
A formal method to detect possible P416

specific errors

Gabriella Tóth

Eötvös Loránd University

Faculty of Informatics

1/C. Pázmány Péter sny, Budapest, 1117, Hungary

Orcid Id: 0000-0001-9657-7231

Email: kistoth@inf.elte.hu

Máté Tejfel

Eötvös Loránd University

Faculty of Informatics

1/C. Pázmány Péter sny, Budapest, 1117, Hungary

Orcid Id: 0000-0001-8982-1398

Email: matej@inf.elte.hu

Abstract—P4 is a programming language to develop
data processing of networks. This kind of programs are
used in network devices – like switches – to describe the
way of forwarding the received packets to the proper
device. Checking the correctness of these programs is
not an obvious task, because they can easily hide the
run time errors. We are working on a method to detect
violation of P4 specific properties. The method is based
on a rule system, which can detect suspicious program
parts and indicate the violated property. It helps to detect
and correct real errors easily. As a first step, we introduce
the main idea, dealing with the access of invalid header
and uninitialized fields. We also present a case study to
demonstrate the applicability of the method.

I. INTRODUCTION

P
4 [1] is a domain specific programming language

to develop data plane of network devices. P4

makes it possible to develop target independent, pro-

tocol independent solutions for data plane processing.

Budiu and Dodd [2] describe partially the main struc-

ture and the design goals of the most recent version

of the language.

Although it opened a new dimension in the network

data plane, it left the safety of bound protocols.

Therefore, P4 developers need to be more prudent to

create correct programs, or a proper solution need to

be invented to detect different source of errors.

Errors are hardly detectable, because P4 easily hides

them, and we can only recognize them from the bad

or suspicious behavior. For example, if the program

reads a field of an invalid header then it will get

an unspecified value, with which it will continue the

execution and it will not stop and sign the problem.

One solution can be accurate testing, but this can

be too expensive and bounded. Formal methods can be

more applicable. In the near past, different verification

tools were published [3], [4], [5] to work on the

correctness of P4 programs, with detecting specified

properties, and give the opportunity for developers to

correct them.

This work has been supported by the European Union, co-
financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-
2017-00002)

P4 has two main release version: P414 [1], [6] and

P416 [2], [7]. There are main differences between

them, for example in the structure, the syntax of the

code and the deparsing phase. We work with the new

one, and we would like to create firstly a method,

secondly a tool to use them to check safety properties.

In this paper we introduce the first step forward a P4

specific, formal program property verification method.

In this step we produce a rule system to detect different

errors in the programs. Now, we work only with one

possible error type, which can be caused simply by

inattention and cannot be found easily. We define a

property based on the validity of headers and fields,

which says that, invalid headers or uninitialized fields

should not be read or written, because it can cause

undefined behavior. Section II shows some related

works. In Section III we introduce some example

for this problem. Section IV introduces the method

specification and after it, we present its usage in a

concrete case study in Section V.

A. Background on P4

Figure 1 contains a P4 program used by our

case study. Main process of P4 programs is to get

a bitstream as an input, extract the information of

headers (with the parser) and modify them (with

different actions) to create the new packet, which is

sent forward to the network. There are some main

structural units of the programs. Headers (lines 1-

25) describe the handled header information about the

packets. Parser (lines 27-48) extracts the data from the

input bitstream to header instances. Control functions

(lines 57-93) call the match-action tables, and handle

the modification of headers with them. Match-action

tables (lines 76-86) call actions. They work in a similar

way as table lookup. They matches concrete fields

of headers – named keys – with given values, and

according to the result it executes an action call. The

program only defines templates of the match-action

tables, which contain a set of fields and a set of

description of actions – their name and parameters.

The concrete pairs of matching values and description

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 49–56

DOI: 10.15439/2019F355

ISSN 2300-5963 ACSIS, Vol. 19

c©2019, PTI 49

of action are coming from an external controller during

run time. Actions define the modification of the values

of headers. After the modification, the deparser builds

the new packet from the created header data as an

output bitstream and forwards it to the network.

