
Ladder Tagger — Splitting Decision Space to Boost
Tagging Quality

Mariusz Paradowski, Adam Radziszewski
Institute of Informatics, Wrocław University of Technology

Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław

Poland

Abstract—This paper describes a part of speech tagger. The
tagger is based on a set of probability mixture models. Each
mixture model is responsible for tagging of a specific class of
words, sharing similar context properties. Probability mixture
models contain 25 various mixture components. The tagger
is tested on Polish language and compared to other available
taggers.

I. INTRODUCTION

P
ART-OF-SPEECH (POS) tagging is a common and well-

researched Natural Language Processing (NLP) task. It is

the process of assigning POS tags to words and word-like units

(tokens) in text. In languages with rich morphology the tags

usually include significantly more information than just parts-

of-speech, e.g. nouns may be specified for values of number,

gender and case, adverbs may be specified for degree. In such

a setting, the task is referred to as morphosyntactic tagging.

In this paper we present a novel approach to Part-of-Speech

tagging (POS tagging), where the labelling is performed in a

non-sequential manner using an array of simple probability

mixture models. The models are derived directly from the

training data. The approach has been developed for Polish,

an inflective language that is typically described with a rich,

positional tagset. However, very little language-dependent in-

formation is in fact employed and it is reasonable to expect

that the approach will work equally well for other positional

tagsets.

The presented version of the tagger deals only with disam-

biguation of the grammatical class (roughly corresponding to

Part-of-Speech). In spite of that, it already makes use of the

information available in the whole tags.

II. TAGGING OF INFLECTIVE LANGUAGES

Tagging of inflective languages is a not an easy task. One

of the main difficulty is the relatively free word order, which

makes sequences of n-grams much less frequent than in

English [1]. The other major difficulty is related to the size

and characteristics of tagsets. English tagsets usually define

40–200 different tags, while the 1-million-token manually

annotated part of the National Corpus of Polish [2] contains

about 1000 different tags. This is a frequently cited reason of

low performance of taggers for inflective languages [3]–[5].

Tagging of inflective languages is usually performed in

two stages: morphological analysis and morphological disam-

biguation [6]. The first stage is essentially dictionary look-

up, resulting in attaching sets of tags attached to each token.

The proper tagging happens during the disambiguation phase

— tags that are recognised as contextually inappropriate are

removed from the sets. The other technique that is commonly

used is called tiered tagging (originating from a work by

Tufiş [7]). This technique assumes splitting of positional tags

according to some groups (tiers) of grammatical categories that

the tags consist of. A sentence is disambiguated iteratively, one

tier at a time.

Both techniques are used in three taggers made for Polish

language during the last five years. PANTERA [8] is built

upon an adaptation of the Brill’s transformation-based learning

algorithm. The tagger employs three tiers, but also makes

uses of modified rule templates that operate on the level of

particular tagset attributes (grammatical categories) instead of

whole tags, which is an important enhancement when dealing

with positional tagsets. Also, the sets of tags assigned in

the course of morphological analysis are used to constrain

possible transformations: if any transformation would result

in generation of a tag not accounted for by the morphological

dictionary, the transformation is cancelled.

WMBT [9] is a memory-based tagger that introduces mor-

phological analysis and tiered tagging to the standard memory-

based tagging framework, namely MBT [10]. The tagger

uses as many tiers as there are attributes in the tagset (plus

one for the grammatical class). The algorithm iterates over

tiers; tagging of one tier involves classification of subsequent

tokens with a k-Nearest Neighbour classifier. The classification

process benefits from a rich feature set, including values of

particular attribute (grammatical class, number, gender and

case for tokens surrounding the token being tagged), but also

tests for morphological agreement on number, gender and

case. WMBT was later enhanced with a simple handling

for unknown words [11]. The procedure assumes collecting

separate case bases for known and unknown words.

WCRFT [11] is a modification of the WMBT tagger, where

a linear-chain first-order Conditional Random Field (CRF) is

used instead of the k-NN classifier. Also, instead of classifying

independently each token, the CRF model is used to classify a

whole sentence at a time. A separate model is trained for each

tier and these models are run sequentially when performing

disambiguation. The feature set is taken directly from WMBT.

