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Abstract—The Distance Geometry Problem (DGP) asks
whether a simple weighted undirected graph can be realized
in a given space (generally Euclidean) so that a given set of
distance constraints (associated to the edges of the graph) is
satisfied. The Discretizable DGP (DDGP) represents a subclass
of instances where the search space can be reduced to a discrete
domain having the structure of a tree. In the ideal case where
all distances are precise, the tree is binary and one singleton,
representing one possible position for a vertex of the graph, is
associated to every tree node. When the distance information
is however not precise, the uncertainty on the distance values
implies that a three-dimensional region of the search space needs
to be assigned to some nodes of the tree.

By using a recently proposed coarse-grained representation for
DDGP solutions, we extend in this work the branch-and-prune
(BP) algorithm so that it can efficiently perform an exhaustive
search of the search domain, even when the uncertainty on the
distances is important. Instead of associating singletons to nodes,
we consider a pair consisting of a box and of a most-likely
position for the vertex in this box. Initial estimations of the vertex
positions in every box can be subsequently refined by using local
optimization.

The aim of this paper is two-fold: (i) we propose a new
simple method for the computation of the three-dimensional
boxes to be associated to the nodes of the search tree; (ii) we
introduce the resolution parameter ρ, with the aim of controling
the similarity between pairs of solutions in the solution set.
Some initial computational experiments show that our algorithm
extension, differently from previously proposed variants of the
BP algorithm, is actually able to terminate the enumeration of the
solution set by providing solutions that differ from one another
accordingly to the given resolution parameter.

I. INTRODUCTION

LET G = (V,E, d) be a simple weighted undirected graph,

where vertices represent objects (whose nature depends

on the application at hand), and the existence of an edge

{u, v} between two vertices u and v indicates that the distance

between the two corresponding objects is known [18]. The

weight d(u, v) associated to the edge {u, v} is in general a

real-valued interval providing the lower and the upper bound

on the distance values. However, the interval d(u, v) can

degenerate to one singleton, and in this situation only one

approximation of the distance value is available.

Definition 1 Given a simple weighted undirected graph G =
(V,E, d) and a positive integer K, the Distance Geometry

Problem (DGP) asks whether a function

x : v ∈ V −→ xv ∈ R
K

exists such that

∀{u, v} ∈ E, ||xu − xv|| ∈ d(u, v), (1)

where || · || represents the Euclidean norm.

The function x is called a realization of the graph G. We say

that a realization x that satisfies all constraints in equ. (1) is

a valid realization.

The DGP is NP-hard [26], and has several different ap-

plications, including: (i) protein structure determination [7]

(this is the application we will consider in our experiments in

Section IV); (ii) sensor network localization [27]; (iii) multi-

dimensional scaling [13]; (iv) clock synchronization [8]; (v)
motion adaptation [25]; and others.

We give the following definition of a discretizable subclass

of DGP instances [23]. Let E′ be the subset of the edge set

E such that the weight associated to the edges are degenerate

intervals.

Definition 2 A simple weighted undirected graph G repre-

sents an instance of the Discretizable DGP (DDGP) if and

only if there exists a vertex ordering on V such that the

following two assumptions are satisfied:

(a) G[{1, 2, . . . ,K}] is a clique whose edges are in E′;

(b) ∀v ∈ {K + 1, . . . , |V |}, there exist u1, u2, . . . , uK ∈ V

such that

(b.1) u1 < v, u2 < v, . . . , uK < v;

(b.2) {{u1, v}, {u2, v}, . . . , {uK−1, v}} ⊂ E′,

{uK , v} ∈ E;

(b.3) VS(u1, u2, . . . , uK) > 0 (if K > 1),

where G[·] is the subgraph induced by a subset of vertices

of V , and VS(·) is the volume of the simplex generated by a

valid realization of the vertices u1, u2, . . . , uK .
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In the following, we will refer to assumptions (a) and (b) as the

discretization assumptions. Such assumptions can be verified

only if a vertex ordering is associated to V [10], which is

generally referred to as a discretization order when the two

assumptions above are satisfied.

Assumption (a) allows us to fix a coordinate space where

to construct DDGP solutions while making sure that none

of them can be obtained from other solutions by applying

translations or rotations. Assumption (b) ensures that every

vertex v has at least K reference vertices ui, with 1 ≤ i ≤ K,

such that the corresponding reference distance to v is known.

