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Abstract—We present parallel tiled optimized McCaskill’s
partition functions computation code. That CPU and memory
intensive dynamic programming task is within computational
biology. To optimize code, we use the authorial source-to-source
TRACO compiler and compare obtained code performance to
that generated with the state-of-the-art PluTo compiler based on
the affine transformations framework (ATF). Although PLuTo
generates tiled code with outstanding locality, it fails to parallelize
tiled code. A TRACO tiling strategy uses the transitive closure
of a dependence graph to avoid affine function calculation. The
ISL scheduler is used to parallelize tiled loop nests. An experi-
mental study carried out on a multi-core computer demonstrates
considerable speed-up of generated code for the larger number
of threads.

I. INTRODUCTION

DYNAMIC programming (DP) is typically applied to

optimization problems in computational biology. Code

implementing such computation-intensive tasks include loop

nests within the polyhedral model, which allows us to ap-

ply optimization compilers to improve code performance.

However, the fact that such problems are within non-serial

polyadic dynamic programming (NDPD) leads to existence of

non-uniform dependences in corresponding loop nests. This

limits many commonly known optimization techniques such

as permutation, diamond tiling [1], or index set splitting [2]

to improve cache efficiency.

One of such NDPD problems is McCaskill’s algorithm,

which requires computing partition functions, which used to

fold an RNA secondary structure and to find the probabilities

of various sub-structures. McCaskill’s recurrence is quite simi-

lar to other NPDP RNA folding algorithms such as Nussinov’s

and Zucker’s ones, which are not trivial to be optimized with

automatic optimization compilers.

Today, most popular techniques to automatically generate

optimal parallel code are based on affine transformations. For

a given loop nest statement, an affine transformation can be

presented with the following relation [I]− > [t = C ∗ I + c],
where I is the iteration vector of the statement; t is the discrete

time of the execution of iteration I; C ∗ I + c is the affine

expression. If two statement instances have the same execution

time, they can be run in parallel.

To find the unknown matrix C and unknown vector c, for

each loop nest statement, on the basis of dependence relations

time-partition constraints are created and resolved for elements

of matrix C and elements of vector c.

State-of-the-art automatic optimizing compilers, such as

PLuTo [3], have provided empirical confirmation of the suc-

cess of polyhedral-based code generation and optimization.

PLuTo optimizing compiler is based on the affine transforma-

tion framework (ATF), which has demonstrated considerable

success in generating high-performance parallel code in par-

ticular for stencils.

ATF is also used to generate tiled code. Loop tiling for im-

proving locality groups loop statement instances into smaller

blocks (tiles) allowing reuse when the block fits in local mem-

ory. In parallel tiled code, tiles are considered as indivisible

macro statements. This coarsens the granularity of parallel

applications that often leads to improving the performance

of an application running in parallel computers with shared

memory.

ATF is applied in other compilers such as Apollo and PPCG

as well as commercial R-STREAM and IBM-XL. ATF has

some drawbacks, papers [4], [5], [6] present its limitations for

generation of parallel cache-efficient code for bioinformatics

NPDP tasks. Although PLuTo generates outstanding cache-

efficient code for McCaskill’s algorithm, it is not able to

generate any parallel code.

Wonnacott et al. introduced serial 3-D tiling of “mostly-

tileable” loop nests of Nussinov’s RNA secondary structure

prediction in paper [5] to overcome some ATF limitations.

But they did not present how to parallelize code generated

with a proposed technique.

Mullapudi and Bondhugula [6] have also explored automatic

techniques for tiling codes that lie outside the domain of

standard tiling techniques. 3-D iterative tiling for dynamic

scheduling is calculated by means of reorderable reduction

chains to eliminate cycles between tiles for Nussinov’s algo-

rithm. Until now, we do not have a precise characterization

of the relative domains of those techniques and it is not clear

how they can be applied to parallelize McCaskill’s algorithm

where target arrays are not a result of reorderable functions

such as minimum or maximum.

