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I. INTRODUCTION

IN THE bin packing problem, we receive a sequence of

items of different sizes that must be packed into a finite

number of bins in a way that minimizes the number of bins

used. When all the items are accessible, the packing method is

called offline. The packing method is called online, when items

arrive one by one and each item has to be packed irrevocably

into a bin before the next item is presented.

In the online version of packing a crucial parameter is

the number of bins available for packing, i.e., active bins.

Each incoming item is packed into one of the active bins;

the remaining bins are not available at this moment. If we

close one of the current active bins, we open a new active

bin. Once an active bin has been closed, it can never become

active again. When the method allows at most t active bins

at the same time, it is called t-space bounded. Unbounded

space model does not impose any limits on the number of

active bins. It is natural to expect a packing method to be less

efficient with fewer number of active bins. In this paper, we

study 1-space bounded 3-dimensional cube packing.

Let S be a sequence of cubes. Denote by A(S) the num-

ber of bins used by the algorithm A to pack items from

S. Furthermore, denote by OPT (S) the minimum possible

number of bins used to pack items from S by the optimal

offline algorithm. By the asymptotic competitive ratio for the

algorithm A we mean:

R∞

A = lim sup
n→∞

sup
S

{ A(S)

OPT (S)
| OPT (S) = n

}

.

A. Related work

The one-dimensional case of the space bounded bin packing

problem has been extensively studied and the best possible

algorithms are known: the Next-Fit algorithm [5] for the one-

space bounded model and the Harmonic algorithm [6] when

the number of active bins goes to infinity. The questions

concerning t-space bounded d-dimensional packing (d ≥ 2)

have been studied in a number of papers. For large number

of active bins, Epstein and van Stee [1] presented a (Π∞)d-

competitive space bounded algorithm, where Π∞ ≈ 1.69103
is the competitive ratio of the one-dimensional algorithm

Harmonic. Algorithms for 2-dimensional bin packing with

only one active bin were explored for the first time in [8],

where the authors give 8.84-competitive algorithm for 2-

dimensional bin packing. An improved result of that case

can be found in the paper [7], where a 5.155-competitive

method is presented. The last article also contains an algorithm

for packing squares with competitive ratio at most 4.5. In

[4], a 4.84-competitive 1-space bounded 2-dimensional bin

packing algorithm was presented. Grzegorek and Januszewski

[3] presented a 3.5d-competitive as well as a 12·3d-competitive

online d-dimensional hyperbox packing algorithm with one

active bin. The d-dimensional case of 1-space bounded hyper-

cube packing was discussed in [9], where a 2d+1-competitive

algorithm was described. The aim of this paper is to improve

the upper bound (23+1) in the 3-dimensional case. We present

10.872-competitive 1-space bounded cube packing algorithm.

B. Our results

The algorithm presented in this article considers packing

items (cubes of edges not greater than 1) into one active

cube of edge 1. The main packing method is a bit like the

classic computer game Tetris. The packing method which we

describe is similar to the method presented by Grzegorek and

Januszewski in [2]. The algorithm distinguishes types of items

what determines a method for packing a specific item in a

bin. Items that are considered big enough are packed from

top to bottom. Different types of small items are packed from

bottom upwards. The algorithm handles small items in a Tetris

manner: to determine a place to pack an item a part of a bin is

temporarily divided into congruent cuboids of appropriate size.

Then an item is packed as low as possible inside a carefully

chosen cuboid.

In Section II we give a 1-space bounded cube packing

algorithm with the ratio 10.872 .

II. THE one-space-ALGORITHM

Let S be a sequence of cubes Q1, Q2, . . . . Denote by ai
the edge length of Qi.

• an item Qi is huge, provided ai > 1/2;

• an item Qi is big, provided 1/4 < ai ≤ 1/2;

• an item Qi is small, provided ai ≤ 1/4; a small item

Qi is of type k provided 2−k−1 < ai ≤ 2−k.

Let B be the active bin. To shorten the notation, a cuboid

whose edges have lengths a × a × b will be called an (a, b)-
cuboid.
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Fig. 1. Big items – the darker an item’s colour, the later it arrived

A. Description of the one-space-algorithm

(a) In packing items we distinguish coloured and white (not

coloured) space. Items are placed only in the white space.

Each newly opened bin is white.

(b) We divide each freshly opened bin into (1/2, 1)-cuboids.

These cuboids are named R1, R2, R3, R4 in an arbitrary

order.