Also, similar unknown word handling procedure is employed.

Concraft [12] is based on a new mathematical model

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 163–169

DOI: 10.15439/2014F107

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 163

devised for the purpose of morphosyntactic tagging, namely

Constrained Conditional Random Fields (CCRF). CCRF is

an extension of the CRF model where additional constraints

are imposed on the set of labels that may be produced for

each token in the output sequence. The constraints are used

to enforce that each output tag belongs to the set of tags

generated during morphological analysis. The model used

for disambiguation is second-order. An interesting feature of

the tagger is that disambiguation is performed on all layers

simultaneously instead of using the standard tiered tagging

scheme. Concraft also contains a separate model for handling

of unknown words, which is based on first-order CCRF.

III. LADDER TAGGER

In this paper we propose a new part-of-speech tagger

called Ladder Tagger. Formally, part-of-speech tagging may be

modelled as a sequence I of dependent multi-class decision

problems w ∈ I . Decision problems w are statistically de-

pendent because previously made decisions (tag assignments)

influence further ones.

Natural language structure is highly complex, often very

flexible, full of exceptions. The main idea of the proposed

method is to divide the sequence of decision problems I into

n subsets of problems with similar properties:

D1 ⊆ I,D2 ⊆ I, ..., Dn ⊆ I, (1)

D1 ∩D2 ∩ ... ∩Dn = ∅. (2)

Each of these subsets Di : i ∈ {1, ..., n} should model

a part of language complex structure. Statistical dependence

of decision problems w ∈ I makes the final tagging result

dependent on the order in which they are solved. Our idea

is to solve decision problems from the easiest to the most

difficult ones (hence the name of the proposed tagger) in a

non-sequential manner. The major advantage of this approach

is that both preceding and succeeding tagging results may

influence the current result.

The second contribution of the proposed tagger is highly

intense usage of tagging context information. In probabilistic

tagging smoothing plays a key role. Smoothing models may

be more or less complex, but they should provide statistically

significant information regarding token context. Of course

smoothing parameters are highly dependent on the decision

problem to solve. In the proposed tagger we use as much as 25

probability smoothing components, both taking into account

preceding and succeeding tokens. Smoothing parameters are

independently estimated for each set of decision problems.

The general outline of the tagging process is presented

in Fig. 1. First, we assign each token (decision problem)

to a set of decision problems according to its predefined

properties. The first set D1 contains the easiest, unambiguous

tokens (they are trivial single-class cases). Remaining sets

D2, ..., Dn contain difficult, multi-class decision problems.

Sets of decision problems are now solved according the their

difficulty.

Require: I – sequence of decision problems (tokens to be

POS-tagged)

Ensure: t – part-of-speech tagging of I

1: D1 ← ∅, D2 ← ∅, ..., Dn ← ∅
2: for all w ∈ I do

3: m←get-problem-type(w)
4: Dm ← Dm ∪ {w}
5: end for

6: for all D ∈ {D1, D2, ..., Dn} do

7: for all w ∈ D do

8: tw ←solve-problem(w)
9: end for

10: end for

11: return t

Figure 1. Ladder Tagger algorithm

Our proposal follows the two-stage scheme described in the

previous section: tagger’s input must be first subjected to mor-

phological analysis and the core algorithm is responsible for

morphological disambiguation. In other words, it is assumed

that each token is attached a set of possible tags1 and each

decision problem consists in selecting one of its elements.

The information on possible tags is used during both training

and normal tagger performance (disambiguation) to designate

ambiguity classes.

A. Subsets of decision problems

The main goal of decision problems division is to build

better, more specific classifiers. One of the key issues in

case of POS tagging is proper usage of the available training

information. Different type of information should be used

in case of e.g. frequent known words, rare known words

and unknown words. Thus, the following classes of decision

problems are defined:

1) specific known words (SKN),

2) frequent known words (FKN),

3) possible grammatical class (POS) ambiguity classes of

known words (GKN),

4) rare known words (RKN),

5) word suffixes or prefixes for unknown words (UNK).

