
Performance and Energy Evaluation of Parallel

Particle Simulation Algorithms for Different Input

Particle Data

Robert Kiesel, Gudula Rünger

Department of Computer Science

Chemnitz University of Technology

Chemnitz, Germany

Email: {robert.kiesel, ruenger}@informatik.tu-chemnitz.de

Abstract—Particle simulations are popular methods for the
simulation of applications from a wide range of sciences, includ-
ing astrophysics, biology or chemistry. Usually, these applications
require a large number of simulation steps, each of which
computes a change of the entire particle system. Depending on
the number of simulation steps and also the size and structure
of the specific particle system, the computation time can be quite
large and the exploitation of parallel architectures is usually
necessary. In this article, we investigate the performance and
energy consumption for different particle simulation methods
and distinguish different input particle data. The investigations
are done for the particle simulation methods from the ScaFaCoS
library and use the various input data of homogeneous or in-
homogeneous nature. Experiments are performed on multicore
systems.

I. INTRODUCTION

PARTICLE SIMULATIONS are popular methods for sim-

ulating various scientific problems from areas, such as

astrophysics, biology or chemistry. The computation time

for particle simulations can be quite large, especially for

simulating long-range particle interactions, for example oc-

curring in gravitational or Coulomb interactions, since the

direct computation for a simulation with N particles has the

complexity O(N2). Efficient implementations of the particle

simulation often split the computation with respect to a cut-

off radius, which means that only the particle interactions of

particles lying within the cut-off radius are computed exactly

and the interactions of particles with a distance larger than

the cut-off radius are computed by an approximation. The

computation time can be reduced to O(N logN) or O(N)
with efficient methods, such as the Fast Multipole Method

(FMM) [1] or the fast Fourier-transform (FFT) [2].

However, the actual execution time of a particle simulation

depends on the given size N of the particle system and the

structure of the initial distribution of the N particles in the

particle system. Thus, for a fast simulation the simulation

method has to be chosen carefully to be suitable for the size

and characteristics of the particle input set. For very small

particle systems, the direct computation could still be the

fastest, since there is no splitting overhead with respect to the

cut-off radius. Also, a different simulation method might be

suitable for particle systems of different size N which have the

same characteristics with respect to the particle distribution.

Concerning the initial distribution, the particle systems are

often distinguished being homogeneous, inhomogeneous or a

mix of both with parts of the particle system being homoge-

neous but also containing some inhomogeneous regions. While

in homogeneous particle systems, the particles are equally

distributed in the entire particle system, an inhomogeneous

particle system can exhibit distributions in which the particles

are clustered in certain areas. Since particle simulations are

time-step based algorithms which compute a new particle

situation in each step, the structure of a particle system

can change during the simulation process. Thus, different

simulation methods might be suitable at different points in

simulation time so that exchanging the method after some

time steps could be beneficial. To support the adaptation

of the simulation method, it is required to know in which

situation which setting might lead to the desired performance

improvement.

Naturally, the hardware platform has a large influence on the

performance and accelerators, such as GPUs can be exploited

when implementation variants for GPUs, e.g., with CUDA,

OpenCL or OpenACC, are available. However, using GPUs

requires a transfer of data to the device which might cause a

big overhead, and thus is not always advantageous. Depending

on the size and structure of the input particle data and

availability of hardware, e.g., a CPU or a GPU, the usage of a

specific method on specific hardware has to be chosen. For the

grid-based methods there exists an OpenCL implementation

to use GPUs for the near-field, but these methods are, in

consequence of the regular grid over the complete particle

system, designed for homogeneous systems. In contrast, tree-

based methods are not dependent on a homogeneous system.