Since it is supposed (see Assumption (b.2)) that only one dis-

tance is represented by a non-degenerate interval, the possible

positions for v wrt its reference vertices can be obtained by

intersecting K−1 spheres and one spherical shell, which gives

at most two arcs [15]. These assumptions make it possible to

reduce the DDGP search space to a discrete domain having

the structure of a tree where (possibly degenerate) arcs are

associated to its nodes.

In order to simplify the notations, and in accordance with

the application that is considered in Section IV, we will

suppose in the following that the dimension K is set to 3.

The branch-and-prune (BP) algorithm [17] can be employed

for exploring the search tree obtained with the discretization.

In a recent work, we have integrated the BP algorithm with a

coarse-grained representation [24]. This representation allows

us to deal in an efficient way with the uncertainty of the

available distance values, which can have an important impact

on the lengths of the arcs obtained with the intersections.

Differently from [15], where sample points are selected from

the arcs, the coarse-grained representation better deals with

uncertainty by assigning to every node of the search tree not

only a suitable position xv for the corresponding vertex v, but

also a three-dimensional region Bv where v is allowed to take

its positions. While the initial estimation for xv can be very

rough, the region Bv contains all its feasible positions and

can therefore be explored for refining the position xv while

searching in a relatively small neighborhood of the search

domain. In our first studies, this three-dimensional region is

represented by a box inscribing the arcs obtained with the

intersections.

This work is a step ahead in the development of an imple-

mentation of the BP algorithm that is based on the coarse-

grained representation. Our new implementation is the first

one that is actually able to enumerate the entire solution set

of DDGP instances containing approximated distances (see

Section IV). To this final purpose, we propose the integration

in the algorithm of the following two features:

• a simple strategy for the definition of the boxes in-

scribing the arcs obtained with the intersections of the

spheres (degenerate intervals) and spherical shell (one

non-degenerate interval);

• the introduction of the resolution parameter, which allows

to neglect “on-the-fly” all solutions that are too similar

to solutions that were already computed.

The rest of the paper is organized in three main sections.

Section II will be focused on our implementation of the BP

algorithm: we will describe the coarse-grained representation,

as well as our new method to compute the boxes inscribing

the arcs obtained with the discretization process. Section III

will introduce the resolution parameter and discuss its impact

on the execution of the BP algorithm. Finally, Section IV

will present some experiments on DDGP instances of the

protein structure determination problem, while Section V will

conclude the paper.

II. AN EXTENDED BP ALGORITHM

We have recently proposed the use of a coarse-grained

representation of the DDGP search space in [24]. In the present

work, we will extend this approach by introducing some new

features in the BP algorithm, so that a complete enumeration

of the search space will in fact be possible, even in presence

of interval distances. This was the main objective of various

previous publications (see for example [6]), but it was not

completely attained.

In the discussion below, we will focus on the following main

points. A general sketch of the BP algorithmic framework will

be given in Section II-A, while the coarse-grained representa-

tion will be detailed in Section II-B. Then, Section II-C will

discuss on how arcs of vertex positions can be computed by

exploiting the available distance information, and Section II-D

will present our method for the definition of boxes inscribing

the arcs.

A. The BP algorithm

The BP algorithm was formally introduced in [17], and

its basic idea is to perform a systematic exploration of the

DDGP search tree. This search domain can be explored

starting from its top, where the first vertex belonging to the

initial clique is placed. Subsequently, all other vertices in the

initial clique can be placed in their unique positions [14],

and then the search can actually start with the vertex having

rank 4 in the associated discretization order. At each step,

the candidate positions for the current vertex v are computed,

and the search is branched. This phase of the BP algorithm is

named branching phase. Depending on the available distance

information, represented by one approximated value, or rather

by a real-valued interval, the set of candidate positions may

either contain two singletons, or two disjoint arcs, respectively.

Therefore, an arc is in general associated to every tree node,

which can be in some cases degenerate. The distances that

are used during the branching phase are called “discretization

distances”.

