Minor Difficulties

The two categories of minor difficulties we faced relate

to language restriction (Section III-A1) and clashes occurred

between names upon composition (Section III-A2).

1) Language Restriction: Upon extension, the programmer

is usually provided with no means for acting selectively on the

members to be inherited. When mixing traits too, all the (pub-

lic or protected) members get inherited automatically. Hence,

with inheritance being the means for language composition,

language restriction is not possible. That enforces import as

the fallback. With the use of traits, the mechanics is, however,

more involved than Section II. Because traits are abstract, one

needs to materialise them first (line 2 below), and only then,

they can be imported from (line 3).

1 trait syntax/* robot_positive */{

2 val robosyn = new robot.syntax {}

3 import robosyn.{Right, Up, Command, Commands}

4 }

Even though LISA also employs inheritance for language

composition, this difficulty does not arise there. The reason

is as follows: Being also an AG system, (subject) language

semantics is specified in LISA by traversing the concrete

syntax. On the other hand, leveraging its OOP, LISA allows

the heir language to override the parent language’s concrete

syntax. As a result, language restriction is also possible in

LISA via inheritance.

One final related comment: In our experience, enforced

imports like those required for language restriction were not

exclusive to that way of language composition. In fact, in

a good number of other occasions, the languages do make

selective use of one another. That, on its own, was not a knotty

problem. It, however, requires increasingly more care when

it comes to interplay with hierarchies of languages and the

relevant Scala mixins.

Note that imported names (like those in line 3 above)

do not get inherited but the respective materialised traits

(like robosyn in line 2 above) do. Such imports can be

required on several occasions down the hierarchy. In the case

of unification, however, where the multiple inheritance nature

of mixins is employed, an extra override might also be

enforced to disambiguate duplicated names across the meeting

two hierarchies. See Section III-B for more.

2) Name Clash: Recall from Section II-E3 that

RobotExtExprAddUniDec = Robot ⊳ (ExprAdd ⊎ Dec). In

an LMS-based implementation of RobotExtExprAddUniDec,

therefore, one would naturally want to implement rueaud.

semantics as follows:

1 trait semantics extends rueaud.syntax with

2 robot.semantics with eaud.semantics {//rueaud

3 ... /* locate like Section II-E1 */ ...}

That is, however, not possible. The error message is: “object

Left is not a case class, nor does it have an unapply

/unapplySeq member.” The problem is that, even though

Left is inherited from robot, in locate, Scala would not be

able to match it using the syntax Left(e). The available con-

structor and extractor of Left take no arguments. Moreover,

overloading that syntax is not possible. This is because Scala

desugars both case classes and case objects to objects with

unapply (or unapplySeq) methods. Objects, on the other

hand, are final, banning any later manipulation. To proceed,

one needs to use robot_uni_expr_add.semantics in re-

turn of robot.semantics.

The problem is harder to diagnose for RobotUni-

ExprAddExtRobotTime. Recall from Section II-E4 that

RobotUniExprAddExtRobotTime = (Robot ⊎ ExprAdd) ⊳

RobotTime. For the attempt

1 trait semantics extends rueaert.syntax with

2 robot_uni_expr_add.semantics with

3 robot_time.semantics {... /* rueaert */ ...}

even when one employs robot_uni_expr_add.semantics

instead of robot.semantics, one gets an error – this time,

regarding the composition itself: “overriding object Left in

trait syntax; object Left in trait syntax cannot override final

member.” The problem here is with robot_time being an

extension to robot, bringing the case object Left into the mix

with that of robot_uni_expr_add that takes an argument.

B. Major Difficulties

The difficulties we spoke about in the previous subsection

were not particularly acute in that not many circumvention

attempts would fail for them. In this section, we will report

a multi-staged combat with an acute difficulty we faced. In

short, the combat was against the combination of Scala’s path-

dependant typing and intervention of concrete syntax.

The contents of this section might look too specific to Scala.

They are not. Scala’s path-dependant typing is just one way to

foster family polymorphism [17] (as opposed to lightweight

family polymorphism [18]). The familiar reader will figure

out that the same problem is likely to emerge in every host

language that embraces family polymorphism.

Given that ExprMul is a direct extension to ExprAdd, one’s

first guess would be:

404 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



1 trait expr_mul.syntax extends expr_add.syntax {...}

That is, however, not possible because, then, Num cannot be

overridden. Recall from Section II-E5 that ExprMul changes

the syntactic category of Num. But, even an attempt like those

in Section III-A1 for the syntax

1 trait syntax {

2 val easyn = new expr_add.syntax {}//expr_mul

3 import easyn.{Expr, Term, Add} /* Num, Factor, etc. */

4 }

would still cause failure for the semantics.

1 trait expr_mul.semantics extends syntax with

2 expr_add.semantics {...}

Here is the error message: “overriding object Num in

trait syntax; object Num in trait syntax cannot override final

member.” This is because of the clash between the Num of

such a expr_mul.syntax and expr_add.semantics. See

Section III-A2 for an explanation on similar error messages.

Now, let us suppose for the sake of argument that the

semantics too selectively imports the ADT cases:

1 trait semantics {//expr_mul

2 val emsyn = new expr_mul.syntax {}

3 import emsyn.{Num, Mul, Factor}

4 val easyn = new expr_add.syntax {}

5 import easyn.{Expr, Add, Term}

6 ... /* value or value_ext here */ ...

7 }

Recall that ExprMul adds the ADT case Mul to ExprAdd.

