
Grammar-Based Model Transformations

Galina Besova
Department of Computer Science

University of Paderborn

33098, Paderborn

Email: besova@mail.upb.de

Dominik Steenken
Department of Computer Science

University of Paderborn

33098, Paderborn

Email: dominik@mail.upb.de

Heike Wehrheim
Department of Computer Science

University of Paderborn

33098, Paderborn

Email: wehrheim@mail.upb.de

Abstract—Model transformation is a key concept in model-
driven software engineering. The definition of model transfor-
mations is usually based on meta-models describing the abstract
syntax of languages. While meta-models are thereby able to ab-
stract from superfluous details of concrete syntax, they often loose
structural information inherent in languages, like information on
model elements always occurring together in particular shapes.
As a consequence, model transformations cannot naturally re-use
language structures, thus leading to unnecessary complexity in
their development as well as analysis.

In this paper, we propose a new approach to model transfor-
mation development which allows to simplify and improve the
quality of the developed transformations via the exploitation of
the languages’ structures. The approach is based on context-free
grammars and transformations defined by pairing productions of
source and target grammars. We show that such transformations
exhibit three important characteristics: they are sound, complete
and deterministic.

I. INTRODUCTION

M
ODEL transformations are key to model driven engi-

neering (MDE). Surveys on model transformations [1],

[2] show their expanding application areas: model translation,

model composition, refinement, and other.

In an MDE setting, the syntax of models is given in terms

of meta-models which themselves conform to their own meta-

models (e.g., MOF [3]). Meta-models define the abstract

syntax of languages, abstracting away from the details of con-

crete syntax like keywords and ordering of elements. Model

transformations thus operate on abstract syntax. While meta-

models describe model elements and their direct relations,

they fall short of describing more complex interrelations like

sets of model elements always occurring together in particular

shapes. In some cases, meta-models are enriched with OCL

[4] constraints to enforce such shapes in models.

In contrast to MDE, traditional approaches to language

definition (and translation) define languages by grammars,

often given in an Extended Backus-Naur Form (EBNF) [5].

These translation techniques operate on concrete syntax. While

the details of concrete syntax are in general unimportant (and

thus make translation definition unnecessarily confusing), the

structural information contained in the grammars is highly

useful for defining translations. The productions of the gram-

mars define the structures available in the languages, and by

This work was partially supported by the German Research Foundation
(DFG) within the Collaborative Research Centre “On-The-Fly Computing”
(SFB 901).

Source Graph

Grammar Gs

Target Graph

Grammar Gt

Target Model Mt

Transformation Definition

Transformation Execution

Target Model

Derivation Tree

Source Model

Derivation Tree

Source Model Ms

<<sourceProductions>> <<targetProductions>>

<<applies>>

<<target>><<source>>

<<basedOn>> <<basedOn>>

<<resultOf>> <<resultOf>>

Fig. 1: Overview of our approach

relating productions of grammars (as done in syntax-directed

translation [6]) we can easily specify how language structures

are mapped onto each other.

An ideal approach for model transformation should thus

combine these two approaches, taking the best of both: have

language definitions with the abstract syntax of meta-models

and the structures of grammars, and build model transforma-

tions on these definitions. An early approach following this

idea, although not in the area of model transformations and

not with meta-models but with graphs, is the one of Pratt [7].

Pratt defines pair grammars as a way of relating the grammars

of two languages, thus obtaining a natural way of relating

languages and building translations from one to the other.

The objective of this paper is to bring the idea of pair

grammar based translation to the world of MDE and model

transformations, lifting it to the level of abstract syntax while

preserving its advantages. We also extend it in order to cover

a broader variety of model transformations.

Fig. 1 gives an overview of our approach. The transforma-

tions we focus on are model-to-model transformations. Our

models are given in abstract syntax and are generated by gram-

mars. For this generation purpose we use a type of context-free

graph grammars – hyperedge replacement graph grammars

[8] – typed and constrained by meta-models. Transformation

rules – like pair grammars – relate productions of the source

with those of the target grammar. Model transformations are

executed on the derivation trees: given a source model Ms, its

derivation tree in the source grammar is obtained by parsing,

and used by the model transformation to produce a derivation

tree in the target grammar, and thereby the corresponding

target model Mt.

We exemplify our approach on a transformation from ac-

tivity diagrams to the process algebra CSP [9]. We also prove

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1601–1610

DOI: 10.15439/2014F144

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1601

important qualities of the transformations developed with our

approach – termination, soundness, completeness, and deter-

minism. Showing these quality properties for a transformation

described using current state-of-the-art techniques is usually

hard, if not impossible [10].

First, in Sec. II we give background on grammar-based

language definition and show our source and target grammars.

Then, we introduce our approach in Sec. III and in Sec. IV

show the quality characteristics of the developed transforma-

tions. In Sec. V we demonstrate extensions of our approach,

and in Sec. VI we evaluate it in comparison with the most

closely related approaches in MDE. Finally, we survey related

work in Sec. VII and conclude in Sec. VIII.

II. BACKGROUND

There are two fundamentally different ways of specifying

the syntax of a given language: with (context-free) grammars

or with meta-models. Our approach is built on grammars

generating instances of meta-models, i.e., graphs. In the fol-

lowing, we introduce the main concepts of the grammar-

based language definition and show how they can be lifted to

graph-based languages, enabling grammar-based definition of

modelling languages and model transformations utilizing these

definitions. We show how our example modelling languages

for activity diagram and CSP can be described using such

grammars. Finally, we introduce the transformation example

used later to demonstrate our approach.

A. Grammar-Based Syntax Definition

In their original usage, grammars define languages of strings

via a set of generative rules. We briefly review some general

definitions of grammars for string languages [6] because our

graph grammars is a natural extension of string grammars.

Definition 1 (Grammar). A grammar G = (N,Σ, P, S)
consists of a set of non-terminal symbols N , a set of terminal

symbols Σ, a set of productions P and a designated start

symbol S ∈ N . Each production p ∈ P is of the form

p = (l, r), with l ∈ (Σ ∪N)
∗

N (Σ ∪N)
∗

, i.e., a string of

symbols with at least one non-terminal, and r ∈ (Σ ∪N)
∗

.

A grammar G = (N,Σ, P, S) is called context-free iff every

production p ∈ P has the form p = (n, r) with n ∈ N .