Pruning devices can be employed for discovering infeasible

vertex positions. In BP, the main pruning device verifies

whether available distances, that are not used for the discretiza-

tion, are satisfied by candidate vertex positions or not. As

soon as a vertex position is found to be infeasible, then the

corresponding branch can be pruned and the search can be

backtracked [16]. This phase of the BP algorithm is named
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Algorithm 1 The BP algorithm’s main framework

1: BP(v,G)
2: if (v > |V |) then

3: // one solution is found

4: print current conformation;

5: else

6: // coordinate computation

7: if (one discretization distance belongs to E \E′) then

8: compute two candidate arcs

9: add them to the list L

10: else

11: compute two candidate positions y1 and y2

12: add them to the list L

13: end if

14: for i = 1, . . . , |L| do

15: if (L(i) is an arc) then

16: choose sample xv from the arc L(i)
17: else

18: set xv = yi

19: end if

20: // verifying the feasibility of the computed positions

21: if (xv is feasible) then

22: BP(v + 1, G);
23: end if

24: end for

25: end if

pruning phase, and the used distances are called “pruning

distances”.

Algorithm 1 is a sketch of the main framework for the BP

algorithm. In the BP call, v ∈ V is the current vertex to be

positioned and G is the simple weighted undirected graph

representing a DDGP instance. Once the initial clique has

been realized, the BP algorithm can be invoked recursively,

starting from the vertex v having rank 4. As mentioned above,

a lot of research has been conducted in recent years to find

the best way to implement the line 16 of the algorithm. In

[15], for example, a predefined number D of sample points

are extracted from the generated arcs (the parameter D is

the “discretization factor”). However, this strategy for a lossy

discretization of the arcs has an important impact on the

quality of the solutions, with a consequent amplification of

error propagation along the search tree [12].

In our current implementation of the BP algorithm, we do

not discretize the arcs, but we rather consider the coarse-

grained representation presented in Section II-B. Only one

vertex position is associated to every node of the tree, but

this position is not fixed in one unique position. If necessary,

it can rather be refined subsequently when deeper layers of the

tree are reached, by exploring other possible positions inside

the box that is associated to the node. It is important to remark

that, when the generated arcs are larger, the corresponding box

becomes bigger, and it might include positions that are feasible

with more than one solution.

B. A coarse-grained representation for BP

Previous attempts to improve the efficiency of the BP

algorithm (see for example [1], [11]) were based on the idea

to avoid branching over subsets of positions from the arcs

that may be found to be infeasible at the current layer before

starting the branching phase. While some improvements were

observed, these BP variants are however not able to consider

distances that appear subsequently at further tree layers.

This is the main motivation for a coarse-grained representa-

tion of DDGP solutions. Instead of fixing, on every branch of

the tree, all vertices in unique positions, the idea is to rather

associate a small region of the search space to every vertex,

together with a most-likely position. The shape of the region

can be chosen on the basis of the methods that are then used

for their manipulation.

In our coarse-grained representation, we use the following

function:

z : v ∈ V −→ (xv, Bv) ∈ R
3 × R

6,

where Bv is a box defined in the Cartesian system given by

the initial clique (see Section II-A). We point out that Bv has 6

dimensions (in dimension K = 3, the position of one vertex of

the box, plus the corresponding depth, length and height values

are necessary for its unique determination). When a new vertex

position xv is generated for the current vertex v, the function

z does not only allow to assign a position xv to v, but also

to keep track of the feasible region where it belongs to. On

further layers, in fact, the position xv may not be feasible wrt

some other distances, and it could therefore be refined in order

to ensure global feasibility. This can be done, for example, by

employing solvers for local optimization. The position xv is

naturally constrained to stay in the original box Bv for two

main reasons. Firstly, the (continuous) search space of the local

solver is in this way bounded; secondly, the situation where

the local solver can move to solutions belonging to other tree

branches is avoided.

We motivate the choice of employing a local solver with the

fact that, at every layer of the tree where an infeasibility is

discovered, there are only a few distances that are not satisfied,

and the actual search space consists of the set product of all

boxes Bv . This makes the corresponding subproblem to solve

easier to tackle. Naturally, an important point concerning the

use of a local solver is also its fast convergence: in fact, when

attempting the solution of harder instances, we expect the local

solver to be invoked at almost all recursive BP calls.

In this work, we will use a Spectral Projected Gradient

(SPG) method [3], [22], [24] for this refinement step. When

the BP algorithm reaches a leaf node, a valid realization x can

be extracted from z by simply extracting the set of positions

xv , for every v ∈ V .