To reuse – à la LMS – the ExprAdd semantics whilst also

handling the new ADT case, one may (mistakenly) try:

1 override def value: Expr => Int = {

2 case Mul(t, f) => value(t) * value(f) ...

3 }

But, that will not type-check because of path-dependant

typing interference: Expr in value’s signature is different

from Expr that Mul inherits from. Here is the error mes-

sage for line 2 above: “constructor cannot be instantiated

to expected type; found: semantics.this.emsyn.Mul re-

quired: semantics.this.Expr.” Even worse: An attempt for

reusing the semantics of the only ADT case that remains intact

over the move from ExprAdd to ExprMul using value_ext

1 trait semantics {...//expr_mul

2 import easem.{value_ext => add_value}

3 def value_ext: (Expr, Expr => Int) => Int = {

4 case (Num(n), c) => n

5 case (Add(e, t), c) => add_value(Add(e, t), c)

6 case (Mul(t, f), c) => c(t) * c(f)} }

will again fail due to path-dependant typing. The error message

for line 5 above is: “type mismatch; found: semantics.this

.easyn.Add required: semantics.this.easem.Expr.”

Given that expr_mul.semantics is to reuse pattern

matching of expr_add.semantics, the former is also bound

to the types – here , ADT cases – of the latter. In order to

prevent the path-dependant clashes, thus, the only way forward

seems to be for both expr_mul.syntax and expr_mul.

semantics to import types of expr_add.semantics. This

is, of course, very unnatural for the former.

value: Expr => Int

expr_add{Num, Add}, eaud{Num, Add, Var},

expr_mul{Num, Add, Mul}

locate: Command => Unit (without e)
robot{Right, Left, Up, Down},

robot_positive{Right, Up}

locate (with (e))
in reeaud: EnvComm => Unit

in robot_uni_expr_add: Commands => Unit

in rueaud: EnvComm => Unit

in robot_uni_expr_mul: Commands => Unit

EnvComm

reeaud, rueaud

Fig. 1: Duplicate Entities in Sections II and III

1 trait syntax {//expr_mul

2 val easem = new expr_add.semantics {}

3 import easem.{Expr, Term, Add}; ...}

4 trait semantics extends syntax {//expr_mul

5 import easem.{Expr, Add, value_ext => add_value}

6 ...

7 def value_ext: (Expr, Expr => Int) => Int = {

8 case (Num(n), c) => n

9 case (a: Add, c) => add_value(a, c)

10 ...

11 }

12 ...

13 }

Still, if not done craftily enough, path-dependant typing can

be an impediment. Replacing the line 9 above with

case (a @ Add(_, _), c)=> add_value(a, c)

will fail to type-check because a is considered to be of type

this.Add; whereas, add_value accepts an easem.Expr.

The unsightly circumvention would be:

case (a @ Add(_, _), c)=> add_value(a.

asInstanceOf[easem.Expr], c.asInstanceOf[easem

.Expr => Int]).

We would like to remind that all the difficulties illus-

trated in this section were only experienced in the presence

of manipulation in the syntactic categories upon extension.

Syntactic categories are often used for dealing with concrete

syntax. Semantics, on the other hand, inputs abstract syntax.

The following section presents a solution that disassociates

concrete syntax from abstract syntax. It applies the LMS at

the abstract syntax level, and, hence, independently of the

concrete syntax that varies across languages. That design sets

the different languages free on engineering their syntactic

categorisation whilst enjoying the benefits of LMS.

IV. REFACTORING

The previous two sections were developed as if the guest

language implementer was not aware in advance of the next

guest languages and the upcoming combinations. We also

maintained a backward compatibility policy in that we did

not touch the older languages as we proceeded. Refactoring,

however, is common in everyday software development.

Refactoring can have a variety of meanings, depending on

the target and the methods used [19]. Here, we do not plan

extensive refactoring. We only focus on duplicate elimination

in the fashion of the extract superclass method [19, §12.6].

Fig. 1 lists a number of duplicates in Sections II–III.

SEYED HOSSEIN HAERI, PAUL KEIR: COMPOSITION OF LANGUAGES EMBEDDED IN SCALA 405



We notice that the method value is duplicate in expr_add,

eaud, and expr_mul. More precisely, the ADT cases Num

and Add – which are, basically, inherited from expr_add –

are handled thrice in the codebase. As will be shown in this

section, we gave value its own abstraction.

We also notice that the method locate is present in two

sets of language descriptions: in (i) robot and robot_posit

-ive (when the four direction commands do not take

arguments); and, in (ii) reeaud, robot_uni_expr_add,

rueaud, and robot_uni_expr_mul (when the four direction

commands do take arguments). Each of those sets constitutes

a candidate for refactoring. Finally, EnvComm is common

between reeaud and rueaert – constituting yet another

refactoring candidate. Although we have indeed refactored the

candidates of this paragraph as well, we will not include their

demonstration in this paper. The interested reader can look

them up in our online codebase.

Let us now focus on refactoring the first row of Fig. 1.

(Refactoring the other rows of Fig. 1 is done similarly.) Here

is a succinct summary of actions to be taken: The idea is

a combination of LMS and Component-Based Mechanisation

[20], [21], [13]. We parameterise the ADT cases Num, Add,

Var, and Mul by the language description and perform their

semantics evaluation independently of the language descrip-

tion. We pack the two former cases – namely, Num and Add

that are common between all the items in the first row of

Fig. 1 – together in a trait. Then, we extend that trait for

Var and later for Mul, both à la LMS. Finally, the concrete

language descriptions only get to mix the respective abstract

descriptions. The elaboration follows.

