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Abstract—Humans can interact remotely with each other
through computers. Systems supporting this include teleconfer-
encing, games and virtual environments. There are delays from
when a human does an action until it is reflected remotely.
When delays are too large, they will result in inconsistencies in
what the state of the interaction is as seen by each participant.
The delays can be reduced, but they cannot be removed. When
delays become too large the effects they create on the human-
to-human remote interaction can be partially masked to achieve
an illusion of insignificant delays. The MultiStage system is a
human-to-human interaction system meant to be used by actors
at remote stages creating a common virtual stage. Each actor is
remotely represented by a remote presence created based on a
stream of data continuously recorded about the actor and being
sent to all stages. We in particular report on the subsystem of
MultiStage masking the effects of delays. The most advanced
masking approach is done by having each stage continuously look
for late data, and when masking is determined to be needed, the
system switches from using a live stream to a pre-recorded video
of an actor. The system can also use a computable model of an
actor creating a remote presence substituting for the live stream.
The present prototype uses a simple human skeleton model.

Index Terms—Effects of Latency; Mask the effects of delays;
Temporal Casual Synchrony; Remote Interaction.

I. INTRODUCTION

I
N DISTRIBUTED acting, actors at different stages, phys-

ically separated by distance, interact to create a coherent

play. The interaction can be lazy, allowing for large delays

without breaking the illusion of being at the same stage.

This is, for example, the situation when actors do a relaxed

handshake, or don’t interact directly at all. The interaction can

also be eager, where even small delays break the illusion. This

is, for example, the case when actors do fast action/reaction

with causally related movements between each other, or move

in synchrony as done in dancing.

Fig. 1 depicts distributed acting. Three stages, in Tromsø,

Porto, and Florence, have a total of four actors doing eager

interaction, dancing together. In Tromsø, there are two actors

physically present, while there is one actor in Porto and one in

Florence. At each stage, each actor is represented by a remote

presence in the form of an independent streaming video.

Distributed acting is complicated by each stage having a

different clock, and by communication delays and jitter. The

clock at each stage can easily be sufficiently synchronized

with a reference clock, but delays and jitter are unavoidable

and are the result of the finite speed of light, and of the

Fig. 1. Four dancers at different stages dance together. Each stage is equipped
with sensors to detect actors and a display to visualize the remote presence
of all the performers.

technologies and systems applied to create a distributed stage

gluing together the individual stages.

The speed of light defines the lower bound of a non-zero

delay from an event happens until it can be observed. Table I

shows the time needed for light to travel distances that may be

typical in distributed acting. It takes about 3 microseconds be-

tween buildings, 30 milliseconds between cities and about 134

milliseconds around Earth’s equator. The time it takes for light

to travel from an actor to another and back is twice this amount

of time. However, the actual delays experienced by actors

interacting through a computer-based system are even higher.

TABLE I
TRAVEL TIME AT THE SPEED OF LIGHT

1 km 3.3 µs Between buildings

1000 km 33 ms Between cities

4000 km 134 ms Around equator

2.4 x 10
19 km 2.5M years To Andromeda Galaxy

Figure 2 describes the total delay when observing a remote

event. Delays are created by the sensors tracking actors,

transfer of data from sensors to computers, processing of

the sensor input, network transmission, on-route processing,
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Fig. 2. Every Phase will add delay

receiving and processing the received data, and preparing and

visualizing the data locally. The delays can be significantly

larger than what is indicated in the figure if more processing

is applied. These delays can be reduced and partially masked,

but they can never be removed.

Delays are important when people interact. It has been

documented [1], [2], [3], [4] that people accept delays below

200ms as insignificant when interacting tightly. When the

delays grow beyond 200ms they become harder and harder

to ignore, and actors can be expected to have problems

interacting as if they were on the same physical stage.

The goal of the MultiStage system [5] is to aid actors at

stages around the world in interacting with each other as if

they were on the same stage. Each stage has a set of sensors,

shown in figure 3, detecting and tracking the movements of

the actors on the stage. The actors at the other stages are

each represented by a remote presence. A remote presence is

based upon having data about an actor available such that the

actor’s movements can be recreated remotely. A simple case is

to have data representing a streaming video of the actor, and

show it on a large display to visualize the actor in full scale.

A more advanced case is when an actor’s movements are used

as input into a computation creating a remote presence of the

actor. The remote presence can be visualized on a display or

control a robot.

Several experiments were conducted to determine the ob-

jective and subjective performance of the system. Objective

metrics include the delays in different parts of the prototype

system, and processing and network resource usage. Subjective

metrics include how much delay an actor will notice and

tolerate when interacting, and when an actor experience that

the switching of the masking in and out is smooth.