C. Computing arcs of vertex positions

When the discretization assumptions are satisfied, the pos-

sible positions for a given vertex v can be computed by

exploiting the set of discretization distances, together with the

positions, along the same tree branch, of the corresponding
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reference vertices. Let u3, u2, and u1 be the three reference

vertices for the vertex v ∈ V . Since all reference vertices

precede v in the given discretization order, one position for

every ui is assigned to the current tree branch, and distances

between pairs of reference vertices ui may be computed (if not

already available). Therefore, the subgraph G[{u3, u2, u1, v}],
when completed with missing distances between reference

vertices, always induces a clique. As shown in [14], the

distance information in the clique can be exploited to represent

the possible positions for v in terms of torsion angles ω. More

precisely, once the distances d(u3, u2), d(u2, u1), d(u1, v) are

fixed, as well as the angles θu2
and θu1

formed, respectively,

by the triplets (u3, u2, u1) and (u2, u1, v), then the distance

d(u3, v) corresponds to two possible values for the torsion

angle ω formed by the quadruplet (u3, u2, u1, v) [19].

Let us initially suppose that the distance d(u3, v) is exact:

at most two distinct values ω+ and ω− can be computed for

the torsion angle (it might happen that they coincide). The

two corresponding positions for the vertex v can therefore be

computed with the following formula:

χ(v, ω) = x(u1) + Uw(v, ω), (2)

where the matrix U is a rotation matrix (see [9]) and

w(v, ω) =





−d(u1, v) cos θu1
,

d(u1, v) sin θu1
cosω,

d(u1, v) sin θu1
sinω.



 . (3)

When the distance d(u3, v) is represented by an interval,

two intervals of ω can be defined [11]. From a geometrical

point of view, the interval distance d(u3, v) corresponds to

two arcs that can be identified over the circle obtained by

intersecting two spheres centered in u1 and u2 and having

as radius, respectively, the corresponding reference distances.

We generate a three-dimensional box inscribing every obtained

arc, so that it can then be associated to the tree node, together

with one position taken from the arc. This chosen position

is the one that will be used at further layers when defining

spheres or spherical shells for the intersections; however, this

position may need to be refined when infeasibilities are de-

tected by the pruning devices. The refinement step is supposed

to keep the given position xv inside the predetermined box Bv .

D. Computing the boxes

The boxes are defined by using the minimal and maximal

possible coordinates associated to a given interval for ω. To

perform this calculation, we remark that the three components

of χ(v, ω) (see equ. (2) and equ. (3)) can be rewritten (we

explicitly write only the first component χ′) as:

χ′(v, ω) = A(v) cosω +B(v) sinω + C(v),

where C(v) is an additive term, and A(v) and B(v) are two

multiplicative terms. For fixed v ∈ V , since C(v) is an additive

constant, the determination of the minimal and maximal values

for the first component of χ(v, ω) can be focused on the

u2, u1

Fig. 1. In dashed line, the circle obtained by intersecting the two spheres
centered in u1 and u2. In purple, the arcs on the circle obtained by intersecting
this circle with the spherical shell centered in u3. For one arc, we show the
box inscribing the arc in gray, together with the arc central position in green.

optimization of the remaining terms. By following [11], we

remark that

A(v) cosω +B(v) sinω = R(v) cos(ω − α),

where the pair (R(v), α) corresponds to the polar coordinates

of (A(v), B(v)) in dimension 2:
{

A(v) = R(v) cosα,
B(v) = R(v) sinα.

As a consequence, the problem of finding the minimal and

maximal values for χ′(v, ω) reduces to the one of finding the

optimal values for the cosine function. Notice that the value

of α can be computed as

α = arctan

(

B(v)

A(v)

)

and that the same strategy can be used for finding the minimal

and maximal values for the other components of χ(v, ω) over

the given interval for ω. A graphical representation of the

obtained boxes is given in Fig. 1.

III. RESOLUTION PARAMETER

At every recursive call of the BP algorithm (see Sec-

tion II-A), the intersection of two spheres with one spherical

shell produces two arcs [11]. The coarse-grained representa-

tion (see Section II-B) replaces every arc with a box inscribing

the arc (see Section II-D) and a most-likely position, which

is initially set at the arc central point. Every generated pair

(xv, Bv) consisting of a position and a box for the vertex v

can be then assigned to the nodes of the search tree.

The resolution parameter ρ is integrated in the BP algorithm

for controling the size of the boxes associated to the tree nodes.