1 trait na_syntax {

2 type E //E for Expr

3 type N <: E //N for Num

4 type A <: E //A for Add

5

6 def n_extr(n: N): Option[Int]

7 def a_extr(a: A): Option[(E, E)]

8

9 object N {def unapply(n: N) = n_extr(n)}

10 object A {def unapply(a: A) = a_extr(a)}

11 }

12 trait na_semantics extends na_syntax {

13 def value: E => Int = {

14 case N(n) => n

15 case A(e1, e2) => value(e1) + value(e2)

16 }

17 }

In the trait na_syntax above, the abstract type E (in line 2)

is a language-independent representation for the expression

type of a guest language. Such a guest language can be

an item in row 1 of Fig. 1 or any similar language with

integer arithmetics that at least contains integral literals and

addition. Given that ADTs are implemented in Scala using

plain inheritance, two more language-independent abstract

types have been employed that are announced to be extending

E. Those are N for Num and A for Add, in lines 3 and 4.

Because N and A are supposed to later be instantiated to

the respective cases of an ADT, they are expected to come

with the Scala matching syntax, like those in lines 14 and

15. The Scala machinery for enforcing availability of the

desirable matching syntax requires a discipline in coding that

is slightly tricky. The discipline involves, for each ADT case

abstract type, inclusion of a same-named (singleton) object –

called companion object – that ships, then, with an extractor,

i.e., an unapply method of the right type signature. The

actual duty of the extractor is relayed to an abstract method,

to be enforced to every guest language that implements

na_syntax. For N, for instance, that duty is on n_extr

in line 6. The Scala signature of n_extr means that, if

matching N succeeds, it would be initialising an argument of

type Int. All that wiring enables the method na_semantics

.value to handle the semantics of Num and Add.

1 trait nam_syntax extends na_syntax {

2 type M <: E

3 def m_extr(m: M): Option[(E, E)]

4 object M {def unapply(m: M) = m_extr(m)}

5 }

6 trait nam_semantics extends nam_syntax with na_semantics {

7 override def value: E => Int = {

8 case M(e1, e2) => value(e1) * value(e2)

9 case e => super.value(e)

10 }

11 }

The trait nam_syntax adds the abstract type M (in line 2

above), which corresponds to Mul. It also provides the Scala

matching syntax in lines 3 and 4. The trait nam_semantics

reuses (à la LMS) what is already implemented by

na_semantics by performing a super call on the relevant

ADT cases (line 9).

1 trait expr_add.syntax extends na_syntax {

2 /* ... like lines 2 to 10 of

3 expr_add.syntax in Section II ... */

4 type E = Expr //Fix the ADT type.

5 type N = Num //Fix the Num case.

6 type A = Add //Fix the Add case.

7 //And, fix the extractors.

8 def n_extr(n: Num) = Num.unapply(n)

9 def a_extr(a: Add) = Add.unapply(a)

10 }

11 trait expr_add.semantics extends

12 expr_add.syntax with na_semantics

In addition to working out the Section II concrete syntax,

the trait expr_add.syntax above, now is required to provide

evidence on it indeed having ADT cases for integral literals

and addition. That, again involves some slightly tricky disci-

pline consisting of two steps. First, in lines 4 to 6, the concrete

counterparts for the abstract (ADT case) types in na_syntax

are fixed. Second, in lines 8 and 9 the extractors promised to

na_syntax are fixed.

Recall from expr_add.syntax of Section II that Num and

Add are both case classes. Scala actually desugars case classes

to normal classes in addition to companion objects with the

right-typed unapply methods. That is why we can use Num.

unapply and Add.unapply off-the-shelf.

Nothing more remains for expr_add.semantics to do

except inheriting its (abstract and concrete) syntax from

expr_add.syntax and its semantics from na_semantics.

1 trait expr_mul.syntax extends nam_syntax {

2 val easyn = new expr_add.syntax {}

3 import easyn.{Expr, Term, Add};...

4 //like lines 4 to 11 of expr_mul.syntax in Section II...

5 type E = Expr; type N = Num; type A = Add; type M = Mul

6 def n_extr(n: Num) = Num.unapply(n)

7 def a_extr(a: Add) = Add.unapply(a)

8 def m_extr(m: Mul) = Mul.unapply(m)}

406 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



9 trait expr_mul.semantics extends

10 expr_mul.syntax with nam_semantics

Implementing ExprMul, in this fashion, is similar, as

demonstrated above. It only is that, like in Section III, our

use of traits instead of objects in favour of LMS imposes

instantiation of the trait expr_add.syntax (line 2) before

importing the desirable concrete syntax items (line 3).

Remarks

na_semantics is similar to how one defines the semantics

of Num and Int using Modular Structural Operational Seman-

tics (MSOS) [22]. In MSOS, the semantics of a component is

defined exclusively in terms of the relevant language elements

– making it ignorant about all other language elements.

na_semantics only concerns Num and Int, and, is ignorant

about other language elements. γΦC0 [13] describes that as:

“client na semantics<F ⊳ Int ⊕ Num>{. . . },” where F is

the family parameter of na semantics. In words, that reads:

A family Φ to be substituted for F needs at least to have

components Int and Num (or their equivalents) in its mix.