Applications of productions derive new strings from given

ones by a process called rewriting. A string s ∈ (N ∪ Σ)
∗

is rewritten into a new string by a context-free production

(n, r) ∈ P by finding n in s and replacing it with r. In this

way, a grammar defines the set of strings that can be derived

from its start symbol S. This set is called the language of the

grammar G.

Definition 2 (Language). Let G = (N,Σ, P, S) be a grammar.

A sentence of G is a string s ∈ Σ∗ of terminal symbols that

can be derived from S using a finite sequence of applications

of productions in P . The language L (G) of G is defined as

L (G) = {s ∈ Σ∗|s is sentence of G}

Fig. 2: A derivation tree deriving σ2σ1σ2σ3 from S

The advantage of context-free grammars is that parsing can be

done efficiently [6]. Parsing a sentence in a language using a

context-free grammar gives us a derivation tree, i.e., a structure

showing the application of productions from the start symbol

leading to the derived sentence. A derivation tree for a sentence

defines its structure and confirms its language membership in

L(G) (i.e., syntactical correctness). The inner nodes of such

a tree are labelled with productions. The root is labelled with

a production that consumes the start symbol of the grammar.

Every leaf of the tree is labelled with a terminal symbol. Fig. 2

shows an example derivation tree for the sentence σ2σ1σ2σ3.

In general, there can be multiple derivation trees for a

sentence in one grammar that are not equivalent in their

structure, making the grammar ambiguous. In our approach,

we only consider unambiguous grammars for defining source

and target languages, to ensure deterministic behaviour of the

developed transformations (see Sec. IV for details).

Definition 3 (Unambiguous Grammar). A grammar G =
(N,Σ, P, S) is called unambiguous iff for every sentence

s ∈ L (G) its derivation from S is unique if performed

“leftmost derivation first”.

Because most models in MDE contexts are graph-based (since

meta-models are graphs), we need context-free grammars

producing graphs as sentences instead of strings. We use

hyperedge replacement graph grammars (HR grammars) [8]

which fulfil these requirements. HR grammars operate on

hypergraphs, a generalization of graphs where edges, called

hyperedges, can have more than two end points. These end

points are called attachment points and their number is the

arity of a hyperedge. Hyperedges take the role of non-terminal

and terminal symbols. For replacing hyperedges in graphs by

sub-graphs during rewriting, we need to specify how these

sub-graphs are to be embedded. To this end, the replacing

sub-graphs are equipped with external nodes, and rewriting

proceeds by replacing the hyperedge with the sub-graph gluing

together each external node with the attachment node of its

corresponding attachment point.

More precisely, a hyperedge replacement rule l1 := H

has three parts: a single n-ary non-terminal hyperedge l1,

a hypergraph H with k ≥ n external nodes replacing the

hyperedge, and an (injective) mapping g of the k external

nodes of H onto the n attachment points of l1. Unlike string

productions, graph replacement rules need to explicitly define

how the new graph is attached to the remaining context. In

HR grammars this is done via the mapping g. Fig. 3 shows

a sketch of the replacement process (for k = n). First, the

1602 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

1
 2 3

4

 5

6 7 8

G

(a) Matching

1
 2 3

4

5

 6

 7 8

G

(b) Removal

1
 2 3

4

5

 6

 7 8

HG

(c) Gluing

Fig. 3: Rule application in hyperedge replacement grammars

Model

Activity ActivityNodeActivityEdge

InitialNode

FinalNode

ActionCall

Decision

Merge Loop

InternalAction

Fork

Join

model edges

0..*

activity
nodes

source
outgoing 0..*

incoming
target

body

Fig. 4: Source meta-model: Activity diagrams

hyperedge l1 is found by matching (a) and removed (b), then

the graph H is inserted (c) by gluing all its external nodes

with the attachment nodes of l1 according to the mapping g.

Due to lack of space, we refrain from giving a more formal

definition here. All definitions of string grammars carry over

to HR grammars: an HR grammar has the same parts as a

string grammar (non-terminals, terminals, productions and a

start symbol) and its language is a set of hypergraphs. The

membership problem for HR grammars is decidable [8] which

guarantees the existence of the derivation trees we are going

to use.

Now, we can define both the source and target language we

use to demonstrate our grammar-based model transformation

approach in terms of hyperedge replacement grammars. We

exemplify our approach on a transformation from activity

diagrams to the process algebra CSP [9]. The HR grammars

for these two languages are compliant with the respective

meta-models, i.e., the graphs which our grammars generate are

all instances of the meta-models. For this, we use (a simplified

version of) the meta-model of UML activity diagrams [11] (see

Fig. 4) and the CSP meta-model from [12].

The meta-model of activity diagrams only contains basic

diagram elements, their hierarchy, and associations with mul-

tiplicities. It does not describe higher-level syntactic structures

of the language. For example, in a well-formed activity dia-

gram each decision node should be eventually followed by the

corresponding merge node for the branches of that decision.

Although these kinds of inductive language structures are

intuitive to the transformation developer, they are usually not

described in the meta-model.

Fig. 5 shows six out of eleven productions of our source

HR grammar. Productions are given in abstract (plus some

in concrete) syntax, in the form l := H , using bars to

distinguish different right-hand sides of productions. Non-

terminal hyperedges are depicted by dashed lines. Types and

the number of attachment points of a non-terminal hyperedge

are determined by the associations of the meta-model elements

which it groups. The mapping between attachment points and

external nodes is depicted by using the same numbers, one

:=B
target

nodes edges

source

ae:ActivityEdge
source

outgoing

target

incoming
B B

:= ac:ActionCallB
target

nodes edges

source

5

6

a:Activity

start:InitialNode

ae1:ActivityEdge

end:FinalNode

ae2:ActivityEdgeB

:=
nodes

source

outgoing edges

incoming

target

nodes edges

source

outgoing

edges

target

incoming

nodes

activity

4

m:ModelM := model

model
activities

AMS := M
1 1 1

1

4

2

3

1

4

2

3

1 2

3

4

4
1

3 4
2

3 4

1

A

activities
1

1
2,3

:=
:=

:= action

A B

B BB

B

5

6

4

Fig. 5: HR productions subset for activity diagrams (abstract,

concrete syntax)

given in a diamond and the other in a circle. Multiple external

nodes can be mapped to one attachment point. Not all external

nodes have to be connected in the graph (see production 6).