Figure 1 shows an example, where there are two

header type: ethernet and ipv4 . After the input packet

arrives – as a bitstream – the parser will extract the

header ethernet . If the value of field ethernetType is

0x800 , then it will extract the header ipv4 too, other-

wise is will not extract any other header. MyIngress

control function contains the modification part of

the program. It has one table, which can call three

different actions. One of the actions is the ipvf orward ,

which change the srcAddr , dstAddr and mathitttl

fields of the ipv4 . Another is the action ipv4new ,

which tries to create a new ipv4 , with the method

setValid , and some assignments. The last one is the

action drop, which only drops the processed packet.

The main process of the control function is a branch,

which will execute the table if the header ipv4 is valid.

After the modification of the headers, the deparser will

produce the output packet – as a bitstrem – which will

contain both of the mentioned headers.

II. RELATED WORK

In the near past different P4 specific verification

tools were published. We would like to highlight four

of them, which work with the previous main version

of P4 – named P4_14.

Assert-P4 [3] does not appoint specific properties

to check, they entrust it to the developer, who can add

assertions to the source code, and the tool will check

their correctness. From the annotated program, it cre-

ates a C-model in which it examines the properties

working based on symbolic execution – using Klee

[8].

P4V [4] uses another approach of the problem.

They transform the P4 code into GCL, create logical

formulas from the GCL description, and check their

satisfiability with Z3 [9].

Vera [5] uses also symbolic execution. It transforms

the source code to SEFL, which is a modeling lan-

guage to define state machines. The state machine

represents every possible path of the execution, with

symbolic values – using Symnet [10]. Vera works with

predefined properties.

P4K [11] is a solution, which uses the K framework

[12]. It presents the operational semantics of P4 and

based on this semantics it can verify simple P4 prop-

erties using the reachability rule system of K [13].

All of the mentioned tools deal with validity check-

ing, but neither of them mentioned the problem of

uninitialized fields. Our solution extended the invalid

header monitoring to the deparsing phase and to the

usage of keys of tables. Our solution also checks the

usage of uninitialized fields. Most of the proposed

Fig. 1. Example of P4 program

50 POSITION PAPERS. LEIPZIG, 2019

tools use some type of symbolic execution, but we

try to stay in a formal solution, where we need

no symbolic values. Although the current version of

our method can not manage properly the problem

of numerous different initial and final states, we are

working on a solution to reduce this problem.

III. MOTIVATION

The first property that we introduce is the validity of

headers and their fields. Reading or writing of invalid

headers or uninitialized fields can cause undefined

behavior. Therefore, we would like to highlight the

error prone usage of them.

There are two commands, which can be used to

set the validity of headers. One of them is the

setValid() function, which can validate them. Calling

of setValid() has a side effect with which every field

of the header become uninitialized. The other one

is the setInValid() function, which set the header

to invalid, and all of its fields to uninitialized too.

After the usage of these commands, the fields can be

initialized explicitly with assignments.

Reading fields of invalid headers and uninitialized

fields results unspecified values. Writing fields of

invalid headers are unnecessary, because if we would

like to use their values – for example in the output

packet – we need to set the header to valid, which

means that their fields become unspecified. Therefore,

we need to avoid these type of codes, because it can

easily lead to an error.

We would like to filter every occurrence of this

problem, which can be in the control functions – for

example in the conditions of branches, keys of tables

and assignments. Using invalid header to emit in the

deparsing phase is not an error, because P4 simply

will not use it during the building of the packet,

although it can be suspicious. Therefore, in this paper

we will consider it as a possible error. Summary, in

our rule system we would like to detect the usage of

uninitialized fields and invalid headers as a key of a

table, part of an assignment or during deparsing.