In this article, we consider different particle simulation

methods of the Scalable Fast Coulomb Solvers (ScaFaCoS)

library [3] and study their performance and energy con-

sumption for various particle systems. The ScaFaCoS library

contains parallel implementations of efficient solver methods

for long-range particle interactions. The parallelizations use

the Message Passing Interface (MPI). Additional parallel im-

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 31–37

DOI: 10.15439/2019F344

ISSN 2300-5963 ACSIS, Vol. 19

c©2019, PTI 31

plementations are available for selected modules. An example

is the OpenCL implementation of the near-field module for

grid-based methods [4], which allows an execution on various

hardware platforms, such as GPUs.

The objective of our work is to investigate the perfor-

mance and energy consumption behavior of selected particle

simulation methods with respect to the characteristics of the

input particle system. The contribution of this article includes

the detailed measurements and investigation of different al-

gorithms for particle simulation for different input sets and

hybrid hardware platforms. The work is meant to provide

a rich data basis of performance and energy data for future

tuning approaches.

The rest of this article is organized as follows: Section II

introduces the particle methods used. Section III describes the

generation of the particle systems used. Section IV presents

the experimental results. Section V summarizes the perfor-

mance results. Section VI discusses related work. Section VII

concludes the article and discusses the tuning potential.

II. PARTICLE SIMULATION METHODS

The particle simulation method is a general solution method

to simulate all kinds of problems which can be represented

by a set of so-called particles which react to each other

according to problem-specific rules. For several decades, dif-

ferent versions of particle solution methods have been invented

and different implementations of these methods have been

developed, all of which solve particle problems but may

have a different performance. In this article, we concentrate

on particle simulation methods being implemented in the

ScaFaCoS library.

A. Particle models

Particle models are simulation models in which physical

phenomena are described by a discrete representation of

interacting particles. A particle has usually problem specific

attributes, such as position, mass, momentum or velocity. The

motion in the physical system is calculated in a series of simu-

lation time steps each of which computes one interaction event

between the particles by recomputing the attribute values. Such

particle models have been used to explain properties of solids,

liquids or gases represented by a finite input set of particles and

corresponding rules for the specific interaction. Usually, the

number of particles is constant for one simulation run, and thus

there is no need for updates during one specific simulation.

Three principal types of particle simulation models have been

identified, which are the particle-particle model using action at

a distance, the particle-mesh model using an approximation by

a mesh and the P3M model being a combination of both. The

specific use of the simulation type depends on the physical

model to be simulated and also on the computational cost for

a computer simulation.

In this article, we consider molecular dynamics simulations

for Coulomb forces which are characterized by long-range

interactions. In the simulation of long-range interactions, the

number of interactions per simulation time step is not limited

to particles in the proximity. Thus, all pairwise interactions

between all particles in the system have to be calculated

in each time step, which leads to a computationally expen-

sive simulation. This problem can be treated by hierarchical

approximation algorithms reducing the quadratic complexity

to a linear complexity or by parallel implementations on

different parallel devices. In our investigations, we use MPI

implementations but also parallel hybrid implementations on

CPU/GPU for particle solvers from the ScaFaCoS library.

B. The ScaFaCoS library

The Scalable Fast Coulomb Solvers (ScaFaCoS) library

contains parallel implementations for several different par-

ticle simulation methods, e.g., a Direct method, Particle-

Particle Particle-Mesh (P3M), Particle-Particle nonequispaced

fast Fourier transforms (P2NFFT), Fast Multipole Method

(FMM) or Pretty Efficient Parallel Coulomb Solver (PEPC).

The ScaFaCoS library is fully parallelized using MPI and with

certain parts using OpenCL.

The direct computation, e.g., a pairwise interaction between

all N particles, requires O(N2) operations. More efficient

methods are reducing this complexity by using approximation

approaches which split the calculation into a near-field and a

far-field part with respect to each particle. The implementation

of this splitting into near- and far-field are different for

different particle solution methods. While in the near-field part

the pairwise interaction between particles is computed, the far-

field part might be computed approximately leading to a more

efficient computation. A comparison of the solver methods of

the ScaFaCoS library is given in [5].