From another language theoretical viewpoint, na_syntax

and na_semantics are both type classes [23]. From that

viewpoint, expr_add.syntax is an instance of na_syntax

and expr_add.semantics is an instance of na_semantics.

The evidence for the former is provided in lines 2 to 7

in na_syntax. Interestingly, however, our encoding of type

classes in Scala is not the common one [24]. In particular, we

do not prescribe the use of implicits.

As also announced at the last paragraph of Section III,

na_syntax and na_semantics (and also nam_syntax and

nam_semantics) relate to the abstract syntax only. This is

how they leverage LMS and yet do not suffer from the concrete

syntactic anomalies discussed in Section III. Moreover, unlike

Modular Reifiable Matching [25], the technique we presented

in this section is not exclusively targeting two-level types

[26]. The reason is that our technique in this section fully

disassociates concrete syntax from the abstract syntax so there

no longer is an issue of levels in the types. LMS itself comes

with no such separation either – suggesting the name abstract

LMS for our technique.

It is noteworthy that the disassociation of abstract and

concrete syntax with the lack of the LMS anomalies discussed

in Section III needs not specifically be à la LMS. The

same impact can also be achieved using integration of a

decentralised pattern matching [27]. In the latter technique,

the syntax is defined in terms of abstract syntax components.

The concrete syntax in the latter technique is then defined on

top of those syntax components. The difference is that the

abstract LMS composes components (that correspond to ADT

cases) additively [28, §17.3], whilst the latter technique would

be composing them sequentially.

The connection between this technique and Component-

Based Software Engineering (CBSE) [28, §17],[29, §10] is

also interesting. From a CBSE standpoint, nam_syntax is

a component in that: Without binding to a particular imple-

mentation, it specifies its so-called ‘requires’ and ‘provides’

interfaces. The nam_syntax ‘requires’ interface is its lines 2

and 3 – imposing the following two requirements, respectively:

The user of nam_syntax needs to provide a type M. And,

there has to be a way to extract two expressions of type E

from an instance of M. In return, the ‘provides’ interface

of M is its line 4, where M’s Scala match syntax (used in

line 8 of nam_semantics) is offered. As such, nam_syntax

is promoting the ADT case Mul to its standalone component.1

This is an important characteristic of the third technique that

relates to the EP. Next section is dedicated to that relationship.

V. EXPRESSION PROBLEM

EP is a recurrent problem in the field of Programming

Languages, for which a wide range of solutions have thus

far been proposed, e.g., [31], [32], [33]. Consider [34], [35],

[36], [31], [32], [33], to name a few. Haeri [21] defines EP

as the challenge of finding an implementation for an ADT –

defined by its cases and the functions on it – that:

E1. is extensible in both dimensions, i.e., both new cases and

functions can be added.

E2. provides weak static type safety, i.e., applying a function

f on a statically2 constructed ADT term t should fail to

compile when f does not cover all the cases in t.

E3. upon extension, forces no manipulation or duplication

to the existing code.

E4. accommodates separate compilation, i.e., compiling the

extension imposes no requirement for repeating com-

pilation or type checking of existing code. Such static

checks should not be deferred to the link or run time.

In Sections II–IV, we presented three techniques for embed-

ded language composition in Scala. All the three techniques

satisfy E4. We now reflect on their E1–E3 competence: The

first technique clearly satisfies E1. Section III-A2 outlines a

scenario where LMS fails to satisfy E1. Whether the third

technique satisfies E1 depends on whether it employs trait

mixing for composition or not. Note that it needs not. The three

techniques all relax E2, although they can be circumvented to

work when defaults are available [35]. That is a consequence

of Scala performing pattern matching at runtime. LMS too

relaxes E2 and that has thus far been considered an acceptable

setting. (For example, MVCs [37] and Torgersen’s second

solution [34] both have the same issue.) The state of affairs

for LMS might change in future though [38].

As witnessed by RobotUniExprAddUniDec in Sect-

ion II-E1, the Scala-unspecific technique fails to satisfy E3

when new cases are to be added. As detailed in Section III-B,

LMS has to fight path-dependant typing to satisfy E3 when

syntactic categories are updated upon composition. Whether

there always is a winning strategy for LMS in such a situation

is not known. The third technique clearly satisfies E3.

1Two reasons for not promoting Num and Add to components: 1) that
would complicate presentation. 2) the current design in which those two
ADT cases are packed together in a single component (i.e., na_syntax)
demonstrates how to address the Common Reuse Principle of Martin [30].

2If the guarantee was for dynamically constructed terms too, we would
have called it strong static type safety.

SEYED HOSSEIN HAERI, PAUL KEIR: COMPOSITION OF LANGUAGES EMBEDDED IN SCALA 407



We understand that the path-dependant typing difficulties

of the LMS-based technique might indeed be a result of our

peculiar design. In particular, our choice of giving the syntax

and semantics of a language each a trait of their own might

be picked as the root cause. We would like to defend that

choice of ours, specifically, for the likelihood of engineering

(or experimentation with) more than one semantics for the

same syntax [15]. In such cases, separation of the syntax and

semantics is inevitable.

Finally, one may wonder whether the third technique makes

it to a new solution to EP. The answer is indeed yes. At

least for EP in presence of defaults [35]. This is the third

EP solution of its kind: It promotes ADT cases to their own

ADT-parameterised components. See [20], [21] for the first

and [27] for the second EP solution of this kind.

