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Abstract—In this paper a look-forward heuristic is proposed
in order to solve the problem of packing spheres into a three-
dimensional bin of fixed height and depth but variable length.
The objective is to pack all the spheres into the bin of minimum
length. This problem is also known under the name of three-
dimensional strip packing problem. The computational investi-
gation, conducted on a set of benchmark instances taken from
the literature, shows that the method is effective since it improves
most of the best known results.

I. INTRODUCTION

P
ACKING spheres can be used to model many solid

state systems. Indeed, the association of different-sized

spheres for example can approximate a given solid form.

Packing (non-)identical spheres is for example used in the

domain of stereotactic radio surgery radiation therapy (see for

example the works of Gavriliouk [3], Sutou and Dai [13], and

Wang [15]) where the target areas are delimited by spheres of

different sizes.

The problem of packing spheres into a container was studied

by several authors in the literature. The spheres can be of

identical or different sizes (radii). The problem of packing non-

identical spheres into a given 3D container was for example

considered by Li and Ji [8] where a dynamics-based collective

method for random sphere packing was proposed as well

as an application to the problem of packing spheres into a

cylinder container. The authors studied also the stability of

the method and the convergence of their algorithm. Sutou and

Dai [13] used a global optimization approach (including Linear

Programming relaxation and branch-and-bound) in order to

place unequal spheres inside a three-dimensional container.

More precisely, the objective is to maximize the volume of the

container (of fixed size) occupied by the placed spheres. This

is also called the Knapsack version of the problem, i.e., the

objective is not to place all the objects but those maximizing

the obtained profit. The profit used often corresponds to the

volume of the corresponding object placed. Stoyan, Yaskov,

and Scheithauer [12] developed a mathematical model in order

to place different-sized spheres inside a parallelepiped of fixed

length and width but with variable height. The objective is then

to minimize the height of the container. The proposed method

uses different tools including extreme points and neighborhood

search. Solutions are given for a set containing eight instances

(designed by the authors) where the number of spheres varies

from 20 to 60.

For the case of identical spheres, M’Hallah, Alkandari, and

Mladenović [9] for example studied the problem of packing

spheres of the same radius into the smallest containing sphere

by using Variable Neighborhood Search (VNS) and Non-

Linear Programming (NLP). VNS here consists to move some

spheres situated in the neighborhood of a given placed sphere,

then a NLP procedure is called in order to remove overlapping

between spheres. M’Hallah and Alkandari [10] applied the

same principle (VNS and NLP) as in [9] to solve the problem

of packing unit spheres into the smallest cube. Soontrapa and

Chen [11] considered the problem of packing identical spheres

into a cube by using a random search technique based on

the Monte Carlo method. The problem concerns actually the

development of a fuel catalyst layer.

Finally Birgin and Sobral [2] studied the problem of pack-

ing identical and non-identical spheres into different three-

dimensional containers. The objective is to minimize the

dimension of the container. The method proposed by the

authors is based on twice-differentiable models as well as non-

linear programming.

The problem to solve in this paper is the Three-Dimensional

Strip Packing Problem (3DSPP) which is known to be NP-

Hard [6]. Given a set S containing n spheres si,1 ≤ i ≤ n

where each sphere has radius ri and is placed with its center at

coordinates (xi,yi,zi) in the Euclidean space. Let also B be a

three-dimensional bin (rectangular cuboid or parallelepiped) of

fixed height and depth (H,D) respectively but of unconstrained

length L. The objective is then to place the n spheres inside

the parallelepiped of minimum length such that no sphere

overlaps another sphere and no sphere exceeds the container

boundaries. The method presented is based on the use of

several tools including the Maximum Hole Degree (MHD)

heuristic, a modified look-forward strategy, and an interval

search.

II. PROBLEM FORMULATION

The three-dimensional bin B has six faces F =
{left, top, right,bottom,back, front} and is placed such that its

bottom-left-back corner corresponds to the origin O(0,0,0) of

the axes in the Euclidean space as shown in Fig. 1. The length

L, the height H, and the depth D of the container are associated

with the
−→
Ox,
−→
Oy, and

−→
Oz axes respectively. Moreover, each
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Fig. 1. The three-dimensional bin container placed with its bottom-left-back
corner at the origin of the axes in the Euclidean space.

sphere si ∈ S has radius ri and its center’s coordinates are

(xi,yi,zi). The 3DSPP can then be formulated as follows:

min L (1)

(xi− x j)
2 +(yi− y j)

2 +(zi− z j)
2 ≥ (ri + r j)

2 for 1≤ i < j ≤ n (2)

xi ≥ ri ∀i ∈ [1, . . . ,n] (3)

xi ≤ L− ri ∀i ∈ [1, . . . ,n] (4)

yi ≥ ri ∀i ∈ [1, . . . ,n] (5)

yi ≤ H− ri ∀i ∈ [1, . . . ,n] (6)

zi ≥ ri ∀i ∈ [1, . . . ,n] (7)

zi ≤ D− ri ∀i ∈ [1, . . . ,n] (8)

Equation 1 indicates the objective (value) to minimize (the

length L of the bin). Equation 2 is the non-overlapping con-

straint that verifies that any pair of distinct spheres (si,s j)∈ S2

do not overlap each other. Equations 3–8 mean that each

sphere must not exceed the boundaries of the container.