This grammar describes well-formed activity diagrams con-

taining zero or more activities (productions 1 – 3) with exactly

one initial and final node, and at most one recursively-defined

high-level syntactic structure block called B connected to

exactly one initial and final node (production 4). The non-

terminal edge B can be replaced by one of the following

structures: a block sequence (production 5), a fork/join block,

a decision/merge block, a loop, an internal action or an action

call (production 6). Note that our decision/merge constraint

is now represented by the corresponding production which

only allows to generate these elements together connected in

a shape. Other language structures are also produced in this

systematic way.

Fig. 6 shows the relevant subset of our meta-model com-

pliant HR grammar for CSP. A model described by this

grammar can contain a set of processes (productions 1 –

3) generated from non-terminal edges labelled P. A process

description represented by non-terminal PE (production 4) can

contain various expressions: a sequential or parallel process

composition (productions 7 – 8), an if-then-else expression

(production 9), an event followed by another process expres-

sion (production 10), another process (production 6), or an

empty process SKIP (production 5).

B. Transformation Example

Both grammars we have defined will be used to describe our

example transformation. We describe a transformation from

activity diagrams to CSP, frequently employed for analysis

purposes [13]. Alternatively, we could, for instance, use the

activity diagrams to first-order logic transformation example

from [14].

Fig. 7 shows our sample activity diagram of an enrolment

and the corresponding CSP process. Here, we see the concrete

GALINA BESOVA, DOMINIK STEENKEN, HEIKE WEHRHEIM: GRAMMAR-BASED MODEL TRANSFORMATIONS 1603

S := M1 :=
processes

P
1

PE
pe

p:Process
1

4m:ModelM := model

model
processes

PM
1 1 1

2,3

:=PE s:Skip p:Process
1 11

5,6 :=
PE

PE

left

right

:Sequence
1

PE
1

7,8
PE

PE

left

right

:Parallelism
1

eSet

:=PE
1

c:Condition

ite:IfThenElse

condition

then

else

PE

PE
1

e:Event

pf:Prefix

event

pe
PE

1
9,10

Fig. 6: HR productions subset for CSP (abstract syntax)

Submit Form

Check

Application

Accept

Reject

fulfilled

Store Statistic

 Data
ENR = submitForm −> SKIP ;
((Check −> SKIP ; (i f f u l f i l l e d then Accept −> SKIP

e l s e Re j e c t −> SKIP))
| | S t o r e S t a t i s t i c D a t a −> SKIP)

Fig. 7: Enrolment activity diagram (left) and its CSP process (Check abbreviates CheckApplication event) (right)

syntax of CSP: -> is an event prefix, ; a sequential com-

position, SKIP an empty process, || a parallel composition

and if-then-else a conditional choice. We require every

activity to be transformed into a process and every block

sequence and fork/join block into a sequential and parallel

process composition, respectively. A decision/merge block is

to be transformed into an if-then-else expression and an action

call into an event followed by a SKIP. Loops, although absent

in this example, are transformed into recursive processes with

conditions. Next, we show how this transformation logic can

be structurally described using our approach.

III. TRANSFORMATION DEVELOPMENT

Our main goal is to allow an intuitive model transformation

definition by mapping high-level syntactic structures in source

and target languages onto each other. In terms of grammars,

this means relating (or pairing) source and target productions

creating corresponding structures. During execution of the

model transformation these relations will be used to identify

which target production is triggered for which source produc-

tion.

Our model transformations operate on derivation trees of

source and target models. Given a derivation tree for a source

model, we incrementally construct a derivation tree for the

target model by applying corresponding productions. Thereby,

1-to-1 correspondences between non-terminal edges in the

source and target derivation trees help to keep track of related

model structures.

Fig. 8 shows a sample transformation rule relating the

source production for a sequence of activity blocks to the target

production for a sequence of process expressions1. It states that

when a block sequence is replacing a non-terminal hyperedge

1To simplify, we show transformation rules without HR grammar details.

:=

ae:ActivityEdge

source
outgoing

target

incoming

B

B

:=

PE

PE

left

right

:Sequence

C

C

C

B

Fig. 8: Transformation rule: Block sequence to process se-

quence

of type B (block) in a source derivation tree, a sequence of pro-

cess expressions should replace the corresponding hyperedge

of type PE (process expression) in the related target derivation

tree. In addition to relating productions, the transformation

rule links source non-terminal edges of type B and target non-

terminal edges of type PE via a 1-to-1 correspondence of type

C. These correspondences determine which target edge will be

replaced by the target production, when the linked source edge

is replaced by the related source production. The notion of

correspondence is inspired by triple graph grammars (TGGs)

[15].

Fig. 9 shows further rules of the transformation definition

for our example. It relates productions in the following way:

• Rules 1, 2: Productions for non-terminal (1) and terminal

(2) edges representing models in the source and target

grammars are related. Non-terminal edges in rule 1 are

linked via a correspondence later required by rules 2 – 3.

• Rule 3: Production of a non-terminal edge of type A

representing an activity is related to the production of

a non-terminal edge of type P representing a process.

The correspondence between model non-terminal edges

is kept and other produced edges are linked for later

application of rule 4.

• Rule 4: The production of an activity containing a block

represented by a non-terminal edge of type B connected

:= ae:ActivityEdge
source

outgoing

target

incoming
B

C

C

C

a:Activity

start:InitialNode

ae1:ActivityEdge

end:FinalNode

ae2:ActivityEdgeB

nodes

source

outgoing edges

incoming

target

nodes edges

source

outgoing

edges

target

incoming

nodes

activity

C

:=
ae1:ActivityEdge

target

incoming

ae2:ActivityEdge

f:Fork
source

outgoing

target

incoming

ae3:ActivityEdge

ae4:ActivityEdge

j:Join

source

outgoing

source

outgoing

incoming

incoming

target
outgoing

C

C

C

:=A

C

C

C

3

4

5

P := PE
pe

p:Process

:=PE
PE

PE

left

right

:Sequence

:=PE
PE

PE

left

right

:Parallelism

:=PE

c:Condition

ite:IfThenElse

condition

then else

PEPE

1

S := M S := MC

M := model

activities

AM

m:ModelM := m:ModelM :=
C

M := model

processes

PM

C

C

C

:=
ae1:ActivityEdge

target

incoming

ae2:ActivityEdge

d:Decision
source

outgoing

target

incoming

ae3:ActivityEdge

ae4:ActivityEdge

m:Merge

source

outgoing

source

outgoing

incoming

incoming

target
outgoing

C

B BB

B
B

B

B
B

B

1 2

6

7

c:Condition

condition

C

Fig. 9: Transformation definition (fragment): Activity diagram to CSP

to the initial and final nodes is related to the production

of a process with a process expression represented by the

non-terminal edge of type PE. The produced non-terminal

edges are linked via correspondences which are required

later for applying rules 5 – 7.