VI. RELATED WORK

a) LISA: As stated earlier, this paper is highly inspired

by Mernik [6]. We essentially took his examples for showing

how to compose languages embedded in Scala. With LISA

being an LDF, even though Scala is famous for its hospitality

to embedded languages, we were surprised to end up having

less lines-of-code (LoC) in all the three techniques.

Fig. 2 summarises the LoC comparison. In the LoC there,

we have also included some syntactic cosmetics that we did

not display in this paper. In our experience, the occasions

where Scala outperforms LISA by far are those where the

task was a ready cake for GPLs. Examples are RobotTime for

all the techniques and RobotExtExprAddUniDec for the third

technique. For the former, a simple container size query does

the job. For the latter, simple trait mixing does.

The first technique generally performs better (in terms of

LoC) than LISA. The second is even better usually with its

utilisation of trait mixing (dismissing the obvious import

s) and super calls. At last, the third is the best with its a

posteriori refactoring. The two occasions when LISA con-

siderably outperforms Scala are RobotUniExprAdd for the

first technique and RobotUniExprMul for the third. Those

correspond to Sections III-A2 and III-B, respectively.

The factored out code in the third technique is not counted

in Fig. 2. Once that too is added, the total LoC reaches 328

– which is 2 more than first technique’s LoC. We tend to

think the reason is the simplicity in the semantics of Mernik’s

examples. That caused the number of lines the refactoring

saves to be less than the extra overhead the technique requires.

For more realistic case studies, we expect the balance to

be completely different. That would be well in favour of

refactoring due to reasonably more involved semantics.

b) Other Language Composition Catalogues: Völter [39]

proposes a taxonomy of language composition that he show-

cases in JetBrains MPS. His taxonomy is along axes, not all

of which having a clear correspondent in the work of Erdweg

et al. As explained by Mernik, the resulting ways for language

composition that Völter prescribes, however, are subsumed by

the latter taxonomy. Völter’s taxonomy gives (syntax-oriented)

IDE development for languages a higher weight.

Barrett, Bolz, and Tratt [40] catalogue composition of six

different Python and Prolog virtual machines. Their study has

a particular focus on measuring performance of the resulting

interpreters upon composition.

Zhang et al. [41] facilitate composition of languages that

are embedded using Object Algebras [42]. This is achieved

using their simple predesignated annotation. Their showcase

focuses on hierarchies of language extension. Using linearised

multiple language inheritance, they also simulate a single

language unification. Zhang et al. do not consider higher order

composition.

Melange [43] is an LDF that is specially equipped for

language composition. Various syntactic facilities are available

in Melange to instruct mix-and-match for many different

aspects of a language – ranging from syntax, dynamic and

static semantics, and name-binding to IDE features. Language

composition under Melange is catalogued for a small set of

showcases but with in-length discussions on customisability.

The current documentation of Melange, however, makes it

hard for us to compare its catalogue of language composition

with similar works. Specifically, we fail to figure out which

ways for language composition Melange supports in general

(namely, for other scenarios than the ones already in their

documentation) and how.

c) Components for Language Specification: PLanCompS

funcons are syntactic constructs that ship with their own

fixed static and dynamic semantics (presented in MSOS).

The PLanCompS specification of a programming language

is developed by merely assembling funcons [44]. Example

assemblies are larger academic languages [45] and medium-

scale ones [46]. Despite their merit, funcons do not constitute

CBSE components. In particular, funcons do not ship with

their ‘requires’ interfaces.

MVCs [37] are components for solving an extension to EP.

Rather than components in their CBSE sense, however, MVCs

are components in a Component-Oriented Programming [47]

sense. (Cf. [21, §4.3].) MVCs rely on the implementation

details of how a component realises its interfaces. CBSE

components, in contrast, are identified by their ‘requires’ and

‘provides’ interfaces.

Haeri and Schupp [20], [27] take a CBSE approach for

the implementation of embedded languages. Their approach

employs type constraints and multiple inheritance. The third

technique here employs (possibly constrained) abstract types

instead of type parameters. Although essentially the same, the

former can make code terser. In Scala, however, offering the

match syntax is apparently not possible for type parameters.

Finally, Cazzola and Vacchi [48] too have taken a CBSE

approach. Their components correspond to a DSL’s compiler

passes. Accordingly, how their work relates to the common

language specification formalisms is not clear. In contrast,

components in our third technique are ADT cases – acting

as the unit of study for formal semantics.

d) Component-Based AGs: AGs are a powerful means

for language specification with many benefits that are well-

studied. Attempts to modularise AGs go back to Saraiva and

408 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Sum

LISA 42 23 13 19 19 32 39 41 20 34 23 20 19 344
T1 32 7 16 26 34 11 40 25 31 34 17 22 31 326
T2 30 6 15 20 29 10 34 20 26 28 13 23 33 287
T3 29 5 15 16 16 10 10 20 23 6 13 23 16 202

Columns: L1 = Robot, L2 = RobotTime, L3 = RobotPositive, L4 = ExprAdd, L5 = RobotUniExprAdd, L6 = Dec, L7 = RobotUniExprAddUniDec,

L8 = RobotTimeSpeed, L9 = ExprAddUniDec, L10 = RobotExtExprAddUniDec, L11 = RobotUniExprAddExtRobotTime, L12 = ExprMul, L13 =

RobotUniExprMul Rows: LISA = Mernik’s Implementation, Ti = Technique i, for i ∈ {1, 2, 3}

Fig. 2: Lines-of-Code Comparison between Mernik’s LISA and Our Three Techniques

Swierstra [49]. Saraiva’s Higher Order AGs (HOAGs) [50]

were the initial steps towards using AGs in a component-

based fashion. Viera and Swierstra [51] formally define several

ways to combine HOAGs. However, those ways do not tightly

correspond to the usual composition mechanics of general-

purpose languages.