Besides the accuracy of the computations and also some

solver specific parameters, the performance of particle sim-

ulations depends on the particle distribution of the particle

system. If the particles are equally distributed in the particle

system, it is called a homogeneous particle system and usually

less expensive to simulate for the particle solvers, in contrast

to inhomogeneous particle systems, in which particles are

irregularly distributed in the particle system. The input data for

the solvers in the ScaFaCoS library describe the corresponding

particle system by attributes consisting of the charge value

and the three-dimensional position of each particle. In this

article, the emphasis is on three of the ScaFaCoS simulation

methods, which are the direct method, which is a particle

to particle calculation, the P2NFFT, which is a fourier based

approach, and the FMM method, which is tree based to reduce

the complexity.

C. Fourier based

Fourier-based methods compute the far-field computations

in Fourier space, mostly by using the fast Fourier-transforms

(FFT). The method P2NFFT [2] is used as an example method

for the Fourier-based approach. The computational demands

of the far-field and the near-field parts are influenced by

parameters that specify the size of the FFT grid and the

cut-off range. Far-field potentials are computed via convo-

lution in Fourier space. The computation of the near-field

32 POSITION PAPERS. LEIPZIG, 2019

interactions is calculated by the ScaFaCoS near-field module,

which computes pairwise interactions. The P2NFFT and P3M

implementation of the ScaFaCoS library are using the same

near-field implementation. An OpenCL implementation for

this near-field has been developed to use both Multicore-CPUs

and GPUs in [4].

D. Tree based

Another approach to split the particle system is possible by

using an octree structure. The particles are sorted into spatial

boxes respective to their position in the particle system. The

boxes are then organized into an octree which is exploited

to compute the interactions on different levels. Since this

approach does not split the particle system into a regular box

system, it works on homogeneous systems as well as on inho-

mogeneous input particle systems. The FMM [1] is an example

for this approach and has been implemented in ScaFaCoS. This

FMM version has its own near-field implementation for which

for which an OpenCL version for execution on GPU does not

exists.

For a specific particle, the near field potential is determined

by calculating the potential at the position of the particle

caused by each of the particles in the same and neighbor-

ing octree boxes. The far-field potential is calculated using

approximate values of the potential caused by all particles in

a particular octree box. These approximations are calculated

for each octree level. The approximations at appropriate octree

levels are then used to approximate the far-field potential at

a particular particle position. The tree depth determines the

separation in the near-field and the far-field potential and, thus,

the tree depth is an important parameter for the accuracy as

well as for the performance of a simulation run.

III. GENERATION OF PARTICLE SYSTEMS

The particle systems used have particles that are Hammer-

sley distributed [6] to ensure a minimal space between the

particles. All tested particle systems are periodical, i.e., if a

particle leaves the particle system, a new particle enters the

system on the opposite side.

The Hammersley distributed particle systems are generated

with the formulas given in this section as described in [7].

If p is a prime number, each nonnegative number k can be

displayed as:

k = a0 + a1p+ a2p
2 + · · ·+ arp

r (1)

with ai ∈ {0, . . . , p− 1}, i = 0, . . . , r, r ∈ N.

A function φ(k) can be defined as follows:

φp(k) =
a0
p

+
a1
p2

+
a2
p3

+ · · ·+
ar
pr+1

(2)

The following explains the Hammersley distribution:

We define d as the dimension of the data to be generated

and p1, p2, . . . , pd−1 the prime numbers with p1 < p2 <
· · · < pd−1. N is the number of particles to be generated.

The particle k is defined as follows:

(

k

N
, φp1

(k), . . . , φpd−1
(k)

)

, k = 0, . . . , N − 1 (3)

Since the first component of particle k depends on N , the

number of particles has to be set before the generation starts.

The particle systems used are distributed in a cube of size

[0, 1]3 with different Hammersley distributions.