II. MASKING APPROACHES

In [5], we define loose temporal causal synchrony to be

when actions by actors happen causally in the correct order,

but with no special demands on delays. Interactive temporal

causal synchrony is when actions by an actor is seen in causal

Fig. 3. The 360 degrees actor detection sensor rig comprising four 3D Kinect
cameras, two Mac Mini computers, and wireless access point. One per stage
is used.

order and with delays as actors are used to when being on the

same stage face to face. To achieve this even with delays and

jitter being unavoidable, the idea is to mask the effects of

delays as seen by the actors.

In the Act-By-Actor-approach, the actors react to the re-

mote presences as if they were the actual actors. How the

interaction looks and how it feels to actors and audiences

depends on how large the delays are, by how much they vary,

and by how good the actors are at compensating.

In the Act-By-Director-approach, a director keeps time

and tells actors when to do actions according to a shared

script or to a script for each actor. Even if the actors act on

command it will seem to an audience as if they interact freely

with each other.

A variant is to select a stage to be the live stage. The others

are secondary stages. The start time for a performance at a

secondary stage is the start time for the live stage minus the

delay between them. Consequently, performances at secondary

stages are started a little earlier than at the live stage such

that when the live stage starts, the input from the secondary

stages arrive. At the live stage the actors and an audience will

experience a performance where local actors are in synchrony

with the remote presences representing the remote actors.

However, actors at a secondary stage will be out of sync with

the remote presences. By switching which stage is the live

stage at suitable points in the performance, each stage can be

the live stage for a time.

A second variant of this approach is to delay each local

remote presence at a stage. A local remote presence is the

remote presence of an actor shown and heard at the stage

where the physical actor also is. The effect is that an actor

and an audience will experience a local and a remote event at

the same time because they have both been delayed equally

much. To make this approach practical, the delay cannot be so

high as to make the actors and audience noticing it too much.

Because delays between stages in practice tend to be different,

this approach is most practical for just two stages with about

equal delay between them.
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A third variant is to delay all remote presences at a

stage until data for the slowest remote presence arrives. With

varying delays between the stages, they will soon be out of

synchronization with each other. However, the local and re-

mote presences at a stage will be in synchronization with each

other. The delay waiting for the slowest can be long enough

to be noticeable for actors and an audience. Consequently, the

actors at a stage can be out of synchronization with the remote

presences.

In the Act-By-Wire-approach, remote presences are ma-

nipulated to hide the effects of delays when delays reach

predefined threshold values. Manipulations include just-in-

time blending in of prerecorded videos of remote presences of

actors, and just-in-time blending in of on-demand computed

remote presences. A prerecorded and an on-demand computed

remote presence will to a varying degree succeed in creating

the illusion of low insignificant delays. If there is a script of

what an actor should do at a given time, then a prerecorded

remote presence can be created and played back at the correct

time when delays go too high. When instead of using a

static pre-recorded video a computation is run to create the

remote presence, a wide range of possibilities are in principle

available. These include blurring the movements of an actor

such that delays are not so obvious, and predicting what an

actor was going to do. We have not explored these possibilities

yet.

III. RELATED LITERATURE

Several systems try to enable interaction between local and

remote users. The Distributed Immersive Performance (DIP)

[6] and [7], is a multi-site interaction and collaboration system

for interactive musical performances. In experiments, they

artificially delayed the local stage and found out that (i) the

tolerable latency for slow paced music is much higher than for

fast paced music; (ii) to help performers pick up aural cues it is

better having a low audio latency than synchronizing video and

audio; and (iii) a roundtrip video delay of more than 230ms

makes synchronization hard for the users. In [8], a series of

experiments on the DIP system is described with focus on the

audio delay, and how the delay affects musician’s cooperation.

An artificial delay of 50ms to the remote room’s audio stream

was tolerable. With the same latency added at both rooms it

became possible to play easily together with a delay of up to

65ms. While they report on the effects of delays on audios,

we report on the effects of delays on videos, and how they

can be masked.

Other distributed collaboration systems include [9], [10],

and [11]. These do not consider the effects of delays and how

to mask them when users interact across distance.