Decision problem subsets are instances of the above classes.

Specific known words (SKN) class contains very frequent

words with lots of grammar exceptions. List of these words

should be pre-specified by expert linguists. The list should not

be too long, because classifiers for each specific known word

are trained separately. Frequent known words (FKN) class

contains frequently used words, generally following grammar

rules. Due to their high frequency in the corpus they have a

large training data available. Ambiguity classes class is much

less specific, it often covers multiple known words. Number

1Possible according to the morphological analyser employed. Even if a
word form is known to the analyser, the returned set of tags may be incomplete
or erroneous. Given the evolving nature of language, it is impossible to create
an exhaustive morphological dictionary that will be valid for any text.

164 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

of known instances of a given word is another important

criterion. If a word has only one instance in the training set,

any parameter estimation is not possible for such a word.

Such words are considered rare and are tagged according to

ambiguity classes.
The employed two-stage scheme is bound to face the

problem of unknown words. Word forms of some tokens will

be not recognised by the morphological analyser, hence no

set of possible tags (ambiguity class) will be available. Such

tokens are treated as a separate class (UNK). Tagging of such

words is language-specific. For Polish (and also for many

Slavic languages), word suffixes and, to some extent, prefixes,

give useful inflectional information that helps make the correct

decision.
During tagging process, a token is treated as an unknown

word if the analyser failed to provide a set of possible tags.

For our model to work, the UNK class must also be explicitly

present in the training data. Fortunately, this information is

easy to obtain. To make sure that the sets of possible tags

present in the training corpus reflect the actual behaviour of

the morphological analyser, we followed the procedure called

reanalysis of the training data that was proposed in [11]. It

assumes feeding the training data through the morphological

analyser actually used to update the information on tags

possible for each token. In case of word forms that were

unknown to the analyser, the set of possible tags always

consists of the proper tag (taken from the original training

data) and the unknown word tag (ign). What results is

consistent assignment of tokens to ambiguity classes, but also,

explicit marking of unknown words.

B. Decision model

The proposed tagger applies Bayesian decision model. Max-

imum a posteriori decision rule is used:

t∗w = argmax
t∈gw

p(t|w), (3)

where: w – a word being currently tagged, t∗w – chosen tag,

gw – set of possible POS tags for word w.
Class probability p(t|w) is estimated from available training

corpus data. Each decision problem subset has its own subset

of corpus. Corpus subsets are built according to predefined

rules. Rules of corpus subset generation for possible classes

of decision problems are given in Tab. I.

Table I
RULES OF CORPUS SUBSET GENERATION FOR VARIOUS DECISION

PROBLEM CLASSES.

problem word grammatical prefix
class form classes suffix
SKN match match —
FKN match match —
GKN — match —
RKN — match —
UNK — — match

Exemplary, word to (eng. it) is belongs to the class of

specific known word problems. The training set consists of all

instances of word to with matching set of possible grammatical

classes.

C. Probability smoothing

Probability smoothing is one of the key components in

statistical approaches to tagging. There is no sufficient data to

get well estimated probability distributions of word sequences.

One of the most common approach to probability smoothing

is Jelinek-Mercer smoothing [13]. The basic model is defined

as follows:

p(w0|w1)J = λp(w0|w1)D + (1− λ)p(w0)D, (4)

where: λ ∈ 〈0; 1〉 and p(w0|·)D is estimated directly from the

data.

The Jelinek-Mercer model is further extended to Witten-Bell

[13] smoothing and it takes a recurrent form:

p(w0|si)R = λip(w0|si)D + (1− λi)p(w0|si−1)R, (5)

where: λi ∈ 〈0; 1〉, si is the context of word w0.

The above model p(w0|si)R can be simply rewritten into

non-recurrent equation and it takes the basic form of a

well known probability mixture model. Thus, the probability

smoothing used in the proposed approach is defined as follows:

p(w0|si)M =

i∑

j=0

αjp(w0|sj)D, (6)

where:

αi = λi

i−1∏

j=0

(1− λj),

i∑

j=0

αj = 1. (7)

Estimation of αi parameters is not straightforward, and can

be done in several different ways. In more complex language

models (like the one proposed), the number of parameters may

be high.