In the following sections we will link to the ini-

tialized fields as valid and the uninitialized fields as

invalid fields, for simplification.

IV. METHOD OF PROPERTY CHECKING

The method has two main parts. First is a prepro-

cessing phase in which the initial states, final states

and core program are produced. The initial states will

be created from the source of parser, the final states

will be created from the source of deparser, and the

program will be produced from the control functions.

The second phase is the usage of the rule system,

which detects the errors. The calculation examines

that, the execution can reach one of the final states

from every initial state. This rule system is similar to

an axiomatic semantics, but it has a more complex

environment structure and additional side conditions.

S ∈ State :
Condition× PacketInfo× Environment

Fig. 2. Type of states

A. Preprocessing – Initial state

To use the method, first we need to preproccess

the P4 code to produce the initial states. This first

phase collects the used headers, and creates an empty

environment, where everything is invalid. Than it

analyses the parsing phase and calculates the different

packet information and initial environments.

Parsing is a state machine with two final states

– accept and reject . Initial states will contain those

paths, which start with the start state and finish in the

accept state. They will use the conditions of branches

to describe the different input packets in the packet

information.

States will be represented with a triple – it is

showed by Figure 2. The first element is the collected

conditions, which is True in the initial state, and is

changed during the usage of the rule system. The sec-

ond element is the packet information, which identifies

the different input packets. The third part is the used

environment.

Condition collects the conditions of branches from

the control functions as a conjunctive formula. There

will be statements for validity checking of headers.

PacketInfo and Environment contains

information about the input packet and the created

headers. Suppose their is a parsing phase, which first

extracts an ethernet header, and after that it branch

according to the value of ethertype field. If its value

is 0x800 then it will extract ipv4 , if its value is

0x86DD then it will extract ipv6 header, otherwise it

will not extract any other headers. In this case, there

can be three different initial packets, which can be

described with the following formulas:

First case:

(ethernet .ethertype = 0x800 ;
ethernet = valid , ipv4 = valid , ipv6 = invalid)

Second case:

(ethernet .ethertype = 0x86DD ;
ethernet = valid , ipv4 = invalid , ipv6 = valid)

Third case:

(ethernet .ethertype 6= 0x800
∧ ethernet .ethertype 6= 0x86DD ;
ethernet = valid , ipv4 = invalid , ipv6 = invalid)

Of course the environment description has concrete

initial information about the fields of headers. It con-

tains every headers and fields of the headers with their

validity. In the parsing phase only total headers are

parsed, therefore if a header is valid, then its fields

will be valid too. The environment also contains an

GABRIELLA TÓTH, MÁTÉ TEJFEL: A FORMAL METHOD TO DETECT POSSIBLE P4 SPECIFIC ERRORS 51

additional information, the drop flag, which shows the

packet is set to drop or not.

In the environment, now we only collect the head-

ers, their fields and their validity information, but as

future work we plan to extend this information with

concrete values to make possible the analysis of more

precise properties.

B. Preprocessing – Final state

Deparsing phase is implemented as a control func-

tion in P4, so it can also contains branches. During

deparsing the emit commands determine which head-

ers and in which order are added to the output packet.

If this header and its fields are valid then everything

is fine. If the header is invalid, then the program will

not add it to the packet. It is allowed to use it, but in

our case, we would like to sign any suspicious case,

therefore we will handle it as a possible error source.

Emitting an uninitialized field of a valid header is also

wrong, because it will use an unspecified value, so we

would like to prevent it.

As mentioned above, the drop flag is part of the

environment. Therefore, there will be a final state,

which is always a possible one: which contains the

drop variable with the value 1 , and every header and

field can be valid or invalid. This state describes that

case, when the packet is dropped. In every other case

the drop flag needs to be 0 , and the value of headers

and fields is defined.