Paper [7] presents a manual implementation of parallel

McCaskill’s algorithm, but the approach is limited only to

message passing architectures and does not consider locality

improvement for modern multi-core machines.

Li et al. show how to use array transposition to enable better

caching for Nussinov’s algorithm [8] with replacing the array

reading column order to the row order. The disadvantage of
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this approach is the cost of additional memory management,

which is overcome by tiling strategies [9]. In paper [10], Li’s

method was improved, but it allows for generating only serial

code.

In this paper, we introduce an alternative approach as a

combination of the tile correction algorithm [11] and the

ISL scheduler [12] to parallelize tiled loop nests of the Mc-

Caskill’s algorithm to overcome limitations of the mentioned

techniques. This approach is implemented in the TRACO

compiler [13].

TRACO does not find and use any affine function to

transform the loop nest. It is based on the iteration space

slicing framework [14] and applies the transitive closure of a

dependence graph to carry out corrections of original rectan-

gular tiles so that all dependences available in the original loop

nest are preserved under the lexicographic order of target tiles.

The inter-tile dependence graph does not contain any cycle

and any technique of loop nest parallelization can be used

[11] to generate parallel code. We apply the commonly known

loop skewing technique and use the ISL library to implement

it and generate parallel tiled code implementing McCaskill’s

algorithm. We observe high performance and scalability of that

code executed on multi-core processors. We compare obtained

code performance with that of code generated with PLuTo.

II. MCCASKILL’S ALGORITHM FOR THE PARTITION

FUNCTION COMPUTATION

John S. McCaskill proposed an efficient dynamic pro-

gramming algorithm to compute the partition function Z =

∑P exp(−E(P )/RT ) over all possible nested structures P

that can be formed by a given RNA sequence S with E(P ) =

energy of structure P , R = gas constant, and T = temperature

[15].

In this paper, we study a simplified version of the approach

using a Nussinov-like energy scoring scheme, i.e., each base

pair of a structure contributes a fixed energy term Ebp indepen-

dent of its context. Given such an assumption, two dynamic

programming tables Q and Qbp are populated. The partition

function for a sub-sequence from position i to position j is

provided by Qij . Array Qbp holds the partition function of the

sub-sequences, which form a base pair or 0 if base pairing is

not possible.

The following recursions are used to compute the partition

functions Q and Qbp.

Qi,j = Qi,j−1 + ∑
i≤k<(j−l)

Qi,k−1 ⋅Q
bp

k,j
,

Q
bp
i,j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Qi+1,j−1 ⋅ exp(−Ebp/RT )
if Si, Sj can form

base pair

0 otherwise

.

Listing 1 presents the implementation of computing Q

and Qbp. The input data are RNA sequence S as a chain

of nucleotides from the alphabet AUGC (adenine, uracil,

Listing 1. Serial loop nest implementing the McCaskill partition function
computation.

i f (N>=1 && l >=0 && l <=5)

f o r ( i =N−1; i >=0; i −−)

f o r ( j = i +1 ; j<N; j ++){
Q[ i ] [ j ] = Q[ i ] [ j −1 ] ;

f o r ( k =0; k<j − i − l ; k ++){
Qbp [ k+ i ] [ j ] = Q[ k+ i + 1 ] [ j −1] * ⤦
Ç ERT * p a i r e d ( k+ i , j −1) ;

Q[ i ] [ j ] += Q[ i ] [ k+ i ] * ⤦
Ç Qbp [ k+ i ] [ j ] ;

}
}

guanine, cytosine), minimal loop length l (i.e. minimal num-

ber of enclosed positions), energy weight of base pair Ebp

and normalized temperature RT . The memory complexity of

the arrays is O(n2), while the time complexity of a direct

implementation of this algorithm is O(n3) in the sequence of

length N.

Given these partition function terms, we can find base

pair probabilities as well as probabilities that a certain sub-

sequence is unpaired, in the manner discussed in [16].