Several techniques [12], [13], [14], [15] and [16], exist

to reduce or hide network latency in network games and in

distributed systems. The Dead-Reckoning (DR) technique is

used in distributed simulations and to hide latency mostly

in network games. Computers that own an entity will send

unique information about the entity to other computers on the

network. The information includes the position, velocity, and

acceleration of the entity or more. Each computer simulates

the movement of the entity. The computer which owns the

entity will also simulate the entity as well as check the real

state of the entity. When the simulated value and real value

differs more than a threshold, the computer will send update

information to the other computers. The dead-reckoning tech-

nique is a general way to decrease the amount of messages

communicated among the participants.

IDMaps [17] measures the distance information on the Inter-

net. This is used to predict latencies. King [18] uses recursive

DNS queries to predict latency between arbitrary end hosts.

In [19] a structural approach to latency prediction technique

based on Internet’s routing topology is proposed. In [20] the

network latency is reduced based on estimates of the network

path quality between end points. These approaches can be

useful even if we don’t mask latencies themselves, but the

effects of delays. Predicting the very near future latency can

be useful because we can start the masking right before large

delays happen. The Local-Lag (LL) technique [21], provides

for better fairness between local and remote players by making

all see approximately the same delays. A local operation is

delayed for a short time. During this short time period the

operation is transmitted to remote computers participating in

the game, and all computers can then execute the operation

closer in time to each other. However, with more than two

participants seeing significantly different latencies, the fairness

cannot be maintained for all computers. In [22] and [23], the

LL is integrated with DR to synchronize participants and keep

better consistency among all computers.

In [14] and [22], some of the drawbacks of the above

mentioned DR and LL techniques are identified. While the

LL technique ensures fairness for two players, or for multiple

with the same latencies between them, the fairness is not

preserved when the latencies become too different. The same

is the case for the DR approach because when a computer does

an update, the time it takes to have data about this delivered

at the other computers will vary depending on the latencies

between the local computer and each of the other computers.

This can result in a situation where a local player and some

of the remote players can do actions earlier than other remote

players.

Even if it is worthwhile to reduce network latencies and

other delays, and do overlapping between communications

and processing, delays cannot be removed. In this paper, we

present several techniques to mask the effects of delays, and

we also measure the cost of applying each technique.

There are several projects which have studied the effect

of latency when remote users interact, including [24], [25],

[2], [26], [4], [3], and [27]. When the latency from a user

does an action until it is reflected in, say, a game, is more

than 200ms, the user will notice the delay and his actions

and scores are impacted by it. In a first person shooter game

there is a 35% drop in shooting accuracy at 100ms of latency,

and the accuracy drops sharply when the latency increases

further. More than 200ms of latency should be avoided. For

some sports and role-playing games a latency of 500ms can
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be acceptable. Consequently, latency reduction and hiding

techniques should aim at achieving end-to-end latencies less

or equal to these numbers. When this cannot be achieved, then

masking the effects of the various delays becomes interesting

to apply as well.

In [28], a comparison is made between the end-to-end

latency of an immersive virtual environment and a video

conferencing system. The tolerable latency for verbal com-

munication was found to be 150 ms. This was achieved by

the teleconferencing system, but not the virtual environment

system. A video was done capturing a person repeatedly

moving an arm up and down. A video was also done of

the same person as represented by the system. Synchronized

cameras were used to be able to synchronize the two videos.

The latency from the person moved an arm until it was

reflected through the system was measured to be 100-120ms

for the teleconferencing system, and 220-260ms for the virtual

environment when the avatar for the user had been preloaded.

In [29] several techniques were used to reduce the latency

for the head tracking system of an immersive simulation sys-

tem. The techniques included disabling buffering and having

a more direct path to the tracker hardware. This results in an

almost 50% reduction in latency, from around 90ms to around

50ms.

Packet jitter [30] is the variation in the packet delay.

Variations in packet size, buffer delay, and routing create

packet jitter. The influence of the jitter in games is measured in

[26], [31], [32], and [33]. They conclude that jitter had only

a minor impact on the win probability, the scores and the

user experience. However, when jitter increases, the tracking

accuracy of a target, the users ability to keep a small and

consistent distance between the center of the target and the

cursor, declines.

In [34] they consider unfairness created by the cumulated

errors between players. The system improves fairness by

equalizing for all players, the errors of where an object of

the game is placed and what it is doing. This resulted in a

significant improvement in consistency between what players

observed even for 100ms of delay between players at different

computers.

IV. SYSTEM OVERVIEW

Figure 4 shows the MultiStage system. The design and

implementation is described in detail in [5].

The system is divided into a local and a global side.

The local side of MultiStage primarily focuses on what is

happening locally on a single stage. The global side is the

glue binding stages together, taking care of distribution of

data between stages, and doing analytics needing data from

multiple stages.