The conditions (Condition and Packet

information) of the final states are filled with

True: (True, (True,E))), because in the end of the

calculation we will be able to restrict them – Rules

12 and 13 from Figure 3. There can be more final

states, so there is a rule, with which the reachable

one can be chosen – Rule 14.

C. Preprocessing – Core program

We need to create the core program for the rule

system, so we unwrap the table applications and the

action calls and concatenate the control functions –

except for the deparser. We will get a sequentially

program which contains every aspect of the code – for

example the parameters of the actions – so we will be

able to easily extend the property checking with new

detection.

D. The rule system

During a deduction we prove that the program will

reach one of the final state from all of the possible

initial states. From the preprocessing phase we get

one or more different initial states, and we need to

verify the properties started from all of them. At the

beginning of the method we can choose the conditions

to True , because those will change during the code

processing by adding other conditions of the branches

with a conjunction.

The basic structure of the rule system is similar to

the axiomatic semantics of P4. Although it is stricter

than the basic behavior of the P4 programs and the

used program states are extended with the above

mentioned way. The rules will be inference rules in

which the PacketInfo part will never be changed,

because it is used as an identification of the input

packet – except for the case of Rule 13. Therefore,

in the end of the calculation we will be able to tell

more specified information about the possible errors.

Figure 3 shows the rule system of the main verifi-

cation to detect errors. In the system, the S notations

mean the statements, which have 3 main parts. C is

a condition, P is a packet information and E is an

environment. Therefore, every variants of these letters

means the same type of element. On the right side

of some rules there is a side condition, S ⊢ {x}
– where x can be a condition of branch, a key of

a table or one side of an assignment – statement. It

checks the calculability of every element of the given

set of statements by knowing the C conditions and E

environment of the S state. Here calculability means

that, every used field and header is valid.

In the rules, there are some specified expressions.

Rule 1 and 2 describe the assignments. There can be

two type of them: when we give value to a field (Rule

1) – in this case only the field become valid –, and

when we give value to a header with a list (Rule

2) – here every field and the header are rewritten to

valid. In the right side of the rule in the description

of the environment there can be an expression (for

example {S [E || E[h.f → valid]]}), which means

that we use the S state with some modification in

the E environment , especially the h.f fields validity

will be changed to valid. In the Rule 2, the h.fields

is used, which means, we use every field of header

h , and in this case we set them to valid . In the right

side of these rules, the checking of the used statements

is appeared. It checks the validity of every part of the

assignments, because the commands write the left side

of the assignments and reads the right side.

Rules 3 and 4 process the setting of the validity of

a header. The first rule sets it to valid, and its every

field to invalid – because of the side effect. The other

rule sets the given header and its fields to invalid.

During the process of the packet, there can be cases,

when we need to drop the packet. Rule 5 describes this

function, and simply set the drop flag to 1 .

The next three rules (Rules 6, 7 and 8) are the

extended version of the common programming struc-

tures. First describes the sequence, second and third

describe the branches with and without an else case.

In the last two rules, it needs to check the validity of

the condition of the branch.

In the last one, it uses S1 ∧¬b ⇒ S2 , which can be

rewritten to the following: S1.C ∧ toCond(S1 .E) ∧
¬b ⊃ (S2.C ∧ toCond(S2 .E)), where toCond(S .E)