The distance between the edges of two distinct spheres si

and s j, denoted by di, j, is defined as follows:

di, j =
√

(xi− x j)2 +(yi− y j)2 +(zi− z j)2− ri− r j for i 6= j (9)

III. THE 3DMHD HEURISTIC FOR PACKING SPHERES INTO

A THREE-DIMENSIONAL BIN

In this section, a greedy heuristic, denoted by 3DMHD

(Three-Dimensional Maximum Hole Degree), for packing

spheres into a three-dimensional bin is described. This is in

fact the adaptation of the Maximum Hole Degree (MHD)

heuristic [4], designed for packing circles, to the three-

dimensional case.

Note that a simple way to pack the spheres inside the

container consists for example to place the first sphere s1 at the

bottom-left-back corner, i.e., at coordinates (r1,r1,r1). After

that, at each step i,(1 < i≤ n) a new sphere is chosen and is

placed at the best position (that has the maximum hole degree).

More precisely, let:
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Fig. 2. The 3DMHD heuristic for packing spheres into a three-dimensional
bin.

• Sin define the set of spheres already placed inside the

container.

• Sout is the complementary set containing the spheres that

are not yet placed (outside). Note that Sin∪Sout = S.
• P denotes the set of possible positions (called corner

positions) for the spheres of set Sout.

Fig. 2 shows an example where two spheres s1 and s2 (the

two greatest ones) are already placed inside the container B,
i.e., Sin = {s1,s2}. The figure also indicates six possible corner

positions for packing another sphere s3. These positions are

denoted by {p1
3, ..., p6

3}. Each position pk
3 is computed by using

three objects, an object may be a sphere already placed or

one of the six faces of the parallelepiped. These three objects

denote set T (pk
3) associated to this position. For example,

position p1
3 is computed by using sphere s1, the left-edge and

the back-face of the container, then T (p1
3) = {s1, left,back}.

Similarly, T (p2
3) = {s1,s2, left}.

Generally, let position pk
i+1 ∈ P, associated to a sphere of

radius rk
i+1, be one of the possible corner positions for the next

sphere si+1 to place. Then, the 3DMHD value for position pk
i+1

is defined as follows:

λ (pk
i+1) = max

j ∈ Sin ∪ F \T (pk
i+1)

1−
dk

i+1, j

rk
i+1

(10)

Equation 10 means that the hole degree λ (pk
i+1) is computed

for each position in the set of positions P (associated with

set Sout) for the next sphere to place. This value uses the

distance dk
i+1, j between the edge of position pk

i+1 and the

nearest object j in the set Sin ∪ F \ T (pk
i+1) that contains the

spheres already placed, the six faces (F) of the container but
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Algorithm 1 The 3DMHD greedy heuristic

Require: Set Sin containing spheres already placed, Sout con-

taining the remaining spheres to place, set P indicating

the possible positions for spheres in Sout and the current

length L of the container.

Ensure: TRUE if all the spheres are packed into the container,

FALSE otherwise.

1: i← |Sin|;
2: while (P 6= /0) do

3: Compute/update the 3DMHD value for each corner

position p ∈ P;

4: Place the next sphere si+1 at position p∗ that has the

maximum hole degree as shown in equation 11.

5: Move sphere si+1 from Sout to Sin;

6: Remove from set P the positions that overlap the new

inserted sphere;

7: Compute new positions by using the new inserted

sphere and the other objects already placed;

8: i← i+1;

9: end while

10: if (i = n) then

11: Set L←max(xi + ri);
12: Update the best known length if L is smaller than this

value;

13: return TRUE;

14: else

15: return FALSE;

16: end if

excluding set T (pk
i+1). The distance is divided by the radius

rk
i+1 of the sphere corresponding to position pk

i+1. Note that if

a given position touches more than three objects, then λ = 1,
meaning that this positions has a high probability to be chosen

for placing the next sphere.

For example, Fig. 2 indicates the distance between position

p4
3 and four other objects: sphere s2, the front face, the top

face, and finally the right face of the container.

Then, the 3DMHD heuristic places the next sphere at

position p∗ ∈ P that corresponds to the maximum value of

λ (pk
i+1) as indicated in equation 11.

p∗ = argmax
pk

i+1

λ (pk
i+1) (11)

Algorithm 1 explains how the 3DMHD heuristic proceeds

in order to place a set of spheres inside the container B of

dimensions (L×H×D). Procedure 3DMHD receives a partial

solution {Sin,Sout,P} indicating the spheres already packed

into the container, the remaining spheres, and the set of corner

positions for spheres in Sout respectively. The current length

L of the container is also transmitted to the procedure. The

heuristic’s output is a boolean value indicating whether yes or

no all the spheres were successfully packed into the container.

So procedure 3DMHD is able to start with any partial solution

were the number of spheres already packed is greater than or

equal to zero.