D. Mixture model probabilities

One of the key components to successful tagging is the defi-

nition of smoothing probabilities. As shown above, smoothing

may be represented as a mixture probability. Component

probabilities are estimated on four different types of data:

word forms (wi), grammatical class (POS) ambiguity classes

(gi), ambiguity classes of whole tags (ci) and tagging results

(grammatical classes assigned by the tagger) (ti), where i

stands for relative position of a word in the tagged corpus.

In case the word in not yet tagged and a tagging results (ti) is

used, the probability is estimated as 0. Given the above events,

various conditional probabilities can be defined. We use total

25 probability mixture model components, as shown in Tab.

II. For instance, p(t0|x0, g−1, w+1) represents probability of

tag t0, given that:

1) decision class specific parameters x0 on position 0 are

matched,

2) grammatical class (POS) ambiguity classes g−1 on po-

sition −1 matches,

3) word form w+1 on position +1 matches.

MARIUSZ PARADOWSKI, ADAM RADZISZEWSKI: LADDER TAGGER 165

Table II
PROBABILITY MIXTURE COMPONENTS USED FOR PROBABILITY SMOOTHING, x0 REPRESENTS A DECISION CLASS SPECIFIC EVENT. FOR SKN AND FKN

x0 = (w0, g0), FOR GKN AND RKN x0 = g0 AND FOR UNK x0 IS DEFINED IN TERMS OF SUFFIXES AND PREFIXES.

p(t0|·) word forms (w) g-class(g) f-class(c) tags(t)
p(t0|x0, w+1, w+2) two succ. – – –
p(t0|x0, w−1, w−2) two prec. – – –
p(t0|x0, w−1, w+1) two neigh. – – –
p(t0|x0, w−1, g+1) first prec. first succ. – –
p(t0|x0, g−1, w+1) first succ. first prec. – –
p(t0|x0, w−1, t+1) first prec. – – first succ.
p(t0|x0, t−1, w+1) first succ. – – first prec.
p(t0|x0, t−2, t−1) – – – two prec.
p(t0|x0, t−1, t+1) – – – two neigh.
p(t0|x0, c−2, c−1, c+1) – – three neigh. –
p(t0|x0, w−1, c+1) first prec. – first succ. –
p(t0|x0, c−1, w+1) first succ. – first prec. –
p(t0|x0, c−2, c−1) – – two prec. –
p(t0|x0, c−1, c+1) – – two neigh. –
p(t0|x0, w+1) first succ. – – –
p(t0|x0, w−1) first prec. – – –
p(t0|x0, t−1, g+1) – first succ. – first prec.
p(t0|x0, g−1, g+1) – two neigh. – –
p(t0|x0, c+1) – – first succ. –
p(t0|x0, c−1) – – first prec. –
p(t0|x0, t+1) – – – first succ.
p(t0|x0, t−1) – – – first prec.
p(t0|x0, g+1) – first succ. – –
p(t0|x0, g−1) – first prec. – –
p(t0|x0) – – – –

For the easiness of reading, mixture model components

shown in Tab. II are sorted according to their assumed

generality. More specific general estimates are shown at the

top, more general ones are shown at the bottom of the table.

The main idea of probability smoothing is preserved. Mixture

components from the top of the table will have low recall,

however high precision. Those from the bottom will have high

recall and lower precision.

E. Tagger parameter estimation

The proposed tagger has a set of parameters, as described

above, which need to be estimated before the tagging process.

Parameter estimation is done at the training set. Given the

smoothing model has n components and that there are m sets

of decision problems, there are total nm parameters to be

estimated. For each set of decision problems its smoothing

model parameters are estimated independently.

Mixture parameters estimation is considered as a validation

set tagging quality optimization problem. Validation sets are

built on top of the training set using Leave-One-Out routine.

Tagging quality is defined as a classic recognition accuracy.