• Rules 5 – 7 relate different types of activity blocks to

different process expressions: A sequence of blocks is re-

lated to a sequence of process expressions (5), a fork/join

block to a parallel composition of process expressions

(6), a decision/merge block to an if-then-else expression

(7). Correspondences are created on the same principle

as before.

In general, if the transformation definition between two HR

grammars Gs and Gt has the following form (extended in

Sec. V):

1) In each rule:

a) a source production ps = (ns, rs) is related to a target

production pt = (nt, rt);
b) left-hand side non-terminals ns and nt are linked via a

correspondence (start non-terminals Ss, St are always

linked);

c) each non-terminal edge in rt has exactly one corre-

sponding non-terminal edge in rs,

2) For each source production ps = (na, ra) in Ps and each

correspondence between the edges of type na and nb in

some rule (or initial Ss to St correspondence), there is

exactly one rule relating ps to a target production pt,

where pt = (nb, rt), to cover all combinations of types

of corresponding pairs (na, nb),

and Gs is unambiguous, then the resulting transformation has

some important characteristics which we show in Sec. IV.

Now, we discuss how the transformation rules we have just

defined are executed.

The transformation is executed on a source model in two

steps: first, the source model is parsed to get its leftmost

derivation tree2 and then the transformation rules are applied

to construct the target derivation tree (and the target model).

In the first step, a source model is parsed with respect to

the source HR grammar. As HR grammar based parsing is

decidable [8], for each source model we either get its leftmost

derivation tree or a message that it is not parsable. If a model

can not be parsed, it is not in the source language, and hence

will be rejected by our transformation returning not applicable.

2Derivation tree representing leftmost derivation. Leftmost derivation in HR
grammars is analogous to the one for string grammars (see [7]).

GALINA BESOVA, DOMINIK STEENKEN, HEIKE WEHRHEIM: GRAMMAR-BASED MODEL TRANSFORMATIONS 1605

St

C

C

C

C

:=

Target Model

PE

PE

left

right

:Sequence

... ...:=

Source Model

Ss

B

ae:ActivityEdge

source
outgoing

target

incoming

B

B

... ...
...

Fig. 10: Transformation execution sketch

In the second step, we build the target derivation tree by first

initializing it by the edge of type St which has correspondence

to the edge of type Ss in the source tree. Next, we iteratively

construct the target tree in the following way: we traverse

the source tree to find the next non-terminal edge es and the

source production ps that has rewritten it. Then, we consider

each correspondence c of the edge es and find the transfor-

mation rule that pairs some pt with the source production ps,

and where the left-hand side non-terminals are equal to the

types of the edges linked by c. Finally, we apply the target

production pt to the target non-terminal edge linked to es
through c, and create additional correspondences according to

the transformation rule. The transformation terminates once

the complete source derivation tree has been traversed and all

correspondences have been considered. Due to the context-

freeness of HR grammars [8], we can use any traversal method.

Fig. 10 sketches the transformation execution, highlighting

a single production in the source derivation tree for our

example applied to an edge of type B with the corresponding

edge PE in the already created target tree fragment. The

dark grey rectangle frames the result of applying the suitable

transformation rule 5 (Fig. 9) to the corresponding edge PE.

IV. TRANSFORMATION PROPERTIES

Besides allowing for a natural way of transformation def-

inition by mapping logically equivalent concepts onto each

other, our method for building model transformations exhibits

some important properties. A transformation defined using our

approach and fulfilling the criteria mentioned above is, by

construction:

a) terminating – for any input model, the transformation

terminates and returns either a resulting model or not

applicable,

b) complete – all valid, i.e., parsable, models are trans-

formable,

c) sound – a valid and transformable model is always trans-

formed into a valid model (parsable in the target grammar),

d) deterministic – the output model and its derivation are fully

determined by the input model.

For the last property, we require the source grammar to be

unambiguous (see Def. 3). Due to the page limit, we only

give proof sketches for each of the properties here. In the

sketches, we emphasize the conditions on the transformation

definition that are sufficient to guarantee these properties. In

the following we refer to the source and target HR grammars

as Gs and Gt, to the input (source) model as Ms, to the output

(target) model as Mt, and to the transformation as τ .

a) Termination: As described in the last section, τ

first parses the input model Ms, yielding a source model

leftmost derivation tree Ts (or not applicable). Since our

approach is based on context-free grammars, this is guaranteed

to terminate. Then, a single Gt production applications is

performed by τ for every Gs production application and

correspondence c of the edge rewritten by it in Ts. Since these

productions’ applications are guaranteed to terminate, and the

set of correspondences, and Ts are finite, the whole process

is also guaranteed to terminate.

b) Completeness: For completeness, we have to show

that if Ms ∈ L (Gs), τ (Ms) will not fail. If Ms ∈ L (Gs),
the first step (parsing) will always succeed, and return Ts. In

Sec. III, we have demanded that τ contains a transformation

rule for every production in Gs and every correspondence type

an edge rewritten by it might have. Hence, we can transform

every production application in Ts into an application in Tt.

Next, we look at the derivation of the output target model

Mt via Tt. For completeness, we need to show that this

derivation does not fail, i.e., that all target productions are

applicable at the place where the transformation wants to apply

them. Both Gs and Gt are context-free, so the existence of

the non-terminal edges ensured by the correspondences is all

that is needed to ensure applicability of the target productions.

When considering the next source production application, we

apply the related target production to the non-terminal edge

corresponding to the edge rewritten by the source production.

Therefore, since the source production is applicable and τ

contains rules for every type of correspondence that non-

terminal edge rewritten by it might have, the target production

is applicable too. Thus, τ always returns a model for a valid

Ms and thus, τ is complete.

c) Soundness: It remains to be shown that Mt ∈ L (Gt).
This can be reduced to the question whether the target tree Tt

is complete, meaning that no non-rewritten non-terminal edges

are left after the application of the transformation.