52 POSITION PAPERS. LEIPZIG, 2019

Let it be: h ∈ Headers, f ∈ Fields

1. S ⊢ {exp, h, h.f}
{S} h.f = exp {S [E || E[h.f → valid]]}

2. S ⊢ list ∪ {h}
{S} h = list {S [E || E[h → valid , h.fields → valid]]}

3.
{S} h.setValid() {S [E || E[h → valid , h.fields → invalid]]}

4.
{S} h.setInValid() {S [E || E[h → invalid , h.fields → invalid]]}

5.
{S} mark_to_drop(..) {S [E || E[drop → 1]]}

6.
{S1} Pr1 {S2} {S2} Pr2 {S3}

{S1} Pr1;Pr2 {S3}

7.
{S1 [C || C ∧ b]} Pr1 {S2} {S1 [C || C ∧ ¬b]} Pr2 {S2}

S1 ⊢ {b}
{S1} if (b) {Pr1} else {Pr2} {S2}

8.
{S1 [C || C ∧ b]} Pr {S2} S1 ∧ ¬b ⇒ S2

S1 ⊢ {b}
{S1} if (b) {Pr} {S2}

9.
{S1} A1 .body {S2} . . . {S1} An .body {S2} S1 ⇒ S2

S1 ⊢ K
{S1} table keys : K actions : {A1 , ...,An} {S2}

10.
{S1} A1 .body {S2} . . . {S1} An .body {S2} {S1} An+1 .body {S2}

S1 ⊢ K
{S1} table keys : {K} actions : {A1 , ...,An ,An+1} {S2}

11.
S1.C ⊃ C′ {S1 [C || C′]} S {S2}

{S1} Pr {S2}
12.

{S1} Pr {S2 [C || C′]} C′ ⊃ S2.C

{S1} Pr {S2}

13.
{S1} Pr {S2 [P || P3]} P3 ⊃ S2.P

{S1} Pr {S2}

14.
{S1} Pr {Si} i ∈ [2..n]

{S1} Pr {S2, . . . Sn}
15.

{S1} Pr {Sm} . . . {Sn} Pr {Sm}

{S1, . . . , Sn} Pr {Sm}

Fig. 3. Rule system to verify validity

means the conversion of the environment to condi-

tions. For example, if there is a header h , with value

valid , it will create a condition like h == valid . So

the expression checks that, the information of S1 and

the negated b implies the information of S2 .

The following two rules (Rules 9 and 10) describe

the behavior of match-action tables, as a branch with

n cases. There is validity checking of the keys in both

rules. The previous one works with the tables without

a default action, and the latter one works with default

actions too.

The last five rules can be used to refine conditions

and packet information and states. The first is the

strengthen of the left side condition, the second is

the weaken of the right side condition. The third one

weakens the packet conditions. It is necessary during

the deduction to strengthen the packet information of

the final state, because at the beginning, we use True

to describe it, and in the end it needs to match with

the concrete description. The forth one say that if their

is a deduction to an Si state then there will be a

deduction to more states, where one of them is Si . In

GABRIELLA TÓTH, MÁTÉ TEJFEL: A FORMAL METHOD TO DETECT POSSIBLE P4 SPECIFIC ERRORS 53

the deduction it means that we choose one final state.

The last one can be used to separate the deduction

based on the initial states.

E. Verification

The initial states will be created in preprocessing

phase, which will separate the possible input packets.

The final states and the core program will be produced

too. We need to create a deduction from each of the

initial states to one of the final states by using the

inference rules. If there is any problem, the deduction

will stop and we will be able to see the errors from

the stuck paths. There are branches in the deduction

tree. Beside a deduction has one stucked path, it can

detect other errors, or it can work well in other paths

too. So we can detect different errors in one proof,

and determine the problems from the calculation of

the incorrect conditions.

Producing a proof for every initial state, will mean

that the given program is well defined, and it does not

violent the examined program properties.

V. CASE STUDY

This section focuses to the P4 example, which is

illustrated by Figure 1. We show the results of the

verification and its phases.

A. Preprocessing – initial states

This phase of the preprocessing use the headers and

the parsing phase. The environment of the initial states

contains every headers and fields. There is an added

flag – named drop – which represents the intention of

drop the input packet. The parsing phase extracts the

ethernet header and than the execution is branched. If

condition ethernet .ethertype = 0x800 holds, it will

extract an ipv4 header, on other case it will not extract

other headers. After the calculation of preprocessing,

two possible initial states will be produced.