Training process is defined as maximization of recognition

accuracy:

[α]∗ = argmax
[α]

1

|I|

∑

w∈I

|{t∗w} ∩ {rw}|, (8)

where: rw – reference tag for word w, t∗w – tagging result of

word w from the validation set.

Random-restart hill climbing method is used as the opti-

mization tool. Exemplary estimates of smoothing parameters

are given in Tab. III. Estimated mixture weights may provide

an interesting insight into the language structure. They may

show the importance of different contexts in various cases of

language usage. Exemplary, word to (eng. it) has a very high

importance of succeeding context, while in case of word i

(eng. and) proceeding context is much more important. Thus,

results of training may provide further information (and have

done so in the past) how to extend available set of contexts.

F. Computational and memory complexity analysis

Proposed tagging approach is can be classified as a lazy

recognition method, because it estimates probabilities directly

from the data during the recognition phase. Thus, it requires

memorization of the whole training data, i.e., the tagged

corpus. Estimation of mixture probabilities requires iteration

through the data, but can be limited only to its small subsets.

The whole training set is organized as a hash map. Each

element of the hash map represents a decision class specific

event x0. It contains a list of all indexes of event x0 appearance

in the training set. For example, to estimate p(t0|x0, w+1)
where: x0 = (w0, g0), w0 is a specific word and g0 a specific

grammatical class, the tagger accesses the hash map with key

(w0, g0) and extracts a list of relevant indexes. Given the list

of indexes, it iterates through the training set and checks only

for w+1 match condition. This results in a large speedup of

tagging process, because size m of the relevant index is always

much smaller than the size n of the whole training set.

As a result, memory complexity is equal to T (kn) where

n is the size of the corpus and k = 5 is the number of

predefined decision problem classes (see Tab. I). The number

of predefined classes is constant and practically should not

166 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Table III
EXEMPLARY PROBABILITY MIXTURE MODEL PARAMETERS (WEIGHTS) FOR EACH SPACE SUBDIVISION.

p(t0|·) to(it)/SKN czy(if)/SKN i(and)/SKN frequent/FKN rare/RKN
p(t0|x0, w+1, w+2) 0.148 0.130 0.050 0.203 0.031
p(t0|x0, w−1, w−2) 0.069 0.154 0.252 0.086 0.083
p(t0|x0, w−1, w+1) 0.046 0.104 0.110 0.030 0.005
p(t0|x0, w−1, g+1) 0.056 0.010 0.004 0.075 0.005
p(t0|x0, g−1, w+1) 0.039 0.046 0.018 0.007 0.005
p(t0|x0, w−1, t+1) 0.013 0.003 0.073 0.018 0.041
p(t0|x0, t−1, w+1) 0.019 0.100 0.022 0.067 0.104
p(t0|x0, t−2, t−1) 0.046 0.013 0.018 0.037 0.005
p(t0|x0, t−1, t+1) 0.003 0.040 0.004 0.003 0.005
p(t0|x0, c−2, c−1, c+1) 0.013 0.043 0.004 0.011 0.072
p(t0|x0, w−1, c+1) 0.135 0.090 0.041 0.060 0.083
p(t0|x0, c−1, w+1) 0.023 0.046 0.087 0.060 0.166
p(t0|x0, c−2, c−1) 0.046 0.003 0.091 0.015 0.005
p(t0|x0, c−1, c+1) 0.003 0.013 0.004 0.026 0.020
p(t0|x0, w+1) 0.072 0.003 0.004 0.037 0.072
p(t0|x0, w−1) 0.115 0.016 0.022 0.086 0.088
p(t0|x0, t−1, g+1) 0.003 0.003 0.073 0.011 0.020
p(t0|x0, g−1, g+1) 0.023 0.026 0.022 0.037 0.010
p(t0|x0, c+1) 0.069 0.016 0.004 0.052 0.119
p(t0|x0, c−1) 0.029 0.006 0.027 0.011 0.020
p(t0|x0, t+1) 0.003 0.040 0.004 0.030 0.005
p(t0|x0, t−1) 0.003 0.020 0.009 0.007 0.005
p(t0|x0, g+1) 0.006 0.026 0.009 0.003 0.005
p(t0|x0, g−1) 0.006 0.026 0.018 0.015 0.010
p(t0|x0) 0.003 0.010 0.018 0.003 0.005

grow any more (k = const), thus memory complexity is

T (kn) = O(n). Computational complexity for tagging a

single word is equal to O(im), where i is the number of

mixture components and m is the size of x0 relevant index,

where m≪ n.