There exists an implementation named HAMMERSLEY1

which can provide different Hammersley distributions, e.g.,

Ball, Two Balls, Grid Face and Cube as shown in Figure 1. The

four different distributions used in this article are generated as

follows:

• Cube: The particles are Hammersley distributed in the

whole particle cube.

• Grid Face: The number of particles is N = 4 ·N3
c , Nc ∈

N and j is defined as:

j = (Nc · u+ v) ·Nc + w

(u, v, w ∈ {0, . . . , Nc − 1})
(4)

The positions of the particles x4j+1 to x4j+4 are then

defined as follows:

x4j+1 = (u, v, w)T /(Nc − 0.5)

x4j+2 = (u+ 0.5, v + 0.5, w)T /Nc − 0.5

x4j+3 = (u+ 0.5, v, w + 0.5)T /Nc − 0.5

x4j+4 = (u, v + 0.5, w + 0.5)T /Nc − 0.5

(5)

• Ball: Inside of the particle cube, the particles are Ham-

mersley distributed in the following ball:

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 <= (0.5)2 (6)

• Two Balls: Two Balls of different sizes are created as

balls as in Formula 6. The first Ball with (1− 1/64) ·N
particles and the second with 1/64 ·N particles. They get

a distance of 20 and are acurately scaled and shifted in

the particle cube.

The charge qi ∈ {−1; 1} of each particle i is generated

randomly, such that the following holds:

N
∑

i=1

qi ∈ {−1; 0; 1} (7)

To use the generated particle systems with the ScaFaCoS

test program we used, they have to be converted into XML

files as input data, containing the position and the actual charge

of each particle.

IV. PERFORMANCE RESULTS

The performance of different solvers is tested for various

particle systems, i.e., two homogeneous and two inhomoge-

neous systems. For the Fourier-based solver also the OpenCL

variant is tested. The experiments are split by the particle

system distributions. To look at the solvers in more detail,

the Fourier-based algorithms are executed with different solver

specific parameter settings.

1HAMMERSLEY. The Hammersley Quasirandom Sequence.
people.scs.fsu.edu/˜burkardt/cpp src/hammersley/hammersley.html

ROBERT KIESEL, GUDULA RÜNGER: PERFORMANCE AND ENERGY EVALUATION OF PARALLEL PARTICLE SIMULATION ALGORITHMS 33

 0

 1 0

 1
 0

 1

Cube

 0

 1 0

 1
 0

 1

Grid Face

 0

 1 0

 1
 0

 1

Ball

 0

 1 0

 0

 1

Two Balls

Figure 1. Illustration of two homogeneous particle distributions (left) and two inhomogeneous particle distributions (right) with positive and negative charges.

A. Experimental setup

The experiments are performed on a multicore system with

four GPUs. The Haswell system consists of two Intel Xeon E5-

2683 v3 processors with 14 cores each, which have 2.0 GHz.

The system is equipped with four Nvidia GeForce GTX Titan

Blacks. The energy consumption is measured using PAPI 5.6.0

and the RAPL interface to read the appropriate MSR registers.

The energy measurements do only include the CPU, i.e., it

does not include the energy consumption of the DRAM or any

other component in the system. The energy consumption of the

GPUs is not measured. All measurements are repeated 5 times

to obtain the shown average values. For the measurements, the

number of MPI processes is set to 56, which is equal to the

number of cores on the Haswell system plus Hyperthreading.

The frequency is set to 2.0 GHz and Intel Turbo Boost is

disabled for the experiments.

B. Homogeneous systems

In homogeneous particle systems, the particles are uni-

formly distributed in the particle system without irregularities.

The particles are not grouped into multiple clusters. Figure 1

(left) shows the two homogeneous particle systems Cube and

Grid Face. The positive and negative charges are randomly

generated.

Figure 2 shows the runtime and energy consumption for the

FMM and P2NFFT (MPI and OpenCL variant) solver with the

two homogeneous systems with varying number of particles.