III. AUTOMATIC CODE OPTIMIZATION

The code presented in Listing 1 was optimized (tiled and

parallelized) by means of the TRACO compiler [13]. To tile a

loop nest, TRACO forms original rectangular tiles whose size

is provided by the user. Then TRACO extracts dependences

available in the loop nest applying the Petit tool [17], which

returns 19 dependence relations describing all the dependences

in the loop nest implementing McCaskill’s algorithm. Ex-

tracted dependence relations are a mathematical representation

of the dependence graph whose nodes are statement instances

of the loop nest, while each edge states for a dependence

between a pair of nodes.

Using the union of obtained dependence relations, TRACO

calculates the transitive dependence of the dependence graph,

for this purpose, it uses a function implementing the algorithm

presented in paper [18]. The transitive closure of a given graph,

G, is a graph, G′, such that (i, j) is an edge in G′ if there

exists a directed path from i to j in G. It is worth noting that

in general, the dependence graph is parametric – the number

of nodes depends on the upper bounds of loop iterators, which

are represented with parameters. So, a special algorithm should

be applied to calculate the transitive closure of a parametric

dependence graph.

TRACO carries out the following calculations according

to the algorithm presented in paper [11]. First, applying the

transitive closure of the dependence graph, it checks whether

the original (rectangular) tiles are valid. A valid tile with

identifier I does not contain any statement instance that is

the destination of the dependence whose source belongs to
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TABLE I
EXECUTION TIME (IN SECONDS) OF THE ORIGINAL, TRACO AND PLUTO TILED CODES.

N
1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads 48 Threads

Orig. PLuTo TRACO TRACO

1000 1.6883 0.6096 0.9893 1.0862 0.4055 0.3203 0.1978 0.1500 0.1744
2000 23.1211 5.4271 11.8613 9.9558 6.4051 3.6992 2.1890 1.4105 1.2818
3000 138.5503 17.843 67.6431 48.1494 27.0968 14.9998 9.0412 5.1811 4.7234
4000 391.8773 51.9886 253.2109 169.3396 94.9911 47.8198 27.1342 14.7676 14.0896
5000 874.2910 132.3715 545.7719 378.3082 210.9896 110.7063 54.2998 34.1555 32.9895

the tile whose identifier is lexicographically greater than I .

If all original tiles are valid, it directly generates target code,

otherwise, it corrects original tiles so that all target tiles are

valid under lexicographical order. Such a correction is realized

by means of transitive closure.

It is well-known that if all tiles are valid, then the corre-

sponding inter-tile dependence graph describing dependences

among tiles is acyclic, so there exists a schedule that assigns

a discrete time to the corresponding tile to execute it [19]. If

two or more tiles have the same schedule time, they can be

run in parallel.

To extract a valid tile schedule, we need a dependence re-

lation, which describes inter-tile dependences. Using obtained

valid tiles, TRACO forms such a relation according to the

way described in paper [11]. Then TRACO finds a valid tile

schedule applying the ISL scheduler [12], which uses the

PluTo scheduler with Feautrier’s one [19], [20] as fallback.

The PluTo scheduler constructs a set of independent affine

schedule functions that guarantee a small dependence distance

over the schedule constraints. The basic idea of Feautrier’s

scheduler implemented in the ISL library is to carry as many

dependences as possible in each level of a multi-dimensional

schedule.

For the examined loop nest, the ISL scheduler returns

the following tile schedule for each statement: [ii, jj, kk] →
[ii+ jj], which means that the tile represented with identifier

[ii, jj, kk] is mapped to execution time [ii + jj]. Such a

schedule corresponds to the well-known loop skewing trans-

formation [21]. It is a convenient method to implement the

wavefront method of executing a loop nest in parallel, which

creates a ”wave” that passes through the iteration space.

Skewing changes the iteration vectors for each iteration by

adding the outer loop index value to the inner one.

To generate parallel code on the tile level, to each loop

statement, we apply the skewing transformation (ii + jj)
to form the following schedule allowing for parallel code

generation.