IV. EXPERIMENTAL VERIFICATION

In this section we describe our experiments aiming at

evaluation of the proposed disambiguation method (Ladder

Tagger). Its results are compared to the three Polish taggers

described in Sec. II.

As noted earlier, the present variant of the tagger deals only

with disambiguation of the grammatical class, hence the scope

of evaluation is also limited to labelling with grammatical

classes, while the ability to assign full morphosyntactic tags

is not assessed.

The experiments described here are made using the man-

ually annotated part of the National Corpus of Polish [2],

version 1.0. This part consists of 86 thousand sentences and

1.2 million tokens and we call it NCP in short. Each token

is labelled with exactly one tag, belonging to the NCP tagset

[14]. The tagset defines 35 grammatical classes (besides one

special class reserved for unrecognised forms — ign).

A. Experimental protocol

It has been argued [15] that taggers should be evaluated as

whole systems that process plain text files into tagged corpora.

Such an approach provides insight into tagging errors made

at every possible stage, including tokenisation, morphological

analysis and disambiguation. This is a close approximation

of real-life scenario of tagger application where only text

is available, possibly divided into paragraphs, but with no

linguistic pre-processing such as manual division into tokens.

We employ this approach here. The taggers are assessed

using a metric called accuracy lower bound [15] that is

defined as the percentage of tokens from the reference corpus

(manually divided into tokens and labelled with tags) that fulfil

two conditions:

1) the token is present at the tagger output (no change in

tokenisation took place),

2) the tagger classified the token with the same label as in

the reference corpus.

In other words, every change in tokenisation is penalised as

a tagging error and tags attached to tokens that are subjected

to segmentation change are not even checked.

The second condition refers to “the same label”. As our

evaluation is limited to tagging with grammatical classes, the

label is understood as grammatical class extracted from full

morphosyntactic tag.

All the experiments described here were performed using

ten-fold cross-validation. Each experiment is run against the

same partitioning of the data. Each run n for a tagger T

consists of the following steps:

1) Training data part n is used to train tagger model MT
n .

Before training proper, the training part is subjected to

morphological reanalysis as described in Sec. III-A.

2) Testing data part n (TestTn) is converted to plain text.

The division into paragraphs is preserved and marked

with two newline characters.

3) Testing data in plain text part n is tagged with the trained

model MT
n and its output is saved to Out

T
n .

4) Out
T
n is compared to Test

T
n and value of accuracy lower

MARIUSZ PARADOWSKI, ADAM RADZISZEWSKI: LADDER TAGGER 167

Table IV
ACCURACY LOWER BOUND MEASURED FOR ALL TOKENS

Split LT WMBT WCRFT s2 Concraft 5.0 Rank
1 97.22% 96.74% 97.16% 97.13% 1st
2 97.19% 96.70% 97.11% 97.06% 1st
3 97.16% 96.73% 97.07% 97.00% 1st
4 97.28% 96.83% 97.24% 97.08% 1st
5 97.25% 96.73% 97.11% 97.08% 1st
6 97.18% 96.63% 97.02% 96.96% 1st
7 97.21% 96.75% 97.12% 97.05% 1st
8 97.30% 96.79% 97.22% 97.18% 1st
9 97.29% 96.79% 97.22% 97.15% 1st