For small particle systems, i.e., less than 50,000 particles,

the P2NFFT solver has a low runtime. If the particle system

has more particles, the FMM solver outperforms the P2NFFT.

Since the transfer to the GPU takes some time, it is only useful

to use the GPU with big particle systems. However for the big

systems, the FMM algorithm outperforms the P2NFFT even

when GPUs are used. If the CPU would be less powerful, the

OpenCL variant of the P2NFFT should outperform the MPI

variant of the FMM with bigger particle systems. The energy

consumption shows the same behaviour as the runtime for

homogeneous systems.

Figure 3 shows parameter tests for the P2NFFT solver

(MPI variant) for the two homogeneous particle systems with

different system sizes. The grid size is varied from 128 to

512 to determine the best grid size for each system. The more

particles a system has, the bigger the best grid size. Since there

is only one global minimum and no other local minimum,

simple tuning algorithms can be used to find that minimum.

This minimum can be different for the runtime and the energy

consumption. As the 50,000 particle system shows, the explicit

best grid size can differ with the particle system structure size,

e.g., 512 for the Grid Face but 448 for the Cube.

C. Inhomogeneous systems

In inhomogeneous particle systems, particles are irregularly

distributed in the particle system. For example, they are clus-

tered in single or multiple regions, thus, there are also empty

regions in the field. Figure 1 (right) shows two inhomogeneous

particle systems. The left particle system is a single big ball

in the centre of the system, while the right particle systems is

a dense ball and a smaller additional ball with less particles

in distance. The right system has a bigger empty region in the

particle system than the left system.

Figure 4 tests the two inhomogeneous particle systems

with varying particle system sizes. As expected, the P2NFFT

algorithm has more problems, in terms of runtime and en-

ergy consumption, with inhomogeneous systems compared

to homogeneous systems. The Ball particle system has a

similar behaviour like the homogeneous systems, but with the

Two Balls system P2NFFT has a worse runtime and energy

consumption compared to FMM, even with few particles. The

GPU variant of the P2NFFT has a better runtime for big

particle systems than the MPI variant but is still slower than the

FMM method using MPI. Like with homogeneous systems, the

energy consumption shows the same behaviour. Consequently,

the Ball particle system is homogeneous enough for the

P2NFFT algorithm, but for more inhomogeneous systems, like

the Two Balls system, the FMM algorithm is better.

Figure 5 shows parameter tests for the P2NFFT system

for the two inhomogeneous particle systems with different

system sizes. The grid size is varied from 128 to 512 to

determine the best grid size for the particle system. The more

particles a system has, the bigger the best grid size. The Two

Balls system with 5,000 particles shows that the runtime and

energy consumption can have different settings, i.e., grid size

of 384 for the shortest runtime, but 448 for the lowest energy

consumption.

34 POSITION PAPERS. LEIPZIG, 2019

1

10-1

101

102

5x102 5x103 5x104 5x105 5x106

R
u

n
ti

m
e

[s
]

Number of particles

Runtime on homogeneous particle systems

FMM:Cube

FMM:Grid Face

P2NFFT:Cube

P2NFFT:Grid Face

P2NFFT-GPU:Cube

P2NFFT-GPU:Grid Face

101

102

103

104

5x102 5x103 5x104 5x105 5x106

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

Number of particles

Energy consumption on homogeneous particle systems

FMM:Cube

FMM:Grid Face

P2NFFT:Cube

P2NFFT:Grid Face

Figure 2. Parallel runtime (left) and energy measurements (right) for homogeneous systems with 56 MPI processes on the Haswell system and the Geforce
GTX Titan Black.