This is done at two different levels:

1) If the length of the current arc is larger than the

resolution parameter ρ, then the arc is split in a sufficient

number of equally-long sub-arcs whose length is smaller
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than ρ. Naturally, this strategy implies that the search

domain is not binary anymore at all layers, for many

vertices may need more than two arcs for satisfying the

required resolution. On the one hand, this procedure

increases the complexity of the search; on the other

hand, it allows to assign smaller boxes to the tree nodes,

so that the search domain of the local optimizer becomes

smaller as well.

2) If at least one solution has already been found, and the

BP algorithm is currently exploring alternative nodes at

a given layer v, then only positions xv whose Euclidean

distance from the position of v in the previously found

solution is larger than ρ are considered. In fact, when

this distance is smaller than ρ, the previous and the

current solution are “too” similar, and the current one

can therefore be discarded. Notice that, even if this Eu-

clidean distance may be larger than ρ when the nodes are

generated, the local optimizer may modify the positions

xv so that it subsequently becomes smaller than ρ. In

such a case, the previous and the current solution have

the tendency to converge to the same conformation, and

thus the current branch can be discarded.

To sum up, the resolution parameter ρ does not only

influence the branching phase of the BP algorithm, but it rather

performs two kinds of verification during the execution of the

algorithm ensuring that all generated solutions differ from one

another in accordance with the chosen resolution parameter.

IV. COMPUTATIONAL EXPERIMENTS

We present in this section some initial computational exper-

iments on a set of artificially generated instances. All codes

were written in C programming language and all experiments

were carried out on an Intel Core i7 2.30GHz with 8GB RAM,

running Linux. The codes have been compiled by the GNU C

compiler v.4.9.2 with the -O3 flag.

Before showing our computational experiments, we will

briefly present the considered application in structural biol-

ogy concerning the determination of protein structures (see

Section IV-A), and we will explain how we generated our

instances (see Section IV-B). Section IV-C will present the

experiments.

A. Protein structure determination

One of the classical applications of the DGP arises in

structural biology [7]. Distances between atom pairs in a given

molecule can be estimated through experiments of Nuclear

Magnetic Resonance (NMR), so that the possible conforma-

tions of the molecule in the three-dimensional space can be

identified by solving an instance of the DGP. This application

is of relevant interest, especially when dealing with proteins,

because the identification of protein conformations can give

insights on the dynamics of such molecules, and therefore on

their function.

It was proved that protein instances of the DGP belong to

the subclass of the DDGP [14], [23]. In many papers cited

above (see for example [15], [6], [12]), protein instances are

TABLE I
SOME EXPERIMENTS ON PROTEIN INSTANCES RESEMBLING NMR DATA.

protein |V | |E| |E′| ρ #sols best MDE time

2jmy 77 428 219 0.5 6 1.73e-05 1m 38s
1.0 3 1.90e-05 54s
2.0 2 2.40e-05 51s

2kxa 121 700 367 2.0 2 3.14e-05 45m 28s
3.0 1 9.94e-05 7m 31s

2ksl 254 1388 684 2.0 2 2.42e-05 16m 55s
2.0 1 3.47e-05 4m 5s

used to perform the experiments. However, as already pointed

out in the Introduction, none of such previous works were

able to perform an exhaustive search on the domain of the

considered instances. Our experiments will show that the BP

algorithm, integrated with the new features introduced in this

work, is actually able to perform this exhaustive search.

B. Generation of the instances

We selected the protein conformations that were considered

in the experiments presented in [6] and [24]. We do not use real

NMR data, but we rather generate our protein instances from

known models of the selected proteins. The three considered

proteins, having codes 2jmy, 2kxa and 2ksl in the Protein

Data Bank (PDB) [2], have been experimentally determined

by NMR experiments, and, as it is usually the case, more than

one model for each protein was deposited. In our instance

generation, we have simply considered the first model that

appears in the corresponding PDB file.

Our instances are generated in a way to resemble NMR data.

From the initial conformation model, we compute all inter-

atomic distances, and we include in our instance the following

distances:

• distances between bonded atoms (only one real value

approximated to 3 decimal digits);

• distances between atoms bonded to a common atom (only

one real value approximated to 3 decimal digits);

• distances between the first and the last atom forming a

torsion angle (distances represented by an interval);

• distances between hydrogen atoms that are shorter than

5Å (distances represented by an interval).

In order to define the interval distances, we create an interval

of range 0.1Å for the distances related to torsion angles, and

an interval of range 0.5Å for distances related to hydrogens,

and we place the true distance randomly inside such an inter-

val. The atoms are sorted accordingly to the order proposed

in [21], which ensures the discretizability of the instance.