The local stage monitoring (LSM) system detects local state

at the stage, including actors and their movements, and streams

it to the local stage analysis (LSA) system. The LSA analyzes

the data to detect gestures (not expanded on in this paper),

and forwards the data and data about detected gestures to the

global side.

Room 0

Global Side

Local Side

Room R, R = 0 to 5

LSM/LSA

GSM/GSA

DSDS

Administrator

Interaction

System

Create 

Remote 

Presence
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Effects of 

Delays
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Collaboration System

Video Streams

Start Msg

(start time)
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Human 

Interaction 

System

Fig. 4. The MultiStage system.

The LSM system produces an individual stream for each

actor. This allows for great flexibility in treating each actor

individually when looking for gestures, and where each actor’s

remote presence is manifested and located in relation to the

others on the stages. In the present prototype, an individual

stream for each actor is achieved by using a Kinect camera

per actor. The system assumes that just a single actor is

within the 3D field of view of the camera. All objects outside

of this 3D space are ignored. The advantage of having a

one-to-one relationship between actors and cameras is that

it takes very little processing to create individual streams

for the actors. This helps in reducing the delay from an

actor moves until it is manifested in the remote presence at

remote stages. The disadvantage is that when the number of

actors increases, so must the number of cameras. Presently

the prototype supports four actors per stage using four Kinect

cameras arranged back to back. The back to back configuration

avoids having the infrared dot cloud used by the cameras (to

achieve depth information) to interfere with each other. While

more Kinect cameras can be used, care must be taken to avoid

interference. A more advanced sensor suite will help avoid this

problem.

The remote presence system at each stage subscribes to

streams from the global side. The data is used to locally

create remote presences. In the prototype, remote presences

are visualized on a big display. The visualization of a remote

presence can take three forms. It can be 2D streaming videos

based on color images captured by four Kinect cameras at

each stage. Alternatively, 3D point streaming cloud videos

can be used. These are created using color and depth images

captured by the Kinect cameras. Finally, a remote presence can

be visualized as an animated human skeleton created locally

at each stage.

The LSM uses the Kinect cameras to sense actor move-

ments. In principle, if the LSA identifies actor body move-

ments, the data about this makes its way to the remote pres-
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ence, and the computed human skeleton moves accordingly. In

the present prototype, a script defining what each actor should

do is used. When delays become to high, the human skeleton

remote presence computation for an actor receives commands

taken from the script. These commands are typically of the

type "raise left arm" and "lower right arm". Computing a

model of a human skeleton locally, and letting it react to just

streaming movement commands, saves network bandwidth vs.

distributing streaming videos.

The remote presence system includes the masking system. It

looks for incoming data about remote actors being too delayed

to do remote presences without the local actors noticing the

delay. If the delays are too large, the masking system applies

several techniques to mask the effects of the delays as seen by

the actors. A limited form of masking is also done outside of

the remote presence system. In this case the masking system

provides information to the administrator interaction system

(see below) such that it can tell the human interaction system

at each stage what to do, like individual delayed start-up times

of a performance for each stage.

The human interaction system at each stage informs actors

what to do, and provides them a countdown for when they

should start doing it. In the prototype, a display per stage is

used to visualize this for the actors.

The global side monitoring (GSM) receives data streams

from the local stages. It forwards the data to the global side

analysis (GSA) system. The GSA system does analytics on the

data streaming in from the stages looking for global state. An

interesting global state is a collective gesture. It is comprised

of several gestures done by several actors possibly at different

stages. The idea is that when a given number of actors have

done a certain gestures, this should result in actions taken

at the stages, like, say, turning on a light or doing some

modifications to the remote presences.

The GSA system forwards all data and information about

global gestures to the distributed state distribution system

(DSDS). The DSDS manages subscriptions from the remote

presence system at each stage, and deliver streams to the

subscribers.

The administrator interaction system lets a director manage

the system, including setting and distributing to all stages

the start time of a performance. Each computer in the

system has a performance monitor measuring several metrics

including latency between the computers and bandwidth.

These measurements are made available to the administrator

interaction system.

The sub-systems implementing the local side executes on

computers local to a stage. This is done to achieve low local

latencies, and reduce network bandwidth. It also distributes

the global workload, and isolates the stages such that if

one stage fails, the other stages have a higher probability

of not being affected. The sub-systems implementing the

global side executes on computers that are located relative

to the stages to achieve high bandwidth and low latencies.

The administrator interaction system is located on a computer

which is convenient to use by an director.