 0.1

 1

 10

 100

 1000

 10000

 128 192 256 320 384 448 512

R
u

n
ti

m
e

[s
]

Grid size

P2NFFT runtime

Grid Face:500

Cube:500

Grid Face:5000

Cube:5000

Grid Face:50000

Cube:50000

 10

 100

 1000

 10000

 100000

 1x106

 128 192 256 320 384 448 512

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

Grid size

P2NFFT energy consumption

Grid Face:500

Cube:500

Grid Face:5000

Cube:5000

Grid Face:50000

Cube:50000

Figure 3. Parallel runtime (left) and energy measurements (right) for homogeneous systems with varying grid size with 56 MPI processes on the Haswell
system.

V. SUMMARY OF THE PERFORMANCE RESULTS

The measurement results from Section IV have shown that

the performance of the different particle simulation implemen-

tations strongly depend on the execution platform as well as

on the characteristics of the input particle system. Depending

on the optimizing goal, the availability of the hardware and the

prior knowledge of the particle system distribution and size,

some decisions can be made to achieve the best performance or

lowest energy consumption. Thus, based on the measurements

an appropriate particle simulation method can be selected. The

following observation show how it can be decided whether the

FMM, the P2NFFT or the P2NFFT with GPU solver should

be used for best performance. Selection strategies might help

Table I
SOLVER SELECTION

less than 50,000 particles

homogeneous distribution inhomogeneous distribution

P2NFFT solver FMM solver

more than 50,000 particles

strong CPU weak CPU but GPU available

FMM solver P2NFFT solver on GPU

to select the simulation algorithm with the best execution time

and/or energy consumption.

Table I summarizes the selection of a particle simulation

solver for the given HPC system. If the particle system has

less than 50,000 particles, the selection of the best performing

ROBERT KIESEL, GUDULA RÜNGER: PERFORMANCE AND ENERGY EVALUATION OF PARALLEL PARTICLE SIMULATION ALGORITHMS 35

1

10-1

101

102

5x102 5x103 5x104 5x105 5x106

R
u

n
ti

m
e

[s
]

Number of particles

Runtime on inhomogeneous particle systems

FMM:Ball

FMM:Two Balls

P2NFFT:Ball

P2NFFT:Two Balls

P2NFFT-GPU:Ball

P2NFFT-GPU:Two Balls

101

102

103

104

5x102 5x103 5x104 5x105 5x106

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

Number of particles

Energy consumption on inhomogeneous particle systems

FMM:Ball

FMM:Two Balls

P2NFFT:Ball

P2NFFT:Two Balls

Figure 4. Parallel runtime (left) and energy measurements (right) for inhomogeneous systems with 56 MPI processes on the Haswell system and the Geforce
GTX Titan Black.

 0.1

 1

 10

 100

 1000

 10000

 128 192 256 320 384 448 512

R
u

n
ti

m
e

[s
]

Grid size

P2NFFT runtime

Ball:500

Two Balls:500

Ball:5000

Two Balls:5000

Ball:50000

Two Balls:50000

 10

 100

 1000

 10000

 100000

 1x106

 128 192 256 320 384 448 512

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

Grid size

P2NFFT energy consumption

Ball:500

Two Balls:500

Ball:5000

Two Balls:5000

Ball:50000

Two Balls:50000

Figure 5. Parallel runtime (left) and energy measurements (right) for inhomogeneous systems with varying grid size with 56 MPI processes on the Haswell
system.

solver depends on the distribution of the particle system,

e.g. P2NFFT for homogeneous distributions and FMM for

inhomogeneous distributions (Two Balls particle system). For

particle systems with more than 50,000 particles, the FMM

solver is the best performing one if only CPUs are available.

For a system with a less performing CPU, e.g., a single core

CPU, the P2NFFT OpenCL implementation on GPUs has the

best performance for particle systems with more than 50,000

particles.