From requirements in Sec. III, every non-terminal edge

produced by a target production is linked by a correspondence

to a non-terminal edge in Ts. And since Ms ∈ L (Gs), all

source non-terminal edges produced are eventually rewritten.

This implies that all target non-terminal edges produced are

also eventually rewritten by the related target productions, i.e.,

Tt is complete. Thus, we have Mt ∈ L (Gt).
d) Determinism: Since Gs is unambiguous, the produc-

tion of Ts is deterministic. The tree Ts fully determines which

rules are applied to construct the target tree, and where. This

is because each production on the target side is uniquely

determined by the source production and the correspondence

1606 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

a:ActionCall:=B

C

PE :=
a:Event

pf:Prefix

event

pe
PE := s:Skip

Fig. 11: Transformation rule: Action to an event followed by

SKIP process

of the source non-terminal edge it rewrites. The target side

of this correspondence also uniquely determines where the

target production is applied. We thus, obtain exactly one

target derivation tree, and consequently exactly one target

model. Therefore, no two different target models can be the

transformation result for a single Ms.

V. EXTENSIONS

As you might have noticed, we still have to describe a

couple of rules to complete the definition of our sample

transformation. The remaining rules need to transform: an

action call (1) or an internal action (2) into an event followed

by a SKIP process, and a loop (3) into an equivalent recursive

process, since CSP does not natively support loops. In these

two cases we need to relate two or more target productions that

form a derivation sub-tree to a single source production. To

allow this, we extend our approach by relating derivation sub-

trees instead of relating single productions in transformation

rules.

Fig. 11 shows such an extended rule for case 1 (2 is

analogous): it relates the production for an action call to

a sub-tree combining two target productions to create an

event followed by a SKIP process. Since all non-terminal

edges created by these target productions (one PE) have been

consumed in the sub-tree, we only require a correspondence

for left-hand side non-terminals of the first productions.

Fig. 12 shows the rule for case 3 and, thereby, the second

extension of our approach – so called non-local rules. This

type of rule allows the use of an additional correspondence

between non-terminals, and uses its target non-terminal as a

root of an additional derivation sub-tree containing one or

more productions. During the transformation execution, when

a correspondence of the defined additional type is found and

the rule can be applied, the defined additional sub-tree is

assigned to its target of this correspondence, replacing it.

Both extensions can be combined within one rule as seen

in Fig. 12: it relates the production for a loop to the produc-

tion for a process reference L(c) and uses a correspondence

between two model non-terminals (M) to create the referenced

process L(x). This process consists of an if-then-else expres-

sion with the first non-terminal edge PE in the then branch

linked to the body of the activity loop represented by the edge

B, followed by the recursive call to itself, which terminates

when the condition x fails. The new process is placed directly

under the output model edge M which makes the result of this

rule non-local and different from previous examples.

As for the conditions we imposed on our transformation for

it to have the desired properties (see Sec. IV), they now need

to be adjusted. A full explanation is out of the scope of this

paper, thus, we only provide an idea of required adjustments.

:=

ae1:ActivityEdge

target

incoming

ae2:ActivityEdge
source

outgoing

l:Loop

c:Cond

node

condition

target

incoming

source

outgoing

C

C

PE L(c):Process:=

PE
pe

L(x):Process

x:Condition
ite:IfThenElse

condition

then
else

PE PE

:=
:=

s:SkipPE

PE

left

right
:Sequence

:=

L(x):Process

:=

M := model

processes

PM

MB

C

B

:=

Fig. 12: Transformation rule: Loop to an equivalent recursive

process

First, for multiple properties, when a rule relates derivation

sub-trees, all non-terminal leaves of the target sub-tree have

to have corresponding non-terminal leaves in the source sub-

tree. Next, for determinism, the absence of two simultaneously

applicable transformation rules need to be guaranteed: either

by disallowing rules with the same correspondence and one

source sub-tree being a sub-tree of the other, or by introducing

rule priorities. Furthermore, for completeness, the presence

of rules covering all possible source model derivation steps

must be guaranteed: either via coverage analysis or forbidding

to use source sub-trees with more than one production. In

the case of non-local rules, to guarantee determinism, exactly

one correspondence of the specified additional type must

exist when the rest of the rule is applicable. Plus, the same

correspondence condition as for the main target sub-tree must

hold for non-terminal leaves of the additional target sub-tree.

VI. TOOL SUPPORT & EVALUATION

To support the approach we have designed a tool chain

involving existing state-of-the-art tools: a graph grammar

parser of the AGG [16] framework and the EMorF [17]

transformation engine. The chain requires source and target

grammars modelled as instances of our HR grammar meta-

model extended with grammar-specific non-terminal and ter-

minal type classes. All meta-models are specified in the ECore

meta-modelling language of the Eclipse Modelling Framework

[18]. The specified source and target grammars are used as

input of our Eclipse based Grammar-Based Model Transfor-

mation Framework that allows the definition of transformation

rules and validate their compliance with the conditions from

Sec. III. The framework makes use of existing transformation

languages and engines like TGGs [15] and EMorF engine

by translating the created transformation into its declarative,

language (and engine) specific implementation operating on

trees. Other combinations of languages and engines like ATL

[19] with its engine can also be used.

Fig. 13 shows the described tool chain with the used

artefacts for the case when TGGs and the TGG engine (here

GALINA BESOVA, DOMINIK STEENKEN, HEIKE WEHRHEIM: GRAMMAR-BASED MODEL TRANSFORMATIONS 1607

SourcekGraphk

GrammarkGs

TargetkGraphk

GrammarkGt

SourcekModel

DerivationkTree

AGGkParser

EMorF

TGGkEngine

GrammaryBased

ModelkTransformationkFramework

TransformationkSpecification

inkTGGk)alt.kATLxkQVTRxk...<

Parsing

Source

ModelkMs

T

T

T

<<resultOf>>

Target

ModelkMt

Transformation

Execution

TargetkModelk

DerivationkTree

Legend

kyykActivity kyykArtefact T kyykTool

Fig. 13: Tool support for grammar-based transformations with

TGGs and EMorF as implementation platform

EMorF) were chosen as the target execution platform for the

developed transformation.