The produced two possible initial states are the

followings:

I1 = (True, ethernet.ethertype = 0x800,

[drop = 0,

ethernet: (valid, {

dstAddr: valid,

srcAddr: valid,

ethertype: valid}),

ipv4: (valid, {

version: valid,

...

dstAddr: valid})])

Fig. 4. First initial state

B. Preprocessing – final states

The final states calculation uses the code of the

deparsing phase. In the example, there is a really

simple deparser, which firstly emits the ethernet , and

secondly emits the ipv4 header. Therefore there will

I2 = (True, ethernet.ethertype 6= 0x800,

[drop = 0,

ethernet: (valid, {

dstAddr: valid,

srcAddr: valid,

ethertype: valid}),

ipv4: (invalid, {

version: invalid,

...

dstAddr: invalid})])

Fig. 5. Second initial state

be two reachable environments. One of them describes

the case, when the packet will be dropped, and the

other fields and headers validity is not important –

Figure 6 represents it with the marking others = ∗.

The other describes the execution when the packet is

not dropped, and the ethernet , ipv4 and all of their

fields are valid, because we would like to forward

them.

F = {(True, True, [drop = 1, others = *]),

(True, True,

[drop = 0,

ethernet: (valid, {

dstAddr: valid,

srcAddr: valid,

ethertype: valid}),

ipv4: (valid, {

version: valid,

...

dstAddr: valid})])}

Fig. 6. The calculated final state

C. Preprocessing – executable program

This phase only use the code of the control func-

tions. It concatenates the main code of the control

functions, and unwrap the calls of the tables and

actions.

Pr =

if (hdr.ipv4.isValid()) {

table

keys: {hdr.ipv4.dstAddr}

actions: {

ipv4_forward(bit<48> dstAddr) {

hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

},

drop(){

mark_to_drop(standard_metadata);

},

ipv4_new(bit<32> dstAddr, bit<32> srcAddr) {

hdr.ipv4.setValid();

hdr.ipv4.srcAddr = srcAddr;

hdr.ipv4.dstAddr = dstAddr;

}}

}

Fig. 7. Produced core program

54 POSITION PAPERS. LEIPZIG, 2019

X

{I11} hdr .ipv4 .ttl = .. {I11}

{I11} hdr .ipv4 .ttl = .. {F2}
.
.
.
.

{I11} hdr .ipv4 .srcAddr = ..; .. {F}

X

{I11} mark_to_drop(..) {F11}

{I11} mark_to_drop(..) {F1}

{I11} mark_to_drop(..) {F}

E

{I12} hdr .ipv4 .dstAddr = .. {F2}
.
.
.
.

{I11} hdr .ipv4 .setValid(); .. {F}

{I11} tablekey :{..} actions : {ipv4_forward(..).., drop(..){..}, ipv4_new(..)..}}{F}

X

(I1 ∧ ¬b ⊃ F)

{I1} if (hdr .ipv4 .isValid()){...} {F}

I11 = (hdr .ipv4 .isValid(), (ethernet .ethertype = 0x800, {drop = 0, ethernet = valid , ethernet .all = valid ,
ipv4 = valid , ipv4 .all = valid}))

I12 = (True, (ethernet .ethertype = 0x800, {drop = 0, thernet = valid , ethernet .all = valid , ipv4 = valid ,
ipv4 .srcAddr = valid , ipv4 .others = invalid}))

F11 = (ipv4 .isValid(), ethernet .ethertype = 0x800, [drop = 1, others = ∗])

Fig. 8. Deduction of I1

D. Using the system

Figure 8 contains the shorter version of the deduc-

tion from the first initial state. In the figure there are

4 main paths in the deduction. We took a short cut

for the deduction. In parts where there are dots, there

are branches, – because of the sequences – we just

illustrate the last branch of all paths.

First path shows the effect of ipv4_forward action.

It does not change the validity of the fields, so in the

end it reaches the second version of the final state –

the one in which the packet is not dropped.