Usually, the characteristic of the particle input system is

known before the execution starts, and measurement and

evaluation results such as described above can help to start the

most efficient simulation algorithm. However, there might be

cases in which it is not a priori clear which characteristic the

distribution of the input data might have. In these situations,

it is possible to execute one time-step with each solver to

measure the performance and then the results are compared

to select the best one. In cases in which the solver specific

parameters, e.g., the grid size, differ too much for the particle

system distribution and size, the solvers have to be tested for

several time-steps before the best one can be chosen.

In summary, the investigations of this article have shown

36 POSITION PAPERS. LEIPZIG, 2019

that the performance results of the different simulation meth-

ods can differ for different particle distribution characteristics

and different hardware, but that some behavior classes can be

detected. This shows that there is a potential for designing

tuning strategies based on a larger data basis.

VI. RELATED WORK

Performance analysis and prediction of a particle simulation

method was examined in [8]. As test system they used the SB-

PRAM, a shared memory machine with up to 2048 processors.

Many implementations of the FMM approach invented in

[1] exist and contain specific optimisations for the actual

execution run. In [9] a parallel sorting for the particles in the

particle systems is presented which improves the locality of

interacting particles for computation on a distributed memory

architecture. A more application specific optimization has been

presented in [10], which introduces a method for automatic

tuning of the FMM by selecting the optimal FMM tree depth

based on an integrated performance prediction of the FMM

computations.

The autotuning potential of particle simulation methods

from the ScaFaCoS library are examined in [11] and [12].

In these articles, only one particle distribution is considered.

In our article we consider different distributions of the particle

systems and additionally examine an OpenCL solver. The

OpenCL solver used is introduced and tested in [4].

In [13] and [14] autotuning strategies are introduced for

different N-Body simulations on heterogeneous and hybrid

CPU/GPU systems. The focus of these articles is on load

balancing the GPUs, and thus less on CPU performance

and energy consumption. The authors of [7] investigated two

different ScaFaCoS solvers on different particle systems. We

extended their work with a GPU solver and investigated

different particle systems.

VII. CONCLUSIONS

The investigations of this article have shown that varying

particle system distributions and sizes have a significant impact

on the execution time and energy consumption. Using GPUs

with the OpenCL implementation is useful when the CPU

performance of the system is limited. The results show that

some decisions can be made before runtime, but others, e.g.,

the solver specific parameters, have to be tested during run-

time. For each particle simulation execution, the availability of

hardware and the size of the particle system are fixed, but the

distribution of the particles may change after some time steps,

and thus a different particle simulation method could then

be the best. Experiments have shown that the solver specific

parameters, e.g., the grid size, have different optimal settings

for different distributions and sizes. Thus, the performance

results must be checked and compared to the values last

checked. This can be done by monitoring during runtime.

Our observations show that it is necessary to use both tuning

approaches to tune runtime or energy consumption, an offline

tuning to set the start parameters as well as possible, and an

online approach to fine-tune the parameters, e.g., the solver
specific parameters, and to respond to particle distribution

changes.

ACKNOWLEDGMENT

This work is supported by the German Ministry of

Science and Education (BMBF) project Selbstadaption für

zeitschrittbasierte Simulationstechniken auf heterogenen HPC-

Systemen (SeASiTe), Grant No. 01IH16012B.

REFERENCES

[1] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. of Computational Physics, vol. 73, pp. 325–348, 1987.

[2] M. Pippig and D. Potts, “Parallel three-dimensional nonequispaced fast
fourier transforms and their application to particle simulation,” SIAM

J. on Scientific Computing, vol. 35, no. 4, pp. C411–C437, 2013. doi:
10.1137/120888478

[3] M. Bolten, F. Fahrenberger, R. Halver, F. Heber, M. Hofmann,
I. Kabadshow, O. Lenz, M. Pippig, and G. Sutmann, “ScaFaCoS, C
subroutine library,” http://scafacos.github.com/. [Online].
Available: http://scafacos.github.com

[4] M. Hofmann, R. Kiesel, D. Leichsenring, and G. Rünger, “A hybrid
cpu/gpu implementation of computationally intensive particle simula-
tions using opencl,” in 2018 17th International Symposium on Paral-

lel and Distributed Computing (ISPDC), June 2018. doi: 10.1109/IS-
PDC2018.2018.00011 pp. 9–16.