To evaluate our approach, we compare it on our running

example with the most common transformation development

practices in MDE, where meta-models are used in combina-

tion with declarative, imperative, and hybrid transformation

languages. Meta-models may contain additional classes (e.g.,

StructuralActivityNode in UML [11]) to group (other) classes.

When a source meta-model does not include such structural

classes, then the transformations that require this structural

information defined on it have to use imperative constructs.

Often they are also combined with recursion. In our example,

such constructs are required to locate the related decision and

merge activity nodes to build the corresponding sequence of

processes in CSP.

r u l e D e c i s i o n 2 I f T h e n E l s e ex tends DefaultNode2Skip {
from d : AD! D e c i s i o n
to ps : Pr o c e s s Ex p r e s s i o n ! Sequence (

l e f t <− pe ,
r i g h t <− d . findMrg (d . outgo ing . f i r s t () . t a r g e t , 0)

) ,

pe : Pr o c e s s Ex pr e s s i o n ! I fThenElse (
then <− d . outgoing−> s e l e c t (. . .) . f i r s t () . t a r g e t ,
e l s e <− . . . , c o n d i t i o n <− . . .

) }

he l p e r def : findMrg (n :AD! Act iv i tyNode , i : I n t e g e r)
: AD! Merge =
i f n . oc lIsTypeOf (AD! Merge) then

i f i > 0 then
thisModule . findMrg (n . outgo ing . f i r s t () . t a r g e t , i −1)

e l s e
n

e n d i f
e l s e

i f n . oc lIsTypeOf (AD! D e c i s i o n) then
thisModule . findMrg (n . outgo ing . f i r s t () . t a r g e t , i +1)

e l s e
thisModule . findMrg (n . outgo ing . f i r s t () . t a r g e t , i)

e n d i f
e n d i f ;

Listing 1: ATL code fragment: Decision / merge block to if-

then-else process sequence

Listing 1 shows implementation of this transformation step in a

widely used general-purpose hybrid model transformation lan-

guage ATL [19], which relies on meta-model based language

definition. We use the meta-models from Sec. II-A to define

the source and target languages of the ATL transformation. We

use an ATL matching rule to transform a decision node d to an

if-then-else process expression pe (rule Decision2IfThenElse).

But to link the target expression pe to the next process

expression, which should be the result of transforming the

merge node corresponding to the decision node d, we have to

use recursion to find that merge node. For this purpose, we

implement a recursive search helper findMrg that follows the

path starting in d and skips intermediate decision/merge pairs

until it finds the right merge node.

To use this recursive search in ATL, we have to assume

well-formedness of activity diagrams, ensured by extra OCL

constraints. Such OCL constraints are not always defined and,

if they are, they contain recursion and considerably complicate

the complete meta-model based language definition. Further-

more, the need for imperative constructs forbids the use of

declarative languages and significantly complicates readability

and analysis of the transformations. In fact, most techniques

aiming to guarantee transformation quality [20], [21] only

consider declarative rules and are not applicable here.

Another solution to build structure-based transformations is

to use transformation rules to create the required structures in a

suitably defined (by meta-model containing structural classes)

correspondence model as done in [22] using TGGs. As the pre-

vious imperative solution, the correspondence-based solution

does not guarantee quality of the developed transformations,

and it complicates their understandability and analysis.

If meta-models include structural classes, it is possible to

define declarative structure-based rules in TGG-like format

with better readability than in the previous solutions, and with

more analysis possibilities. Still, as far as we know, there

are no approaches showing completeness and determinism

even for such declarative transformations. Unlike these com-

mon practices, our approach natively supports structure-based

transformations keeping their rules graphical and concise (see

Fig. 9, rule 7), and guarantees their quality.

Discussion: Transformation rules defined using our ap-

proach stay declarative (see Fig. 9) which brings multiple

advantages: simpler and more intuitive transformation rules

that are easier to understand and maintain especially when

grammar productions are represented in concrete syntax; and

guaranteed transformation quality properties discussed in Sec-

tion IV. The only part that stays imperative is the source

model parsing. Parsing causes most of the complexity in our

method, but its mathematical foundations for HR grammars [8]

guarantee termination and predictable worst-case run-time.

The conditions we currently put on transformations defined

by our approach to guarantee their quality (Sec. III) might

be too restrictive even with the use of extensions (Sec. V)

for some purposes. In such cases, a developer can still define

structure-based declarative transformations using our approach

and employ existing testing and verification techniques to

check their quality.

The choice of HR grammars for language definition cur-

rently limits our approach to the transformations between

1608 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

context-free graph-based languages. We plan to address this

limitation and take context-sensitive languages into consider-

ation using grammars proposed in [23].

HR graph grammars, which we use to define source and

target languages, in general, are more restrictive and complex

than pure meta-models (with structural classes). However,

when compared to meta-models with OCL constraints en-

forcing (when possible) the same structural well-formedness

constraints on e.g., activity diagrams, HR grammars typed over

meta-models present a more concise, intuitive, and powerful

way to describe such constraints.

An a meta-model, an HR grammar only needs to be created

once per language and, can then be used by any developer

for any grammar-based transformation involving this language.

The complexity of an HR grammar can affect the complexity

of the grammar-based transformation using it, but this is also

the case with meta-models.

VII. RELATED WORK

For years, compiler construction benefits from syntax-

directed translation [6]. This technique relates single string

grammar productions via 1-to-1 relations and requires both

grammars to have the same non-terminals, building a very

basic version of our approach. Pratt [7] was first to propose

to apply this technique to graphs and show that the result-

ing transformations are deterministic and reversible (under

conditions). Our approach extends [7] to n-to-m relations

between productions, n-to-m correspondences between non-

terminals, and shows additional properties for the developed

transformations. Thus, we consider a much larger scope of

transformations than the approach from [7].

TGGs proposed in [15] were also inspired by Pratt [7] and

were first to contain explicit correspondence nodes. However,

the focus of TGGs was on relating context-sensitive produc-

tions to support data integration without the consideration of

transformation quality properties. In MDE today, TGGs are

defined on meta-models and relate model patterns gradually

matched during the execution instead of grammar productions.

The only approach we are aware of, that uses TGGs with meta-

models to define structure based transformation in [22], has

already been compared to in out evaluation in Sec. VI.