So long as EP is concerned, the correct behaviour of a

HOAG w.r.t. E2 is not universally agreed upon. In terms of

HOAGs, that amounts to the absence of an attribute expected

from another component in the mix. In particular, should the

code then fail statically or dynamically? Zipper functions [52],

[53] act like HASKELL by statically reporting such errors so

long as they can be caught iteratively [54].

Kiama [55] uses AGs embedded in Scala for language

specification. It is possible to use Kiama in a component-based

fashion – as done for embedding Oberon-0 [56] in Scala [57].

However, disassociation of the concrete and abstract syntax

can become non-trivial in Kiama. We anticipate that would

cause similar difficulties to those we faced over our second

technique. For the Oberon-0 embedding, facing such diffi-

culties were unlikely for the different pieces of syntax were

all available in advance. On the contrary, whilst composing

unrelated pieces of syntax, clash of concrete syntax is likely.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present three different techniques for

composing languages embedded in Scala. The first is Scala-

unspecific and works in presence of common module systems

and higher order functions (Section II). The second is LMS-

based and requires mixin composition and super calls (Sec-

tion III). The third works by promoting ADT cases to ADT-

parameterised components (Section IV). We showcase the

three techniques using the example compositions of Mernik,

which, in return, were designed to exhibit LISA’s composition

facilities for Erdweg et al.’s taxonomy of composition. We

manifest the strengths and weaknesses of each technique. We

compare them according to their performance as EP solutions

(Section V) and LoC (Section VI-0a).

Systematic study of embedded language composition is

a young topic. Numerous paths exist for future research.

Examining our third technique against larger testcases is

an immediate future work. A promising candidate is the

LDTA’11 challenge of modular implementation of Oberon-

0. The testcase can then be compared with the LDTA’11

contestants. We anticipate complications in dealing with a few

issues along the way: Firstly, the technique takes a design-by-

contract approach on the names it chooses for abstract types,

e.g., A and N in na_syntax. In large scale, these names are

likely to clash upon composition. Avoiding that would imply a

priori knowledge. That kind of knowledge is, however, rare in

experimental language design. Secondly, outside lab settings,

usual software engineering techniques may become inevitable.

We took the lab liberty of not being concerned with that here.

For example, position and consts lack proper scoping and

are common intact amongst all the descendants of Robot and

Dec, respectively.

Type classes are more widely practised in HASKELL. It

would be interesting to see our third technique in HASKELL

with its type classes instead of Scala’s mixins and inheritance.

The comparison between the results of ours and those ac-

cording to the following two HASKELL EP solutions would

be particularly interesting: Data Types a la Carte [36] and

Parametric Compositional Datatypes [32].

Object Algebras are gaining gravity as a powerful abstrac-

tion for embedded language development [31], [58], [59],

[41]. The current technology for embedding Object Algebras,

however, is heavyweight in both term creation [60] and algebra

composition. It is easy to turn na_syntax and the like into

Object Algebra Interfaces to lower those two weights. How

useful the result would be in lowering those two weights in

the current Object Algebras technology is another future work.

Finally, it is important to also produce catalogues like this

paper in other host languages than Scala. Many languages

have merits in hosting other languages. But, the limits of

that and the key factors of it are not clear. Composition of

the embedded languages is certainly amongst the important

factors. A head-to-head comparison on hospitality of language

composition is missing. We are currently working on that.

REFERENCES

[1] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language Composition
Untangled,” in 12

th LDTA, A. Sloane and S. Andova, Eds. ACM,
Mar. 2012, p. 7.

[2] T. Rompf and M. Odersky, “Lightweight Modular Staging: a Pragmatic
Approach to Runtime Code Generation and Compiled DSLs,” in 9

th

GPCE. Eindhoven, Holland: ACM, 2010, pp. 127–136.
[3] W. R. Cook, “Object-Oriented Programming Versus Abstract Data

Types,” in FOOL, ser. LNCS, J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, Eds., vol. 489, Holland, Jun. 1990, pp. 151–178.

[4] J. C. Reynolds, “User-Defined Types and Procedural Data Structures as
Complementary Approaches to Type Abstraction,” in New Direc. Algo.

Lang., S. A. Schuman, Ed. INRIA, 1975, pp. 157–168.
[5] P. Wadler, “The Expression Problem,” Nov. 1998, Java Genericity

Mailing List.

SEYED HOSSEIN HAERI, PAUL KEIR: COMPOSITION OF LANGUAGES EMBEDDED IN SCALA 409



[6] M. Mernik, “An Object-Oriented Approach to Language Compositions
for Software Language Engineering,” J. Sys. & Soft., vol. 86, no. 9, pp.
2451–2464, 2013.

[7] M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer, “LISA: An
Interactive Environment for Programming Language Development,” in
11

th CC, ser. LNCS, R. N. Horspool, Ed., vol. 2304. Springer, Apr.
2002, pp. 1–4.

[8] D. E. Knuth, “Semantics of Context-Free Languages,” Math. Sys. Theo.,
vol. 2, no. 2, pp. 127–145, 1968.