Multistage is a distributed system, and the computers can

have different clock values. The system assumes that all

computers have the same time, and the clocks are therefore

synchronized.

Experiments measuring the performance of the prototype

have been done both with all stages locally on the same

local area network, as well as kept more than 1500 km

apart (Tromsø to Oslo and back). The system currently scales

across the Internet with good performance to three stages, and

comprises in total 15 computers, 12 cameras, and at least 12

outgoing and 36 incoming data streams.

The system was primarily implemented in Python. The

OpenKinect Libfreenect library is used to fetch RGB and depth

images from the cameras. The LSA motion detection using

Python OpenCV is taken from Robin David on GitHub [35].

The human skeleton model is implemented in Python, using

Pygame. Pygame is used to display the actor script. Python

Tkinter module is used to display the Administrator Interaction

System. The system runs on Linux and Mac OS X.

V. DESIGN AND IMPLEMENTATION OF MASKING THE

EFFECTS OF DELAYS

To do masking, several functionalities must be realized at

each stage. A shared clock is assumed by the system. This

is achieved with sufficient accuracy by using Network Time

Protocol (NTP) [36] to set the local clocks. A performance

monitor measures and computes the communication delays

between all computers. To do so, every packet sent is time

stamped. It also measures the clock differences between the

computers at a stage and the DSDS distribution computer to

determine if clock synchronization is needed to maintain the

shared clock. The performance monitor is present at every

computer of the system.

A shared and individual performance start-times are

distributed by using the administrator interaction system to

send a message with the performance start time to each

stage. We assume that when needed there are predefined actor

scripts available telling each actor what and when to do an

action. In the prototype a display at each stage shows a count

down until the next action is to be done, and visualizes with

a simple drawing what the action is.

The following masking approaches are shown in figure 5.

For all approaches we assume that the stages have already

initiated subscriptions to data streams from each other, and

that the streaming is in effect.

Live Stage: The administrator interaction system uses the

performance monitor to measure the latency from the detection

computer at each secondary stage to the distribution server.

It also measures the latency from the distribution server to

the remote presence computer at the live stage. The effective

latency from a secondary stage to the live stage is the sum of

these two latencies. A secondary stage’s performance start time

is the start time at the live stage minus the latency between

the live and the secondary stage.

The administrator interaction system now sends a message

to each stage with the start time of the performance and
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Fig. 5. Design and Implementation of the techniques to mask the effects of delays

the latency that should be decreased to the start time for

that particular stage. The human interaction system at each

secondary stage will now do a countdown with the start time

of the live stage modified by the latency to the live stage.

When the countdown ends, a visualization of what each actor

should do is displayed. The human interaction system now

acts as a director, counting-down to the next action of each

actor, and then visualizing the action.

Delay Local Remote Presences: The administrator interac-

tion system uses the performance monitor to measure the delay

from the detection computer at each stage to the distribution

server. It also measures the delay from the distribution server

to the remote presence computer at the stage. If the delays

are close an average delay is computed, and this approach to

masking can be applied. The administrator interaction system

sends a message to each stage with the start time of the

performance and the average delay between the stages. The

human interaction system starts a countdown at the given start-

time. At a stage, each remote presence representing a local

actor at the stage is locally delayed by the average delay. The

remote presences from other stages are not delayed by the

receiving stages.

Delay Locally the remote presences until data for the

most delayed remote presence arrives: As for the Live

Stage masking approach, the administrator interaction system

uses the performance monitor to measure the delay from the

detection computer at each stage to the distribution server. It

also measures the delay from the distribution server to the

remote presence computer at the stage. The effective delay

from detection side of a stage to the display side of a stage is

the sum of these two delays.

The administrative interaction system sends a message to

each stage with the same start time, and the delay from every

stage to the stage receiving the message. Each stage calculates

by how much remote presences from each stage should be

delayed to play back close in time to the remote presences

coming from the stage with the longest delay. The human

interaction system starts a countdown, and tells the actors what

to do and when to do it. The create remote presence system

creates remote presences as fast as it can, but remote presences

from each stage are individually delayed by the calculated

amount for each stage.

Act-By-Wire, blend in prerecorded video or compute a

remote presence: The administrator interaction system sends

the same start-time to the human interaction system at each

stage. It starts a countdown and tells the actors what to do

and when to do an action. For every image (or video frame)

arriving to be used to create a remote presence, we check if the

delta between the send timestamp of the image and the receive

time is large enough to warrant masking. If more than a certain

percentage of images are late, we start masking. If the percent

goes down, we stop the masking. The threshold values used

are based on subjectively trying the system on humans with

different delay values, and determining when humans notice

the delays in several settings, see later for more. We typically

use a delay of about 280ms as the threshold for starting to do

masking.