The second path only contains the

mark_to_drop(..) statement, which set the drop

variable of the environment to 1 , therefore it reaches

the first version of the final state – which describes

the packet dropping.

The third path does not reach the given final states.

According to the dropping, it should reach the second

version of the final state, but it is not proper because of

the validity of fields of the ipv4 header. The ipv4_new

action sets the validity of the ipv4 header to valid, but

its side effect also sets all of its fields to invalid. After

that, it only reinitializes the dstAddr and the srcAddr ,

but there are others, which stay invalid, and there is

no reachable final state for this environment.

The fourth path contains the execution, when the

condition of the if statement was false. It is written

with a logical formula, which is an implication, which

has a false expression in the left side, so the result of

the whole formula is true .

X

{I22} table.. {F}

E

I2 ∧ ¬ipv4 .isValid() ⊃ F

{I2} if (hdr .ipv4 .isValid()){...} {F}

I22 = (hdr.ipv4.isV alid(), ethernet = valid,

ethernet.all = valid, ipv4 = invalid, ipv4.all = invalid)

Fig. 9. Deduction of I2

Figure 9 produces the deduction from the second

initial state. This deduction has one right and one

wrong branch. The first one has no error, because of

the condition – ipv4 .isValid() – and the environment

– where ipv4 = invalid – are contradict each other.

These type of paths can be accepted. This type of paths

describes parts of the execution, which never runs.

The second path examines the case when the con-

dition of the branch is false – so ¬ipv4 .isValid(). In

this case the left side of the implication is true , but it

does not implicate any of the final states, because they

do not have matching environments. It could match

only with the final state, where the drop field is 0 ,

but there is no match between the environments. This

result comes from the ipv4 header, because in the

initial state it is not valid, but in the possible reachable

state it is valid. Therefore, the whole formula is false.

In this case, one of the final states should be reachable

from the initial state, because the executed program is

a skip one,but this condition is not right.

VI. FUTURE WORK

A. More detailed method

First of all we will define the details of the method,

for example the processing of the parser and deparser.

We will extend the method with other P4 specific

properties. To work with other properties, we will need

to follow the changes of fields with an environment,

which will contain the values and other information

– according to the checked properties – about the

headers and their fields.

We will fix the disadvantage of the current method,

it can not calculate all possible errors in one execution

cycle. It stops in a path, when a problem is detected,

and it does not continue the calculation. For example,

if we use the Rule 9 in Figure 3, and the keys are not

valid then we will not be able to detect the problems

in the actions too, only if the first one is corrected.

In the future we would like to figure out the solution

GABRIELLA TÓTH, MÁTÉ TEJFEL: A FORMAL METHOD TO DETECT POSSIBLE P4 SPECIFIC ERRORS 55

to continue the calculation, for example with some

supposed assertions.

The current solution can manage only simplified

structure elements of P4 programs, therefore we will

need to extend the rule system, and the statements with

other P4 elements. For example now we do not work

with metadata headers, constants.

B. Implementation

In the near future, we will implement the introduced

method. Currently we are working on representing the

rule system in Coq [14]. Later we will create a tool,

which will be able to analyze an arbitrary P4 code

according to our method, and sign the possible error

source.

C. Applicability in complex examples

The final step is to be able to detect errors in larger,

more complex programs too. We would like to extract

the method with the possibility of the compositional

processing, therefore we could simplify the deduc-

tions. We will extend the rule system with new rules,

which will allow to process the core program with

divided parts.

VII. CONCLUSIONS

This paper introduces a formal method for prop-

erty checking of P4 programs. For the time being,

it only works with the validity of the headers and

the initialization of the fields, but it will be also

complemented with other, P4 specific properties. The

produced method have two main parts. The first one is

the preprocessing, which prepares the information for

the concrete calculations – that creates the initial and

final states with collecting and merging the contents of

core program. The second part is the deduction, which

examines that, from every initial states the program

can reach one of the final states. If we can prove it with

the rules then we have a well defined P4 program. If

there is any problem during the deduction then we will

be able to denote the error from the valuated condition

or the states.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput.