10 97.23% 96.77% 97.19% 97.15% 1st
µ 97.23% 96.75% 97.15% 97.08% 1st

Table V
ACCURACY LOWER BOUND MEASURED FOR KNOWN TOKENS

Split LT WMBT WCRFT s2 Concraft 5.0 Rank
1 97.60% 97.43% 97.55% 97.46% 1st
2 97.53% 97.37% 97.47% 97.35% 1st
3 97.54% 97.35% 97.45% 97.32% 1st
4 97.62% 97.46% 97.60% 97.41% 1st
5 97.60% 97.39% 97.49% 97.39% 1st
6 97.47% 97.21% 97.33% 97.22% 1st
7 97.54% 97.38% 97.47% 97.34% 1st
8 97.63% 97.41% 97.53% 97.46% 1st
9 97.62% 97.41% 97.55% 97.39% 1st

10 97.55% 97.42% 97.52% 97.44% 1st
µ 97.57% 97.38% 97.50% 97.38% 1st

bound (for grammatical class) is calculated.

B. Tagging quality

Table IV presents the observed values of accuracy lower

bound across ten runs. The average value (µ) is given in

the last row. The experiment shows that Ladder Tagger

consistently outperforms all other taggers with respect to

grammatical class tagging. The improvement over the second

best tagger (WCRFT) corresponds to 2.9% drop in error rate.

We also took the opportunity to measure separate values

of accuracy lower bound for two classes of token: known

and unknown words. Results for known words (Table V)

present the same trends as the overall results: Ladder Tagger

consistently outperforms other taggers.

Results observed for unknown words (Table VI) are dif-

ferent. It is evident that Concraft is achieving best results for

unknown words. This may be attributed to the advantage given

to Concraft by its sophisticated model to deal with unknown

words (tag guessing module). Ladder Tagger is placed second

or third in the ranking.

V. SUMMARY

This paper presented a part of speech (POS) tagger. Pre-

sented POS tagger is based on a set of simple probability

mixture models. A list of 25 mixture components is defined.

They describe various contexts of the tagged word. Parameters

of mixture models are estimated using random-restart hill

climbing method. Tagging accuracy of all and known tokens

is highest among all tested taggers. Tagging accuracy of

Table VI
ACCURACY LOWER BOUND MEASURED FOR UNKNOWN TOKENS

Split LT WMBT WCRFT s2 Concraft 5.0 Rank
1 85.13% 75.19% 85.13% 86.94% 3rd
2 86.09% 74.80% 85.37% 87.52% 2nd
3 85.48% 77.56% 85.45% 87.14% 2nd
4 86.27% 76.22% 85.40% 86.44% 2nd
5 86.09% 75.64% 84.95% 87.02% 2nd
6 87.02% 76.19% 86.23% 87.76% 2nd
7 86.21% 75.98% 85.63% 87.50% 2nd
8 86.35% 76.28% 86.96% 87.72% 3rd
9 86.58% 76.90% 86.50% 89.45% 2nd

10 86.93% 76.23% 86.63% 87.98% 2nd
µ 86.22% 76.10% 85.83% 87.55% 2nd

unknown tokens (not recognized by tag guessing module) is

ranked either second or third.

The results obtained are encouraging enough to extend the

presented approach to cover full positional tagset — and this

is a priority for us at the moment. The other worthy line of

research is to improve handling of unknown words.

ACKNOWLEDGMENT

This work was financed by Innovative Economy

Programme project POIG.01.01.02-14-013/09

(http://www.ipipan.waw.pl/nekst/).

REFERENCES

[1] S. Sharoff, “What is at stake: a case study of Russian expressions starting
with a preposition,” in Proceedings of the Workshop on Multiword

Expressions: Integrating Processing. Association for Computational
Linguistics, 2004, pp. 17–23.

[2] A. Przepiórkowski, R. L. Górski, M. Łaziński, and P. Pęzik, “Recent
developments in the National Corpus of Polish,” in Proceedings of the

Seventh International Conference on Language Resources and Evalua-
tion, LREC 2010. Valletta, Malta: ELRA, 2010.

[3] B. Vidová-Hladká, “Czech language tagging,” Ph.D. dissertation,
Charles University, Faculty of Mathematics and Physics, Prague, 2000.