To mask short-term delays, the system check for delays over

the last few seconds. The exact number of seconds used is

tunable, depending upon how sensitive humans in a particular

setting are to delayed remote presences.

The video used to mask the effects of delays is pre-recorded.

The human interaction system does a countdown, and tells an

actor what to do and when to do it, and a video is recorded.

When later the same script is used during a performance,

and the delays go above the threshold, the pre-recorded video

blends in and takes over for the streaming video coming from

a remote stage.

The masking system keeps ready the pre-recorded video in

memory, and when masking is determined to be needed after

checking the latency, it streams the pre-recorded video to the

create the remote presence instead of the live streaming video.

Alternatively, instead of using a pre-recorded video, a model

of an actor can be used. Instead of streaming a pre-recorded

video to create a remote presence, the masking system streams

the output from an implementation of the model. The model

can receive input about detected body movements from the

LSA (through the distribution server) of the remote stage. It

can also use the script from the human interaction system to

determine what an actor is meant to do. Presently, just a simple
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Fig. 6. The configuration of the experiments.

human skeleton model is used with arm movements taken from

a script defining what an actor should do. It is future work to

explore models and predicting actor behavior more fully.

VI. EVALUATION

Several experiments were conducted to identify some of

the effects of latency on the actors, and to document the

measurable performance of the masking system. For the ex-

periments the system was configured as given in figure 6.

Computers used were Mac Minis at 2.7GHz and with 8GB

1333 MHz DDR3 memory. For all experiments all local side

stages were on the same 1Gbit/s switched Ethernet LAN

inside the Department of Computer Science at the University

of Tromsø. The global side DSDS computer was either on

the same LAN as the stages, or located on a Planetlab [37]

computer at the University of Oslo, 1500km away.

System end-to-end one-way latency: The time it takes for

a physical event happening on a stage to be picked up by

the cameras and until a visualization of the actor is actually

displayed on the same stage. We used a video camera with

a high frame rate to record several videos of a user and the

remote presence done on a display behind the user. We then

counted frames to see how many frames it took from the user

moved to the visualization caught up. On a LAN the end-to-

end latency was between 90-125ms. With the DSDS at the

computer in Oslo, the end-to-end latency was between 100-

158ms. The variation in measured latency is because of several

factors, including the distributed architecture of the prototype

and the frame rate of the projector, video camera (240 fps)

and the Kinects (30 fps), and other traffic on the LANs and

WAN.

Global-to-Local round-trip latency: The latency going

from the DSDS computer to a stage computer and back. We

measured this by recording the time when we send a message

from DSDS to a stage, and recording when a reply message

comes back to DSDS. When all stages and the global side

were on the same LAN, the round-trip latencies were between

1-2ms. When the DSDS system was on a computer in Oslo

the round-trip latencies were around 32ms. This matches well

with measurements reported by PingER [38] for Europe.

Actor-to-actor round-trip latency: The delay that actors

will experience from when they do an action until they see the

remote presence of another actor reacting. The typical latency

between actors is two times the system end-to-end latency.

Using the measured results from the system end-to-end one-

way latency, the actor-to-actor round trip latency is from 180

to 316ms depending on where the DSDS computer is located.

Human response latency: The time it takes for a human

actor to react to another actor’s action. We used a high frame

rate camera to record two actors’ actions, and counted frames

from when one actor initiated an action until the other actor

responded to the action. The actions used were rapid and slow

moving arm movements. The human response latency is about

345ms. We did not find that the latency varied significantly

with the speed of an action.

Human noticeable latency: This is the latency at which

a human actor will notice that an action is delayed. We si-

multaneously observed an actor and the corresponding remote

presence. When the actor moves an arm, the remote presence

moves an arm. In software we artificially added a delay to

the remote presence until we noticed that the remote presence

lagged behind the actor. When the added latency is more than

100ms, we did notice a difference of the movement between

the actor and the remote presence.

Human tolerable latency: This is the latency an actor

can tolerate before the illusion of being on the same stage

with other actors breaks. We observed an actor shaking hands

with another actor on the same stage. We then moved one

of the actors to a remote stage, and repeated the shaking of

hands. We now observed an actor shaking hands with a remote

presence of the other actor. The delay between two actors

were artificially increased until we subjectively decided that

the handshake was not happening as fast as it did when the

actors were physically on the same stage. We tried both rapid

hand movement and slow hand movement. We subjectively

decided that for a rapid hand movement, it is not tolerable

when 150-200ms latency was added. The total actor-to-actor

round-trip latency is in this case about 350-400ms. For slow

hand movement, it is not tolerable when 600ms latency was

added. The actor-to-actor roundtrip latency is about 800ms.