[9] J. Paakki, “Attribute Grammar Paradigms - A High-Level Methodology
in Language Implementation,” ACM Comp. Surv., vol. 27, no. 2, pp.
196–255, 1995.

[10] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones, “Algorithm
+ Strategy = Parallelism,” JFP, vol. 8, no. 1, pp. 23–60, Jan. 1998.

[11] A. Dijkstra, J. Fokker, and S. D. Swierstra, “The Architecture of
the Utrecht HASKELL Compiler,” in 2

nd HASKELL, S. Weirich, Ed.
Edinburgh, Scotland: ACM, 2009, pp. 93–104.

[12] M. Odersky, “Pimp my Library,” Artima Developer Blog, vol. 9, Oct.
2006.

[13] S. H. Haeri and S. Schupp, “Expression Compatibility Problem,” in 7
th

SCSS, ser. EPiC Comp., J. H. Davenport and F. Ghourabi, Eds., vol. 39.
EasyChair, Mar. 2016, pp. 55–67.

[14] J. Jeuring, S. Leather, J. P. Magalhães, and A. R. Yakushev, “Libraries
for Generic Programming in HASKELL,” in Adv. Func. Prog., 6th Int.

School, AFP, ser. LNCS, P. W. M. Koopman, R. Plasmeijer, and S. D.
Swierstra, Eds., vol. 5832. Springer, May 2008, pp. 165–229.

[15] C. Hofer, K. Ostermann, T. Rendel, and A. Moors, “Polymorphic
Embedding of DSLs,” in 7

th GPCE, Y. Smaragdakis and J. G. Siek,
Eds. Nashville, TN, USA: ACM, Oct. 2008, pp. 137–148.

[16] M. Odersky and M. Zenger, “Scalable Component Abstractions,” in 20
th

OOPSLA. San Diego, CA, USA: ACM, 2005, pp. 41–57.

[17] E. Ernst, “Family Polymorphism,” in 15
th ECOOP, ser. LNCS, J. Lind-

skov Knudsen, Ed., vol. 2072. Springer, Jun. 2001, pp. 303–326.

[18] C. Saito, A. Igarashi, and M. Viroli, “Lightweight Family Polymor-
phism,” J. Func. Prog., vol. 18, no. 3, pp. 285–331, 2008.

[19] M. Fowler, “Refactoring: Improving the Design of Existing Code,” in
2
nd XP/Agile, ser. LNCS, D. Wells and L. A. Williams, Eds., vol. 2418.

Springer, Aug. 2002, p. 256.

[20] S. H. Haeri and S. Schupp, “Reusable Components for Lightweight
Mechanisation of Programming Languages,” in 12

th SC, ser. LNCS,
W. Binder, E. Bodden, and W. Löwe, Eds., vol. 8088. Springer, Jun.
2013, pp. 1–16.

[21] S. H. Haeri, “Component-Based Mechanisation of Programming Lan-
guages in Embedded Settings,” Ph.D. dissertation, STS, TUHH, Ger-
many, Dec. 2014.

[22] P. D. Mosses, “Modular Structural Operational Semantics,” JLAP, vol.
60–61, pp. 195–228, 2004.

[23] P. Wadler and S. Blott, “How to Make ad-hoc Polymorphism Less ad-
hoc,” in 16

th POPL. ACM Press, Jan. 1989, pp. 60–76.

[24] B. C. d. S. Oliveira, A. Moors, and M. Odersky, “Type Classes as Objects
and Implicits,” in 25

th OOPSLA, W. R. Cook, S. Clarke, and M. C.
Rinard, Eds. ACM, Oct. 2010, pp. 341–360.

[25] B. C. d. S. Oliveira, S.-C. Mu, and S.-H. You, “Modular Reifiable
Matching: A List-of-Functors Approach to Two-Level Types,” in 8

th

HASKELL, B. Lippmeier, Ed. ACM, Sep. 2015, pp. 82–93.

[26] T. Sheard and E. Pasalic, “Two-Level Types and Parameterized Mod-
ules,” JFP, vol. 14, no. 5, pp. 547–587, 2004.

[27] S. H. Haeri and S. Schupp, “Integration of a Decentralised Pattern
Matching: Venue for a New Paradigm Intermarriage,” in 8

th SCSS, ser.
EPiC Comp., M. Mosbah and M. Rusinowitch, Eds., vol. 45. EasyChair,
Apr. 2017, pp. 16–28.

[28] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2011.

[29] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
7
th ed. McGraw-Hill, 2009.

[30] R. C. Martin, “Design Principles and Design Patterns,” 2000, online
article available from the ObjectMentor website.

[31] B. C. d. S. Oliveira and W. R. Cook, “Extensibility for the Masses
– Practical Extensibility with Object Algebras,” in 26

th ECOOP, ser.
LNCS, vol. 7313. Springer, 2012, pp. 2–27.

[32] P. Bahr and T. Hvitved, “Parametric Compositional Data Types,” in 4
th

MSFP, ser. ENTCS, J. Chapman and P. B. Levy, Eds., vol. 76, Feb.
2012, pp. 3–24.

[33] Y. Wang and B. C. d. S. Oliveira, “The Expression Problem, Trivially!”
in 15

th Modularity. New York, NY, USA: ACM, 2016, pp. 37–41.

[34] M. Torgersen, “The Expression Problem Revisited,” in 18
th ECOOP,

ser. LNCS, M. Odersky, Ed., vol. 3086, Oslo (Norway), Jun. 2004, pp.
123–143.