[4] J. Hajič, P. Krbec, P. Květoň, K. Oliva, and V. Petkevič, “Serial
combination of rules and statistics: A case study in Czech tagging,”
in Proceedings of the 39th Annual Meeting on Association for

Computational Linguistics. Association for Computational Linguistics,
2001. doi: 10.3115/1073012.1073047 pp. 268–275. [Online]. Available:
http://dx.doi.org/10.3115/1073012.1073047

[5] M. Piasecki and G. Godlewski, “Effective architecture of the Polish
tagger,” in Text, Speech and Dialogue, vol. 4188. Brno, Czech
Republic: Springer, 2006. doi: 10.1007/11846406_27 pp. 213–220.
[Online]. Available: http://dx.doi.org/10.1007/11846406_27

[6] J. Hajič and B. Vidová-Hladká, “Tagging inflective languages:
Prediction of morphological categories for a rich, structured tagset,”
in Proceedings of the COLING - ACL Conference. ACL, 1998.
doi: 10.3115/980845.980927 pp. 483–490. [Online]. Available: http:
//dx.doi.org/10.3115/980845.980927

[7] D. Tufiş, “Tiered tagging and combined language models classifiers,”
in Text, Speech and Dialogue, ser. Lecture Notes in Computer Science,
V. Matousek, P. Mautner, J. Ocelíková, and P. Sojka, Eds. Springer
Berlin / Heidelberg, 1999, vol. 1692, pp. 843–843. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48239-3_5

[8] S. Acedański, “A morphosyntactic Brill tagger for inflectional
languages,” in Advances in Natural Language Processing, ser.
Lecture Notes in Computer Science, H. Loftsson, E. Rögnvaldsson,
and S. Helgadóttir, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6233, pp. 3–14. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-14770-8_3

[9] A. Radziszewski and T. Śniatowski, “A memory-based tagger for Pol-
ish,” in Proceedings of the 5th Language & Technology Conference,

Poznań, 2011.

168 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[10] W. Daelemans, J. Zavrel, A. Van den Bosch, and K. van der Sloot,
“MBT: Memory-Based Tagger, version 3.2.” ILK, Tech. Rep. 10-04,
2010.

[11] A. Radziszewski, “A tiered CRF tagger for Polish,” in Intelligent

Tools for Building a Scientific Information Platform, ser. Studies in
Computational Intelligence, R. Bembenik, Ł. Skonieczny, H. Rybiński,
M. Kryszkiewicz, and M. Niezgódka, Eds. Springer Berlin Heidelberg,
2013, vol. 467, pp. 215–230. ISBN 978-3-642-35646-9. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35647-6_16

[12] J. Waszczuk, “Harnessing the CRF complexity with domain-specific
constraints. The case of morphosyntactic tagging of a highly inflected
language,” in Proceedings of the 24th International Conference on
Computational Linguistics (COLING 2012), Mumbai, 2012, pp. 2789–
2804.

[13] S. F. Chen and J. Goodman, “An empirical study of smoothing

techniques for language modeling,” in Proceedings of the 34th annual
meeting on Association for Computational Linguistics, ser. ACL ’96.
Stroudsburg, PA, USA: Association for Computational Linguistics,
1996. doi: 10.3115/981863.981904 pp. 310–318. [Online]. Available:
http://dx.doi.org/10.3115/981863.981904

[14] A. Przepiórkowski, “A comparison of two morphosyntactic tagsets of
Polish,” in Representing Semantics in Digital Lexicography: Proceedings

of MONDILEX Fourth Open Workshop, V. Koseska-Toszewa, L. Dim-
itrova, and R. Roszko, Eds., Warsaw, 2009, pp. 138–144.

[15] A. Radziszewski and S. Acedański, “Taggers gonna tag: an argument
against evaluating disambiguation capacities of morphosyntactic
taggers,” in Text, Speech and Dialogue, ser. Lecture Notes in Computer
Science, P. Sojka, A. Horák, I. Kopeček, and K. Pala, Eds. Springer
Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-32790-2_9 pp. 81–87.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32790-2_9

MARIUSZ PARADOWSKI, ADAM RADZISZEWSKI: LADDER TAGGER 169