SCHED PAR ∶= N → { (i, j, k)→
(ii + jj, jj, kk, i, j, k) ∣ constraints},

where constraints are the constraints of a set representing

target tiles for a given loop nest statement.

That schedule maps each instance of a statement to a

time partition whose all tiles can be executed in parallel.

TRACO passes those schedules to the input of the ISL code

generator, which generates target pseudo-code. The TRACO

post-processor generates target parallel compilable code in the

OpenMP standard [22], which is presented at the repository

https://github.com/markpal/hpc mea. In that code, the first

loop is serial, it enumerates time partitions including target

tiles. The second loop is parallel, it runs tiles belonging to a

given time partition, the reminding loops are serial. Intra-tile

dependences (dependences within a tile) are honored because

within each target tile, statement instances are executed in

lexicographical order (serially).

It is worth noting that TRACO code is less regular than

that generated with PLuTo because target tiles generated with

TRACO are irregular while PLuTo generates regular tiles

except from boundary ones.

IV. EXPERIMENTAL STUDY

This section presents the results of the comparison of the

performance of TRACO and PLuTo tiled codes implementing

McCaskill’s algorithm. To carry out experiments, we have used

a computer with the following features: Intel Xeon CPU E5-

2699 v2, 3.6GHz, 24 cores, 48 Threads, 45 MB Cache, 16 GB

RAM. Programs were compiled with the Intel C Compiler (icc

15.0.2) and optimized at the -O3 level (more aggressive opti-

mization recommended for loops involving intensive floating

point calculations). Parallelism of target code is represented

in the OpenMP standard. We discovered empirically that the

best tile size for TRACO code is [1x128x16], i.e., the first loop

should not be tiled. For tiled code generated with PLuTo, we

empirically discover that the best tile size is [16x16x16].

The McCaskill loop nest can be tiled by both PLuTo

and TRACO, however, only TRACO allows us to parallelize

target code. Although the serial code produced with PluTo is

very cache-efficient, the compiler is unable to find any affine

schedule allowing for parallel execution of generated tiles.

TRACO generates valid tiles applying the transitive closure of

the dependence graph built for the McCaskill loop nest, then

it forms a relation, which represents inter-tile dependences.

Finally, using that relation, it applies the ISL scheduler to get

a valid tile schedule to generate parallel code on the tile level.

Table 1 presents execution times (in seconds) for various

RNA sequence lengths. Figure 2 depicts the speed-up (a ratio

of T1 over Tn, elapsed times of 1 and n threads) of tiled

programs for N = 5000 (roughly the size of the longest human

mRNA). Analyzing the obtained results, we may conclude that

the TRACO code performance overcomes that of the PLuTo

serial one for eight and more threads. The worse performance
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of the TRACO code for the few number of threads is caused

with target code irregularity (see the previous section). The

lack of parallelism limits speed-up and scalability of the PluTo

loop nest implementing McCaskill’s algorithm on the modern

multi-core machine used for experiments.
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Fig. 1. Speed-up of TRACO and PLuTo codes.

V. CONCLUSION

In this paper, we presented the usage of the TRACO com-

piler to optimize the loop nest implementing the McCaskill

pattern function calculation. TRACO applies the transitive

closure of dependence graphs to generate valid tiles under

lexicographical order. Then it forms a relation describing inter-

tile dependences and uses the ISL scheduler to obtain a valid

tile schedule allowing for generation of parallel tiled code.

Applying optimization techniques based on affine trans-

formations implemented in the PLuTo compiler allows for

generation of only serial highly cache efficient code without

any parallelism code. The proposed approach outperforms

code generated with the PluTo compiler starting up from eight

threads.

It is an ongoing task to find cache efficient optimization

for NPDP problems in bioinformatics with O(n3) and O(n4)
complexity and non-trivial dependence patterns. In future, we

plan to optimize programs implementing base pair proba-

bilities calculation as well as prediction of their structure

with maximum expected accuracy (MEA) for a given RNA

sequence.
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