Commun. Rev., vol. 44, no. 3, pp. 87–95,
2014. doi: 10.1145/2656877.2656890. [Online]. Available:
http://dx.doi.org/10.1145/2656877.2656890

[2] M. Budiu and C. Dodd, “The p416 programming language,”
SIGOPS Oper. Syst. Rev., vol. 51, no. 1, pp. 5–14, Sep.
2017. doi: 10.1145/3139645.3139648. [Online]. Available:
http://dx.doi.org/10.1145/3139645.3139648

[3] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-
Filho, and M. Barcellos, “Uncovering Bugs in P4 Programs
with Assertion-based Verification,” in Proceedings of the

Symposium on SDN Research, ser. SOSR ’18. New York,
NY, USA: ACM, 2018. doi: 10.1145/3185467.3185499.
ISBN 978-1-4503-5664-0 pp. 4:1–4:7. [Online]. Available:
http://dx.doi.org/10.1145/3185467.3185499

[4] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee,
R. Soulé, H. Wang, C. Caşcaval, N. McKeown, and
N. Foster, “P4v: Practical Verification for Programmable
Data Planes,” in Proceedings of the 2018 Conference of

the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018.
doi: 10.1145/3230543.3230582. ISBN 978-1-4503-5567-4
pp. 490–503. [Online]. Available: http://dx.doi.org/10.1145/
3230543.3230582

[5] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu,
and C. Raiciu, “Debugging P4 Programs with Vera,”
in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser.
SIGCOMM ’18. New York, NY, USA: ACM, 2018.
ISBN 978-1-4503-5567-4 pp. 518–532. [Online]. Available:
http://dx.doi.org/10.1145/3230543.3230548

[6] (2018) The P4 Language Specification. [Online]. Available:
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf

[7] (2018) P416 Language Specification. [Online]. Available:
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.pdf

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and Automatic Generation of High-coverage Tests for
Complex Systems Programs,” in Proceedings of the 8th

USENIX Conference on Operating Systems Design and

Implementation, ser. OSDI’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 209–224. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1855741.1855756

[9] L. De Moura and N. Bjørner, “Z3: An Efficient SMT
Solver,” in Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems,
ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-
Verlag, 2008. doi: 10.1007/978-3-540-78800-3-24. ISBN
3-540-78799-2, 978-3-540-78799-0 pp. 337–340. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-78800-3-24

[10] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Symnet: Scalable Symbolic Execution for Modern
Networks,” in Proceedings of the 2016 ACM SIGCOMM

Conference, ser. SIGCOMM ’16. New York, NY,
USA: ACM, 2016. doi: 10.1145/2934872.2934881. ISBN
978-1-4503-4193-6 pp. 314–327. [Online]. Available:
http://dx.doi.org/10.1145/2934872.2934881

[11] A. Kheradmand and G. Rosu, “P4K: A formal semantics
of P4 and applications,” CoRR, vol. abs/1804.01468, 2018.
[Online]. Available: http://arxiv.org/abs/1804.01468

[12] G. Roşu, K: A semantic framework for programming

languages and formal analysis tools, 01 2017, pp.
186–206. [Online]. Available: http://dx.doi.org/10.3233/
978-1-61499-810-5-186

[13] A. Stefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu,
“Semantics-based Program Verifiers for All Languages,”
SIGPLAN Not., vol. 51, no. 10, pp. 74–91, Oct. 2016.
doi: 10.1145/3022671.2984027. [Online]. Available: http:
//dx.doi.org/10.1145/3022671.2984027

[14] The Reference Manual of the Coq. [Online]. Available:
https://coq.inria.fr/distrib/current/refman/

56 POSITION PAPERS. LEIPZIG, 2019