For handshake type of interaction, longer delays bordered on

creating a feeling that the remote actor was being obnoxious by

delaying just a bit too long before responding to a hand shake.

However, this was not experienced unless we artificially added

delays. This indicates that the prototype is able to maintain

the illusion of being on the same stage for handshake type

of interactions. However, we observe that the typical actor-to-

actor round-trip latency in Europe is around 300ms or more.

Consequently, when actors do fast and rapid interaction, the

system can expect to have to mask the effects of the delays.

When to start masking: We simultaneously observed an

actor moving an arm, and the corresponding remote presence.
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In software we artificially added a random delay to every

image used to create the remote presence. We tried different

combinations of delays and for how many of the images were

delayed. We found that when more than 50% of the received

images during a period of three seconds were delayed 280ms

or more there is a subjectively clearly visible lag in the remote

presence vs. the actor. We therefore determine that when 50%

of the images arrive 280ms late during the last three seconds,

this is the threshold for when to start masking. This is a

threshold that can be changed to customize for different usage

scenarios.

When to stop masking: When masking is active, we need

to establish a threshold for when to stop masking. We artifi-

cially create a situation where more than 50% of the images

used to create a remote presence arrive too late. Consequently

masking is done by the system. For the experiment we used the

Act-By-Wire pre-recorded masking approach. We gradually

decreased the percentage by 5% from 50% to 30%. We observe

the switching back and forth between the live streaming of the

remote presence and the pre-recorded stream. When 35-40%

of the images arrive late the switch from the pre-recorded to

the live streaming results in a transition without the observer

noticing obvious effects of the delay. A higher percentage

leads to a sooner switch, but the transition can be too fast

and resulting in a blending in of the live streaming video

with noticeable delays. A lower percentage results in keeping

the pre-recorded video playing too long, and this can become

noticeable by itself. The goal is to find a balance between

when to start masking and when to stop. This can be different

for different user activities and needs.

Above, we checked for late images during the last three

seconds. A shorter period will lead to less delay in starting

masking when needed, and a longer period is slower in starting

masking. For shorter periods, a higher threshold for stopping

the masking will reduce the likelihood of switching back and

forth. For longer periods, a lower threshold for stopping the

masking will increase the likelihood of switching back to the

live streaming.

Cost of Masking: The CPU utilization at a remote presence

computer without and with the masking technique active

was measured. Two cameras were used sending images for

two remote presences to a single remote presence computer.

The CPU utilization without masking was about 22%. When

masking was done for both remote presences using two pre-

recorded videos the CPU utilization was basically the same,

22%. When masking was done using two human skeletons, the

CPU utilization at the remote presence computer went down

to 9%.

We explain this by observing that a significant part of

the CPU load was consumed to display videos, making the

masking itself insignificant. The very simple human skeleton

approach is clearly less CPU demanding. We explain this by

the simplicity of the model and that they use the display much

less than the videos do.

The overhead of checking if masking is needed and to

actually get the masking takes effect is about 40ms in average.

Table II shows the maximum system-end-to-end one-way

latency at which each masking approach is in principle at least

partially successful at masking the effects of delays.

VII. DISCUSSION

Some of the masking techniques we applied need a synchro-

nization of the clocks at every computer in, and consequently

at, every stage of the system. The Network Time Protocol

(NTP) provides time accuracy in the range of 1-30ms. The

exact accuracy is highly dependent on the location of the

computers vs. the NTP servers. If computers are on the

same local area network, this will bring them close, around

1ms, to each other. If they are separated by the Internet, the

clocks can be synchronized within tens of milliseconds to each

other. However, network congestion and routing can cause

the clock value used by each computer to be off hundreds

of milliseconds. Therefore we do frequent NTP based clock

settings and check explicitly for the clock difference between

the computers to see if the clocks are more than 10ms off. If

they are, we repeat using NTP to try to get all clocks within

10ms of each other. To further ensure that clocks are close

enough, before the performance start time is sent to each stage,

we again check the clock difference between the computer dis-

tributing data to all stages and the remote presence computers

at every stage. The clock difference relevant for a stage is

included in the message sent to each stage. A stage can then

correct its performance start time accordingly if needed.

The experiments measured the objective metrics. No user

studies were performed. The determination of thresholds was

done naively based on the opinion of a few persons observing

actors and remote presences.