Halfway between grammars, as in our approach, and meta-

models is the transformation development and validation ap-

proach proposed in [24]: it relates source model patterns with

target productions and states extensive criteria for the trans-

formation quality assurance. Target language in this approach

is defined through graph grammar productions. However, it is

unclear how the target grammars used there are defined and

whether the related target productions can always be applied

when the source pattern is found during the transformation

execution. In [24] transformation execution strategy is de-

fined manually whereas, in our approach it is automatically

obtained during the source model parsing making it less

error prone. Like us, authors of [24], consider transformation

characteristics: termination, and confluence; however, they do

not consider soundness and completeness.

Other approaches like [25], [26], [27] advocate transforma-

tion development by-example and by-demonstration, and do

not directly focus on structure based transformations. Like us,

these approaches recognize the problem of over abstraction

of language definition through meta-models, but deal with it

using examples to describe corresponding structures of the

source and target languages, whereas we use graph grammar

productions. By such example-based approaches it is not al-

ways clear whether the examples or the transformation should

be adapted when the result is not yet satisfactory, how many

examples are needed. Whether the developed transformation

has desired properties is, as far as we know, not addressed by

any of these approaches.

Several other approaches [28], [29] directly apply classic

techniques to model transformations. Unfortunately, non of

them considers properties of the developed transformations.

In [28] the authors attempt to use TXL [30] – a generic

source transformation framework – to develop model trans-

formations. They consider meta-model based languages, and

transform them into TXL string grammars. TXL string gram-

mars do not have the expressiveness and visualization ad-

vantages of graph grammars we use leading to very limited

applicability of the TXL-based approach. Transformations de-

scribed in TXL are fine-grained with explicit execution policy,

which makes them flexible, but also complex and difficult to

understand and maintain. This method can be placed halfway

between the syntax-directed translation and our approach.

In [29] the authors attempt to simplify transformation

development by eliminating the need to learn specialized

languages. They regard models and meta-models as abstract

data types – abstract structures with operations. On top of the

types they define a minimal imperative model transformation

language with formal semantics. This approach brings models

and transformations into the world of programming, whereas

our approach lifts translation techniques to graphs. Both last

approaches use meta-models and none of them directly con-

siders high-level structures in languages and transformations

based on these structures, as we do. Transformation quality is

not take under consideration either.

We consider our approach as the next step towards efficient

and quality-aware transformation development that can be

realized based on existing state-of-the-art including some ap-

proaches described above and the commonly used technologies

like ATL [19] and TGG [15].

In general, use of alternative notations for modelling lan-

guage definition – meta-model vs. graph grammar – raises

the issue of integration and interoperability of approaches

and tools respectively. Various methods address this issue by

defining transformations between the alternatives [31], [32],

[33], applying inference to obtain graph grammars [34], or

combining them as different views for multi-level modelling

[35]. The later option is the one we use.

Finally, we want to point out that the simplest version of

our method has been recently successfully used in [36] for

semantic-based machine translation in the field of computa-

tional linguistics.

GALINA BESOVA, DOMINIK STEENKEN, HEIKE WEHRHEIM: GRAMMAR-BASED MODEL TRANSFORMATIONS 1609

VIII. CONCLUSION

In this paper, we have presented a grammar-based model

transformation development approach that allows to naturally

consider structures of involved language. We have employed

HR grammars to specify source and target languages, and

defined transformation rules by relating their productions

and adding correspondences between non-terminals. We have

shown that model transformations defined using our approach

terminate and are sound, complete, and deterministic. We have

also presented some extensions of the approach.
Future Work: Currently, we are working on the extension

of initial case studies to evaluate our approach and continue

improving the tool support. In the future, we look to support

computation of attributes, while still keeping the desired trans-

formation properties. When expressiveness of HR grammars

is not sufficient, we plan to explore the decidable contextual

graph grammars proposed by Drewes in [23].

REFERENCES

[1] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transfor-
mation Approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–646,
2006. doi: 10.1147/sj.453.0621

[2] D. D. Ruscio, R. Eramo, and A. Pierantonio, “Model Transformations,”
in SFM, ser. LNCS, M. Bernardo, V. Cortellessa, and A. Pierantonio,
Eds., vol. 7320. Springer, 2012. doi: 10.1007/978-3-642-30982-3_4 pp.
91–136.

[3] “Meta Object Facility (MOF) Core Specification.” [Online]. Available:
http://www.omg.org/spec/MOF/

[4] “Object Constraint Language (OCL).” [Online]. Available: http:
//www.omg.org/spec/OCL/

[5] “Extended BNF,” ISO/IEC 14977, Int. Organization for Standardization,
2001.

[6] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,

Techniques, and Tools. Pearson/Addison Wesley, 2007. ISBN 0-321-
48681-1

[7] T. W. Pratt, “Pair Grammars, Graph Languages and String-to-Graph
Translations,” Journal of Computer and System Sciences, vol. 5, no. 6,
pp. 560 – 595, 1971. doi: 10.1016/S0022-0000(71)80016-8

[8] G. Rozenberg, Ed., Handbook of Graph Grammars and Computing by

Graph Transformation. World Scientific Publishing Co., Inc., 1997,
vol. 1. ISBN 98-102288-48

[9] C. A. R. Hoare, Communicating sequential processes. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1985. ISBN 0-13-153271-5

[10] E. Syriani and J. Gray, “Challenges for Addressing Quality Factors
in Model Transformation,” in ICST, G. Antoniol, A. Bertolino, and
Y. Labiche, Eds. IEEE, 2012. doi: 10.1109/ICST.2012.198 pp. 929–937.

[11] “Unified Modeling Language (UML).” [Online]. Available: http:
//www.omg.org/spec/UML/

[12] D. Varró, M. Asztalos, D. Bisztray, A. Boronat, D.-H. Dang, R. Geiß,
J. Greenyer, P. V. Gorp, O. Kniemeyer, A. Narayanan, E. Rencis, and
E. Weinell, “Transformation of UML Models to CSP: A Case Study
for Graph Transformation Tools,” in AGTIVE, ser. LNCS, A. Schürr,
M. Nagl, and A. Zündorf, Eds., vol. 5088. Springer, 2007. doi:
10.1007/978-3-540-89020-1_36 pp. 540–565.