(c) Huge items (edge > 1/2) are packed alone into a bin,

i.e., if Qi is huge, then we close the active bin and open

a new bin to pack this item. After packing Qi we close

the bin and open a new active bin.

(d) If Qi is big (1/4 < edge ≤ 1/2) we find the highest

indexed Rj such that Qi can be packed into it. We pack

Qi into Rj along the edge of B as high as it is possible

(see Figs. 1 and 3). If such a packing is not possible, we

close the active bin, open a new active bin and pack Qi

into it.

When a big item is packed, it colours the space covered

by itself.

(e) If Qi is a small item of type k (2−k−1 < edge ≤ 2−k)

(see Figs. 2 and 3) we find the lowest indexed Rj such

that Qi can be packed into it. Since j is fixed now, we

will write R instead of Rj .

We temporarily divide R into (2−k, 1)-cuboids called

R(1), . . . , R(4k−1). Denote by t(n) the distance between

the top of R(n) and the top of the topmost item packed

in R(n) for n = 1, . . . , 4k−1 (see Fig. 5, right) and let η
be an integer such that t(η) = max{t(1), . . . , t(4k−1)}.

We pack Qi into R(η) as low as possible. The result of

packing Qi is the colouring of the (2−k, 1− t(η) + ai)-
cuboid contained in the bottom of R(η) (see Fig. 5, right,

where η = 2 before Q14 was packing).

If such a packing is not possible, then we close the active

bin and open a new active bin to pack Qi.

B. Competitive ratio

Let Pj for j = 1, . . . , 16 be (1/4, 1)-cuboids with pairwise

disjoint interiors. Each cuboid Ri for i ∈ {1, 2, 3, 4} is

divided into four cuboids P4i−3, . . . , P4i (see Fig. 4).

Lemma 1. Assume that only small items were packed into

B. Assume that j ∈ {1, 2, . . . , 16}. Denote by n the number

of items packed into Pj and by tn the distance between the

bottom of B and the top of the topmost item packed into Pj .

The total volume vn of small items packed into Pj is greater

than

f(tn) =
19

2048
· tn −

13

16384
.

Moreover, if the topmost packed item is of type 2, then

vn > f+(tn) =
19

2048
· tn.

Proof. Without loss of generality we can assume that Pj =
[0, 1/4] × [0, 1/4] × [0, 1]. We will prove the result using

induction over the number n of packed items.

First assume that only one item Qb was packed into Pj .

Obviously, t1 = ab. Let

ϕ(a) = a3 −
19

2048
a.

The function ϕ(a) for a > 0 has a minimum at

a0 =

√

19

6144
.

A computation shows that

ϕ(a0) > −
1

2
·

13

16384
(1)

(this lower bound will be useful in the last part of the proof).

We get

v1 = a3b >
19

2048
· t1 −

1

2
·

13

8192
= f(t1).

Moreover, if 1/8 < ab ≤ 1/4, then v1 = a3b > 19

2048
ab =

f+(t1).

Now assume that the statement holds for at most n items

packed into Pj (this is our inductive assumption). Let Qu be

the (n+1)st item packed into Pj and let tn+1 be the distance

between the bottom of Pj and the top of the topmost item

(from among n+ 1 items Qb, . . . , Qu) packed into Pj .

If au > 1/8, then tn+1 = tn + au. Using the inductive

assumption,

vn+1 = vn + a3u > f(tn) + a3u =
19

2048
· tn −

13

16384
+ a3u.

Since

ϕ′(a) = 3a2 −
19

2048
> 3 ·

1

64
−

19

2048
> 0

for a > 1/8, we get

ϕ(a) > ϕ(
1

8
) =

13

16384

for a > 1/8. Consequently,

vn+1 > f(tn) + a3u =
19

2048
(tn + au) + ϕ(au)−

13

16384

≥
19

2048
(tn + au) = f+(tn + au) = f+(tn+1).

Finally, consider the case when au ≤ 1/8. First, we choose

the topmost packed item Q1 with edge greater than 1/8 and

denote by τ the distance between the bottom of Pj and the

top of Q1 (see Fig. 6, left). If there is no such item, then we
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Fig. 2. Small items

take τ = 0. The total volume of items packed up to τ , by the

inductive assumption, is not smaller than f+(τ). Above Q1

we divide Pj into four (1/8, 1− τ)-cuboids P 1
j , P

2
j , P

3
j , P

4
j .

Denote by Ql
1, . . . , Q

l
vl

the items from among Qb, . . . , Qu−1

packed into P l
j above Q1 (if any) for each l = 1, 2, 3, 4.