The experiments used simple movements by an actor, pri-

marily hand and arm movements. The results can be expected

to be different for other actions done by actors, like body

rotation, jumping, and dancing.

Different approaches to masking the effects of delays should

be expected and to be needed based on what actors are

doing. When actors do slow movements and the delays are

low, the Act-By-Actor approach can be sufficient. However,

it cannot mask the effects of larger delays. The Act-By-

Director approach tells actors what to do and when to do

an action. All actors are as such seen by an audience at a

stage to be synchronized. This approach can mask the effects

of large delays. The live stage approach will make just a

single stage look synchronized. The other will typically be

out of synchronization with the live stage and each other. The

approach delaying the local remote presences by the amount

of the delay to remote stages will make all stages synchronized

if the artificial added delay is smaller than 65ms for audio and

300-400ms for video.

The approach of letting each stage do local delays of every

remote presence waiting for the most delayed will make each

stage to be in synchrony, but the stages will not be inter-stage

synchronized. The Act-By-Wire approach can synchronize

actors and remote presence of actors at all stages. However,

it makes use of pre-recorded and creates on-the-fly remote
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TABLE II
APPROACHES TO MASKING THE EFFECTS OF DELAYS. THE DELAY VALUES ARE THE MAXIMUM SYSTEM-END-TO-END ONE-WAY LATENCIES FOR WHEN

AN APPROACH WILL BE AT LEAST PARTIALLY SUCCESSFUL AT MASKING THE EFFECTS OF DELAYS.

Approaches to masking the

effects of delays

Satisfactory synchrony between

all remote presences at every

stage

Satisfactory synchrony between

all actors at every stage

Satisfactory synchrony between

all actors and all remote

presences at every stage

Act-By-Actor < 190-325ms < 190-325ms < 190-325ms

Act-By-Director < 390-525ms Any < 390-525ms

Live Stage Any (only at live stage) < 390-525ms Any (only at live stage)

Delay Local Remote Presence Any Any < 390-525ms

Delay Locally All Remote
Presences Waiting for the Slowest

Any Any < 390-525ms

Act-By-Wire (blend in
pre-recorded remote presence)

Any Any Any

Act-By-Wire (blend in on the fly
created remote presence)

Any Any Any

presences. These can be quite different from, say, a video of

the actual actors.

All the masking approaches were tried in the prototype

system. However, they are primarily documented as principles.

To evaluate where they fit best in an actual interaction, they

should be used, and the results should be studied.

The most advanced masking approach, Act-By-Wire using

a model of the human to create the remote presence, can

be applied with much more complex models than a human

skeleton. This is future research. However, when a computable

model of an actor is used, its execution should ideally produce

results fast enough to not create further delays. If the model

demands too long running time to create the needed output, a

simpler model may have to be used. Alternatively, predictive

techniques may be needed to have output ready when it is

needed. The predictions can be based on pre-written scripts

defining what a human is meant to be doing at any given

time, or it can be based on analyzing the humans’ actions

in the near past. Predicting the behavior of an actor in the

MultiStage system is future research.

VIII. CONCLUSION

In computer supported human-to-human interaction across

distance, delays cannot be avoided. Consequently, while re-

ducing the delays are well worth doing, sometimes they still

become too large to ignore for humans. When this is the case,

some of the effects of delays can be masked to create an

illusion for the humans interacting, and for observers, that

they are in the same room or on the same stage. However, the

illusion created by masking has several limitations depending

on which masking approach is used. There are two principally

different types of masking. One type coordinates the interac-

tion at suitable times to create a better illusion. The other

frequently monitors the delays, and substitutes delayed data

with data already available at each stage. Depending on the

type of interaction, a suitable masking approach should be

selected. The most complex approach, Act-By-Wire, will in

all situations in principle create an illusion where interacting

humans are fooled to believe that there are no significant

delays perturbing the interaction. However, this approach can

also create unexpected representations of remote humans, and

when this happens it becomes clear that what is shown is

only an approximation of the remote reality. The masking

approaches we developed and did performance measurements

on, demanded insignificantly more resources than not using

them, and can even in the most complicated case when using

Act-By-Wire, be switched in and out with insignificant delays.

Based on informal use of the system, we found that even

800ms of delay while interacting using slow movements in

some cases were tolerable. However, the general case seems to

be that delays above 200ms is noticeable when having remote

presences based on vision and visualizations. We found that an

actor-to-actor round-trip delay of above 200ms is frequently

the case, and masking is consequently frequently needed.
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