[35] M. Odersky and M. Zenger, “Independently Extensible Solutions to the
Expression Problem,” in FOOL, Jan. 2005.

[36] W. Swierstra, “Data Types à la Carte,” JFP, vol. 18, no. 4, pp. 423–436,
2008.

[37] B. C. d. S. Oliveira, “Modular Visitor Components,” in 23
rd ECOOP,

ser. LNCS, vol. 5653. Springer, 2009, pp. 269–293.
[38] T. Rompf, “Reflections on LMS: Exploring Front-End Alternatives,” in

7
th SIGPLAN Symp. Scala, A. Biboudis, M. Jonnalagedda, S. Stucki,

and V. Ureche, Eds. ACM, Nov. 2016, pp. 41–50.
[39] M. Völter, “Language and IDE Modularization and Composition with

MPS,” GTTSE, vol. 7680, pp. 383–430, 2011.
[40] E. Barrett, C. F. Bolz, and L. Tratt, “Approaches to Interpreter Compo-

sition,” Comp. Lang., Sys. & Struct., vol. 44, pp. 199–217, 2015.
[41] H. Zhang, Z. Chu, B. C. d. S. Oliveira, and T. van der Storm, “Scrap

Your Boilerplate with Object Algebras,” in 29
th OOPSLA, J. Aldrich

and P. Eugster, Eds., Oct. 2015, pp. 127–146.
[42] Guttag, J. V. and Horning, J. J., “The Algebraic Specification of Abstract

Data Types,” Acta Informatica, vol. 10, pp. 27–52, 1978.
[43] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel,

“Melange: A Meta-Language for Modular and Reusable Development
of DSLs,” in 8

th SLE, R. F. Paige, D. Di Ruscio, and M. Völter, Eds.,
Oct. 2015, pp. 25–36.

[44] P. D. Mosses, “Component-Based Description of Programming Lan-
guages,” in BCS Int. Acad. Conf., E. Gelenbe, S. Abramsky, and
V. Sassone, Eds. Brit. Comp. Soc., 2008, pp. 275–286.

[45] P. D. Mosses and F. Vesely, “FunKons: Component-Based Semantics in
K,” in WRLA, ser. LNCS, S. Escobar, Ed., vol. 8663. Springer, Apr.
2014.

[46] M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini, “Reusable
Components of Semantic Specifications,” Trans. Aspect-Orient. Soft.

Dev. XII, vol. 12, pp. 132–179, 2015.
[47] M. D. McIlroy, “Mass Produced Software Components,” in Proc. NATO

Conf. Soft. Eng. New York, US: Petrocelli/Charter, 1969, pp. 138–155.
[48] W. Cazzola and E. Vacchi, “Language Components for Modular DSLs

using Traits,” ComLan, vol. 45, pp. 16 – 34, 2016.
[49] J. Saraiva and D. Swierstra, “Generic Attribute Grammars,” in 2

nd

WAGA, vol. 99, 1999, pp. 185–204.
[50] J. Saraiva, “Component-Based Programming for Higher-Order Attribute

Grammars,” in 1
st GPCE, ser. LNCS, D. S. Batory, C. Consel, and

W. Taha, Eds., vol. 2487. Springer, Oct. 2002, pp. 268–282.
[51] M. Viera and D. Swierstra, “Attribute Grammar Macros,” Sci. Comp.

Prog., vol. 96, pp. 211–229, 2014.
[52] P. Martins, J. P. Fernandes, J. Saraiva, E. Van Wyk, and A. Sloane,

“Embedding Attribute Grammars and their Extensions using Functional
Zippers,” Sci. Comp. Prog., vol. 132, pp. 2–28, 2016.

[53] J. P. Fernandes, P. Martins, A. Pardo, J. Saraiva, and M. Viera,
“Memoized Zipper-Based Attribute Grammars and their Higher Order
Extension,” Sci. Comp. Prog., vol. 173, pp. 71–94, 2019.

[54] A. Middelkoop, A. Dijkstra, and D. Swierstra, “Iterative Type Inference
with Attribute Arammars,” in 9

th GPCE, E. Visser and J. J., Eds. ACM,
Oct. 2010, pp. 43–52.

[55] A. M. Sloane, “Lightweight Language Processing in Kiama,” in GTTSE

III, ser. LNCS, J. M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva,
Eds., vol. 6491. Springer, Jul. 2009, pp. 408–425.

[56] N. Wirth, Compiler Construction, ser. Int. Comp. Sci. Series. Addison-
Wesley, 1996.

[57] A. M. Sloane and M. Roberts, “Oberon-0 in Kiama,” Sci. Comp. Prog.,
vol. 114, pp. 20–32, 2015.

[58] B. C. d. S. Oliveira, T. van der Storm, A. Loh, and W. R. Cook, “Feature-
Oriented Programming with Object Algebras,” in 27

th ECOOP, ser.
LNCS, G. Castagna, Ed., vol. 7920. Montpellier, France: Springer,
2013, pp. 27–51.

[59] T. Rendel, J. I. Brachthäuser, and K. Ostermann, “From Object Algebras
to Attribute Grammars,” in 28

th OOPSLA, A. P. Black and T. D.
Millstein, Eds. ACM, Oct. 2014, pp. 377–395.

[60] A. P. Black, “The Expression Problem, Gracefully,” in
MASPEGHI@ECOOP 2015, M. Sakkinen, Ed. ACM, Jul. 2015, pp.
1–7.

410 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