Moreover, denote by tln the distance between the bottom of Pj

and the top of the topmost item from among Qb, . . . , Qu−1

packed into P l
j and let t∗n = min(t1n, t

2
n, t

3
n, t

4
n) (see Fig. 6,

right). Clearly, t∗n ≥ τ and t∗n ≤ tn.

If t∗n + au ≤ tn, then tn+1 = tn. Consequently,

vn+1 ≥ vn + a3u = f(tn) + a3u = f(tn+1) + a3u > f(tn+1).

If t∗n+au > tn, then tn+1 = t∗n+au. Items Ql
1, . . . , Q

l
v

were packed into (1/8, tln − τ)-cuboid P l
j . Let h(P l

j) =
[0, 1/4] × [0, 1/4] × [0, 2tln − 2τ ] be the image of P l

j in

a homothety h of ratio 2. By the inductive assumption, the

total volume of cubes h(Ql
1), . . . , h(Q

l
v) is not smaller than

19

2048
(2tln − 2τ)− 13

16384
= f(2tln − 2τ). Since the volume of

each h(Ql
i) is 8 times greater than the volume of Ql

i, it follows

that the total volume of cubes Ql
1, . . . , Q

l
v is not smaller than

1

8
f(2tln − 2τ).
Consequently,

vn+1 ≥ f+(τ) + 4 ·
1

8
f (2t∗n − 2τ) + a3u

= a3u +
19

2048
t∗n −

1

2
·

13

16384
.

By (1) we know that

ϕ(a0) > −
1

2
·

13

16384
.

Consequently,

vn+1 ≥ ϕ(au) +
19

2048
(t∗n + au)−

1

2
·

13

16384

>
19

2048
(t∗n + au)−

13

16384
= f(tn+1).

Lemma 2. Define V3 = 101/1024. Let S be a finite sequence

of cubes and let ν be the number of bins used to pack items

from S by the one-space-algorithm. Moreover, let m be the

number of huge items in S. The total volume of items in S is

greater than 2−3 ·m+ V3(ν − 2m− 1).

Proof. Among ν bins used to pack items from S by the

one-space-algorithm the first ν − 1 bins will be called full.

Let Qz be the first item from S which cannot be packed into

a full bin B by the one-space-algorithm. Clearly, Qz is the

first item packed into the next bin.

Denote by vB the sum of volumes of items packed into B.

If the incoming item Qz is huge, then the average occupa-

tion ratio in both bins Bj and the next bin Bj+1 into which

Qz was packed is greater than 1/24. Obviously, there are 2m
such bins.

It is possible that the last bin is almost empty.

To prove Lemma 2 it suffices to show that if Qz is not huge

and if no huge item was packed into B, then vB > V3 (the

number of such bins equals ν − 2m− 1).

Case 1: Qz is small and all items packed into B are small.

R3 R4

R1 R2

B bin

Fig. 3. one-space-algorithm

R3 R4

R1 R2

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

P11 P12

P13 P14

P15 P16

B bin

Fig. 4. (1/4, 1)-cuboids Pj
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t(2)
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(1/4, 1− t(η) + a14)-cuboid

t(1)

(1/2, 1)-cuboid R, k = 2

Qi of type 2 Qi of type 3 Qi of type 4

Fig. 5. Packing small items into (2−k, 1)-cuboids

Q1

τ

Qu

Q1

Qu

t∗n − τ

τ

Qi of type 2 Qi of type 3 Qi of type 4

Fig. 6. The division

Since az ≤ 1/4, it follows that each Pi is packed up to

height at least 3/4. By Lemma 1 we deduce that

vB > 42f
(3

4

)

= 16 ·
( 19

2048
·
3

4
−

13

4 · 16384

)

= V3.

Case 2: Qz is small and a big item was packed into B.

The volume of a big item Qb with edge t is equal to t3 >

t ·
(

1

4

)2
. In considerations presented in Case 1 we accept that

the total volume of small items packed into Rj up to height t
equals 4f(t). It is easy to see that

4f(t) <
1

16
· t.

As a consequence, vB > V3.

Case 3: Qz is a big item and all items packed into B are small

Assume that there is (2−2, 1)-cuboid Rj(n) (j ∈
{1, 2, 3}, n ∈ {1, 2, 3, 4}) such that the distance between its

top and the top of the topmost item packed into it is greater

than 1/8 and denote by R+ first such cuboid. The total volume

of items packed into R+ is greater than f(3/4). The total

volume of items packed into each cuboid preceding R+ is

greater than f(7/8). The total volume of items packed into

Qz

Qn

R1 R2

R3 R4

B bin

Fig. 7. Case 3

each of remaining cuboids is greater than 3

4
· 1

82
> f(7/8)

(in such a cuboid only items greater than 1/8 were packed).