C. Some initial experiments

We present some initial experiments performed by consider-

ing the instances generated as detailed in the previous section.

Table I summarizes our experiments: the information about the

graph representing the DDGP instance is given together with

the chosen resolution ρ. Moreover, for every experiment, the
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Fig. 2. For every considered protein instance (see Table I), we propose the alignment between the protein model (in gold) that we considered for the generation
of the instances, and the best matching solution found by our BP algorithm implementation (in blue). (a) is the alignment obtained for 2jmy; (b) for 2kxa;
(c) for 2ksl. The BP solution was subject to energy minimization before the alignment.

total number (#sols) of found solutions is reported, together

with the best MDE value:

MDE(x) =
1

|E|

∑

{u,v}∈E

∆(||xu − xv||, d(u, v))

d(u, v)
, (4)

and with the time in minutes (m) and seconds (s). We point

out that the given number #sols of solutions is the value of

our solution counter at the end of the complete enumeration

of the search tree, with the specified resolution parameter ρ.

The function ∆(y, I) in equ. (4) computes the distance on a

line between the real value y and the real-valued interval I .

SPG is invoked as a local optimization solver for performing

the refinement step (see Section II-B), with the same general

settings used in [22]. SPG can terminate because of different

criteria: either when the objective function value becomes

smaller than 10−6, or when the norm of the search direction

becomes smaller than 10−6, or when it reaches the maximum

number of allowed interactions, which is set to 10000 in our

experiments. Notice that the objective function optimized by

SPG is not the MDE function above (MDE is in fact not

differentiable in its entire definition domain): more information

about SPG and its implementation can be found in [22], [25].

It is easy to see that the newly introduced resolution

parameter is able to control the cardinality of the final solution

set. The more its value is large, the less are the found solutions

(i.e. more solutions are discarded because considered to be

too similar to previously obtained solutions). The resolution

parameter also influences the total computational time, because

it allows to skip all branches potentially leading to similar

solutions.

In order to verify how the BP algorithm is able to re-

construct the original protein models used to generate our

instances, we have aligned the original structure with the ob-

tained solutions. Before alignment, however, for the two com-

pared structures to be in the same conditions, we optimized

the internal energy of the BP structures. To perform such an

optimization, the topology/parameter file and the coordinate

file were prepared by the tLEaP module of the AMBER 16

program suite [5]. The GBn model of Mongan et al. [20] was

used for the implicit solvent model; the Bondi radii set was

also used [4]. 250 steps of steepest descent minimization were

followed by 250 steps of conjugated gradient minimization.

The MPI version of pmemd program of AMBER 16 suite was

used for energy minimization.

Fig. 2 shows the obtained alignments. They show that the

BP algorithm is actually able to reconstruct the original protein

model that was used to generate our instances. We can remark

moreover that the quality of the solutions, measured through

the MDE function, is independent on the resolution parameter,

and has a rather constant magnitude in all experiments. Its

value indicates a very good quality for the found solutions

(recall that the distances represented by only one approximated

value are represented with 3 decimal digits).

V. CONCLUSION

We have presented an extended version of the BP algo-

rithm which allows an efficient exploration of the search tree

obtained with the discretization of the DGP. This extended ver-

sion is in fact capable of enumerating exhaustively the search

tree even when the distance information is given through real-

valued intervals. A pair consisting of a three-dimensional box

and a selected vertex position in the box is associated to every

node of the tree, so that the selected position can be refined at

further layers of the search tree when new distance information

needs to be verified. The inclusion of a resolution parameter

allows to generate boxes with controled sizes, and to perform

the BP branching phase only when the new added branches

lead to the generation of solutions that differ, in accordance

with the resolution parameter, from solutions that were already

computed.

One of the first objectives of our future works will consist in

solving DGP instances containing NMR data that are obtained

through the experimental technique. To this aim, the main

challenge that we will need to face is given by the lower
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precision of the distance information. In fact, the intervals

related to distances derived from NMR experiments may

correspond to ranges up to 3Å. Moreover, the possibility to

skip the energy minimization step (that was performed in our

computational experiments) will be studied by including more

stringent distance constraints for important hydrogen bonding

distances.
Finally, work will be performed for formalizing the concepts

related to the introduction of the resolution parameter, which

will require a complete understanding of the actual impact of

this new parameter on the BP algorithm.
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