[13] G. Besova, S. Walther, H. Wehrheim, and S. Becker, “Weaving-Based
Configuration and Modular Transformation of Multi-layer Systems,”
in MoDELS, ser. LNCS, R. B. France, J. Kazmeier, R. Breu, and
C. Atkinson, Eds., vol. 7590. Springer, 2012. doi: 10.1007/978-3-642-
33666-9_49 pp. 776–792.

[14] S. Walther and H. Wehrheim, “Knowledge-Based Verification of Ser-
vice Compositions – An SMT Approach,” in Engineering of Complex

Computer Systems (ICECCS), 2013 18th International Conference on,
July 2013. doi: 10.1109/ICECCS.2013.14 pp. 24–32.

[15] A. Schürr, “Specification of Graph Translators with Triple Graph Gram-
mars,” in WG, ser. LNCS, E. W. Mayr, G. Schmidt, and G. Tinhofer,
Eds., vol. 903. Springer, 1994. doi: 10.1007/3-540-59071-4_45 pp.
151–163.

[16] G. Taentzer, “AGG: A Tool Environment for Algebraic Graph Transfor-
mation,” in AGTIVE, ser. LNCS, M. Nagl, A. Schürr, and M. Münch,
Eds., vol. 1779. Springer, 2000. doi: 10.1007/3-540-45104-8_41 pp.
481–488.

[17] L. Klassen and R. Wagner, “EMorF - A tool for model transformations,”
ECEASST, vol. 54, 2012.

[18] “Eclipse Modeling Framework (EMF).” [Online]. Available: http:
//www.eclipse.org/modeling/emf

[19] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1-2, pp. 31–39, 2008. doi: 10.1016/j.scico.2007.08.002

[20] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara, “Verification and
Validation of Declarative Model-to-Model Transformations Through
Invariants,” J. Syst. Softw., vol. 83, no. 2, pp. 283–302, 2010. doi:
10.1016/j.jss.2009.08.012

[21] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of ATL
Transformations Using Transformation Models and Model Finders,” in
ICFEM, ser. LNCS, T. Aoki and K. Taguchi, Eds., vol. 7635. Springer,
2012. doi: 10.1007/978-3-642-34281-3_16 pp. 198–213.

[22] C. Lohmann, J. Greenyer, J. Jiang, and T. Systä, “Applying Triple
Graph Grammars For Pattern-Based Workflow Model Transformations,”
Journal of Object Technology, vol. 6, no. 9, pp. 253–273, 2007. doi:
10.5381/jot.2007.6.9.a13

[23] F. Drewes, B. Hoffmann, and M. Minas, “Contextual Hyperedge Re-
placement,” in AGTIVE, ser. LNCS, A. Schürr, D. Varró, and G. Varró,
Eds., vol. 7233. Springer, 2012. doi: 10.1007/978-3-642-34176-2_16
pp. 182–197.

[24] J. M. Küster, “Definition and validation of model transformations,”
Software and Systems Modeling, vol. 5, pp. 233–259, 2006. doi:
10.1007/s10270-006-0018-8

[25] D. Varró, “Model Transformation by Example,” in MoDELS, ser. LNCS,
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, Eds., vol. 4199.
Springer, 2006. doi: 10.1007/11880240_29 pp. 410–424.

[26] P. Langer, M. Wimmer, and G. Kappel, “Model-to-Model Transforma-
tions By Demonstration,” in ICMT, ser. LNCS, L. Tratt and M. Gogolla,
Eds., vol. 6142. Springer, 2010. doi: 10.1007/978-3-642-13688-7_11
pp. 153–167.

[27] Y. Sun, J. White, and J. Gray, “Model Transformation by Demonstra-
tion,” in MoDELS, ser. LNCS, A. Schürr and B. Selic, Eds., vol. 5795.
Springer, 2009. doi: 10.1007/978-3-642-04425-0_58 pp. 712–726.

[28] H. Liang and J. Dingel, “A Practical Evaluation of Using TXL for
Model Transformation,” in SLE, ser. LNCS, D. Gašević, R. Lämmel,
and E. Wyk, Eds., vol. 5452. Springer, 2009. doi: 10.1007/978-3-642-
00434-6_16 pp. 245–264.

[29] J. Irazábal and C. Pons, “Model Transformation Languages Relying
on Models as ADTs,” in SLE, ser. LNCS, M. Brand, D. Gašević, and
J. Gray, Eds., vol. 5969. Springer, 2010. doi: 10.1007/978-3-642-12107-
4_10 pp. 133–143.

[30] J. R. Cordy, “The TXL source transformation language,” Sci.

Comput. Program., vol. 61, no. 3, pp. 190–210, 2006. doi:
10.1016/j.scico.2006.04.002

[31] M. Wimmer and G. Kramler, “Bridging Grammarware and Modelware,”
in Satellite Events at the MoDELS, ser. LNCS, J.-M. Bruel, Ed., vol.
3844. Springer, 2006. doi: 10.1007/11663430_17 pp. 159–168.

[32] B. Hoffmann and M. Minas, “Generating Instance Graphs from Class
Diagrams with Adaptive Star Grammars,” ECEASST, vol. 39, 2011.

[33] B. Henderson-Sellers, “Bridging metamodels and ontologies in software
engineering,” Journal of Systems and Software, vol. 84, no. 2, pp. 301–
313, 2011. doi: 10.1016/j.jss.2010.10.025

[34] A. Stevenson and J. R. Cordy, “Grammatical Inference in Software
Engineering: An Overview of the State of the Art,” in SLE, ser. LNCS,
K. Czarnecki and G. Hedin, Eds., vol. 7745. Springer, 2012. doi:
10.1007/978-3-642-36089-3_12 pp. 204–223.

[35] C. Atkinson, R. Gerbig, and C. Tunjic, “Towards Multi-level Aware
Model Transformations,” in ICMT, ser. LNCS, Z. Hu and J. de Lara,
Eds., vol. 7307. Springer, 2012. doi: 10.1007/978-3-642-30476-7_14
pp. 208–223.

[36] B. Jones, J. Andreas, D. Bauer, K. M. Hermann, and K. Knight,
“Semantics-Based Machine Translation with Hyperedge Replacement
Grammars,” in COLING, M. Kay and C. Boitet, Eds. Indian Institute
of Technology Bombay, 2012, pp. 1359–1376.

1610 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