Denote by Qn the topmost small item packed in R4 (as in

Fig. 7). Since az ≤ 1/2 and Qz cannot be packed in R4, it

follows that

vB >
(

16− 5
)

f
(7

8

)

+ f
(3

4

)

+ 4f
(1

2
− an

)

+ a3n.

Denote by γ(an) the function on the right-hand side of this

formula. This function for positive a has a minimum at a0 =
√

19

1536
.

A computation shows that γ(a0) > V3. Consequently,

vB > V3.

If there is no (2−2, 1)-cuboid Rj(n) (j ∈ {1, 2, 3}, n ∈
{1, 2, 3, 4}) such that the distance between its top and the top

of the topmost item packed into it is greater than 1/8, then

vB >
(

16− 4
)

f
(7

8

)

+ 4f
(1

2
− an

)

+ a3n.

Since f(7/8) > f(3/4), we get vB > γ(a0) > V3.

Case 4: Qz is big and a big item was packed into B

Similarly as in Case 2 we get

4f(t) < t3.

We deduce by Case 3 that vB > V3.
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Theorem 1. The asymptotic competitive ratio for the

one-space-algorithm is not greater than 1098/101 ≈
10.8713.

Proof. Let S be a sequence of items of total volume v, let

m denote the number of huge items in S and let µ be

the number of bins used to pack items from S using the

one-space-algorithm. Obviously, OPT (S) ≥ v as well as

OPT (S) ≥ m.

By Lemma 2 we get v > 1

23
·m+ V3 · (µ− 2m− 1), i.e.,

µ <
v

V3

+m
(

2−
1

23V3

)

+ 1.

It is easy to check that 2− 1

8V3

> 0.

If m < v, then

µ

OPT (S)
≤

µ

v
<

v
V3

+ v
(

2− 1

23V3

)

+ 1

v
=

23 − 1

23V3

+ 2 +
1

v
.

If v ≤ m, then

µ

OPT (S)
≤

µ

m
≤

m
V3

+m
(

2− 1

23V3

)

+ 1

m
=

23 − 1

23V3

+2+
1

m
.

Consequently, the asymptotic competitive ratio for the

one-space-algorithm is not greater than

7

8
·
1024

101
+ 2 =

1098

101
< 10.872.

REFERENCES

[1] L. Epstein and R. van Stee. Optimal online algorithms for multidimen-
sional packing problems. SIAM Journal on Computing, 35(2):431–448,
2005.

[2] P. Grzegorek and J. Januszewski. A note on one-space bounded square
packing. Information Processing Letters, 115(11):872–876, 2015.

[3] P. Grzegorek, J. Januszewski. Drawer algorithms for 1-space bounded
multidimensional hyperbox packing. Journal of Combinatorial Opti-

mization, 37(3): 1011-1044, 2019.
[4] J. Januszewski and Ł. Zielonka. Online packing of rectangular items into

square bins. In R. Solis-Oba and R. Fleischer, editors, Approximation

and Online Algorithms. WAOA 2017, volume 10787 of Lecture Notes in

Computer Science, pages 147–163, Cham, 2018. Springer.
[5] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer

and System Sciences, 8(3):272–314, 1974.
[6] C.-C. Lee and D.-T. Lee. A simple on-line bin-packing algorithm. J.

ACM, 32(3):562–572, July 1985.
[7] Y. Zhang, J. Chen, F. Y. L. Chin, X. Han, H.-F. Ting, and Y. H.

Tsin. Improved online algorithms for 1-space bounded 2-dimensional
bin packing. In O. Cheong, K.-Y. Chwa, and K. Park, editors, Algorithms

and Computation, pages 242–253, Berlin, Heidelberg, 2010. Springer.
[8] Y. Zhang, F. Y. L. Chin, and H.-F. Ting. One-space bounded algorithms

for two-dimensional bin packing. International Journal of Foundations

of Computer Science, 21(06):875–891, 2010.
[9] Y. Zhang, F. Y. L. Chin, H.-F. Ting, and X. Han. Online algorithms for

1-space bounded multi dimensional bin packing and hypercube packing.
Journal of Combinatorial Optimization, 26(2):223–236, 2013.

ŁUKASZ ZIELONKA: AN ALGORITHM FOR 1-SPACE BOUNDED CUBE PACKING 175