[5] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hof-
mann, M. Pippig, D. Potts, and G. Sutmann, “Comparison of scalable
fast methods for long-range interactions,” Physical Review E, vol. 88,
p. 063308, 2013.

[6] J. M. Hammersley, “Monte carlo methods for solv-
ing multivariable problems,” Annals of the New York

Academy of Sciences, vol. 86, no. 3, pp. 844–874,
1960. doi: 10.1111/j.1749-6632.1960.tb42846.x. [Online]. Avail-
able: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-
6632.1960.tb42846.x

[7] M. Pippig and D. Potts, “Particle simulation based on nonequispaced
fast fourier transforms,” 01 2011, pp. 131 – 158.

[8] T. Rauber, G. Rünger, and C. Scholtes, “Execution Behavior Analysis
and Performance Prediction for a Shared-Memory Implementation of an
Irregular Particle Simulation Method,” Simulation: Practice and Theory,
vol. 6, no. 7, pp. 665–687, 1998. doi: 10.1016/S0928-4869(98)00006-8

[9] H. Dachsel, M. Hofmann, and G. Rünger, “Library Support for Par-
allel Sorting in Scientific Computations,” in Proceedings of the 13th

International Euro-Par Conference, ser. LNCS, vol. 4641. Springer,
August 2007. doi: 10.1007/978-3-540-74466-5 73. ISBN 978-3-540-
74465-8 pp. 695–704.

[10] H. Dachsel, M. Hofmann, J. Lang, and G. Rünger, “Automatic Tuning of
the Fast Multipole Method Based on Integrated Performance Prediction,”
in Proceedings of the 14th IEEE International Conference on High

Performance Computing and Communications (HPCC-2012). IEEE,
Juni 2012. doi: 10.1109/HPCC.2012.88. ISBN 978-1-4673-2164-8 pp.
617–624.

[11] N. Kalinnik, R. Kiesel, T. Rauber, M. Richter, and G. Rünger, “On
the Autotuning Potential of Time-stepping methods from Scientific
Computing,” in Proceedings of the 2018 Federated Conference on Com-

puter Science and Information Systems (FedCSIS 2018), 11th Workshop

on Computer Aspects of Numerical Algorithms (CANA’18), vol. 15.
ACSIS, September 2018. doi: 10.15439/2018F169. ISSN 2300-596 pp.
329–338.

[12] M. Hofmann, R. Kiesel, and G. Rünger, “Energy and Performance
Analysis of Parallel Particle Solvers from the ScaFaCoS Library,”
in Proceedings of the 2018 ACM/SPEC International Conference on

Performance Engineering (ICPE 2018). ACM, April 2018. doi:
10.1145/3184407.3184409. ISBN 978-1-4503-5095-2 pp. 88–95.

[13] R. Yokota and L. Barba, “Hierarchical N-body Simulations with Auto-
tuning for Heterogeneous Systems,” Computing in Science Engineering,
vol. 14, no. 3, pp. 30–39, May 2012. doi: 10.1109/MCSE.2012.1

[14] M. Holm, S. Engblom, A. Goude, and S. Holmgren, “Dynamic
Autotuning of Adaptive Fast Multipole Methods on Hybrid Multicore
CPU and GPU Systems,” SIAM Journal on Scientific Computing,
vol. 36, no. 4, pp. C376–C399, Jan. 2014. doi: 10.1137/130943595.
[Online]. Available: https://epubs.siam.org/doi/abs/10.1137/130943595

ROBERT KIESEL, GUDULA RÜNGER: PERFORMANCE AND ENERGY EVALUATION OF PARALLEL PARTICLE SIMULATION ALGORITHMS 37