At line 1 in algorithm 1 counter i indicating the number

of spheres already packed is set to the number of spheres

inside Sin. After that, in the while loop, the 3DMHD value is

computed for each position p∈P (line 3), this is done by using

the formula of equation 10. At line 4, the best position p∗ is

chosen in order to place the next sphere si+1. After that, the

new sphere moves from set Sout to set Sin (line 5) and the set

of positions P is updated by removing those overlapping the

new inserted sphere (line 6) and by computing new positions

by using the new inserted sphere (line 7). Counter i is then

incremented at line 8. The while loop ends when the set of

positions P becomes empty meaning that no additional sphere

can be packed. Then two cases can be distinguished: if i =
n then all the n spheres were successfully packed into the

container. In this case the procedure computes at line 11 the

exact value for L which is equal to max(xi + ri), i.e, using the

most right placed sphere si ∈ Sin. If the obtained value L is

smaller than the best known length then this value is updated

(line 12) and the procedure returns TRUE (line 13). If i < n

then a feasible packing was not obtained and the procedure

returns FALSE (line 15), this means that the current length L

of the container has to be changed.

Note that one can test several values for the length L of

the bin in order to try to compute a feasible solution with

the 3DMHD heuristic (not necessarily a binary search but

other more efficient strategies). This can be done for example

by decreasing the length from an upper bound to a lower

bound. Indeed, this strategy may escape from local optima

(see Section IV below).

A. A Multi-Level Look-Forward strategy for the 3DSPP

This section describes a look-forward algorithm designed

for the three-dimensional strip packing problem.

Look-forward (LF) strategies (see for example [7], [4], [1])

are often used in order to improve the results obtained by

different algorithms. Its objective is to evaluate the future

behavior of a decision (choice) made at a given step of the

problem solving process. For example, in a greedy algorithm,

the best decision among all the possible decisions is made

at step i in order to move to the next step i+ 1. The look-

ahead strategy tries several (or all) choices at step i and see

what will be obtained when executing the greedy algorithm

few steps ahead of until the end (this is often executed on a

copy of the partial solution). After that, the decision actually

made at step i is the one that had the best behavior or led to

the best outcome.

In packing problems, the look-forward strategy often uses

a parameter called density of a solution. The density of a

solution Sin, denoted by density(Sin) is equal to the sum

of the volumes of spheres in Sin divided by the volume of

the container as indicated in Equation 12. The look-forward

strategy selects then the decision that will obtain the highest

density.

density(Sin) =
4×π×∑

|Sin|
i=1 (r

3
i )

3×L×H×D
(12)
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Algorithm 2 LF-3DMHD

Require: Sets Sin, Sout,P, and the current length L of the container.

Ensure: TRUE if all the spheres are packed into the container, FALSE otherwise.

1: i← |Sin|;
2: found ← FALSE;

3: while (P 6= /0 and found=FALSE) do

4: Sort the positions of set P in decreasing order of their hole degree (λ ) value;

5: for each of the first ψ1×|P| positions p ∈ P do

6: Let S′in← Sin, S′out← Sout and P′← P;

7: Insert the next sphere s′i+1 into S′in at position p and update sets S′in,S
′
out, and P′;

8: density∗← 0;

9: Sort the positions of set P′ in decreasing order of their hole degree (λ ) value;

10: for each of the first ψ2×|P
′| positions p′ ∈ P′ do

11: Let S′′in← S′in, S′′out← S′out and P′′← P′;

12: Insert the next sphere s′′i+2 into S′′in at position p′ and update sets S′′in,S
′′
out, and P′′;

13: found ← 3DMHD(S′′in,S
′′
out,P

′′,L);
14: if (found=TRUE) then

15: Set L equal to the length computed by 3DMHD;

16: return TRUE;

17: else

18: if (density(S′′in)> density∗) then

19: density∗← density(S′′in);
20: end if

21: end if

22: end for

23: Assign to position p ∈ P the density density∗ obtained after calling 3DMHD;

24: end for

25: Let p∗ ∈ P be the position that has obtained the highest density density∗;

26: Place the next sphere si+1 at position p∗ and move sphere si+1 from Sout to Sin;

27: Remove from set P the positions that overlap the new inserted sphere;

28: Compute new positions by using the new inserted sphere;

29: i← i+1;

30: end while

31: if (i = n) then

32: Set L←max(xi + ri) where xi and ri are the x−coordinate and the radius of sphere si ∈ Sin;

33: Update the best known length if L is smaller than this value;

34: return TRUE;

35: else

36: return FALSE;

37: end if

The algorithm that implements the look-forward strategy,

denoted by LF-3DMHD, is described in algorithm 2. It

receives as input parameters a partial solution {Sin,Sout,P}
where |Sin| spheres are already packed, set Sout denotes the

spheres that remain to pack and P contains the corner positions

for spheres of set Sout. The algorithm receives also the current

length (L) of the container. Algorithm LF-3DMHD returns

TRUE if it succeeds to compute a feasible solution, FALSE

otherwise.

Instruction at line 1 of algorithm 2 sets the counter i

indicating the number of spheres already packed. At line 2, a

boolean value (found) is set to FALSE (this indicator is set to

TRUE if a feasible solution is obtained).

The difference between the look-forward strategy and the

3DMHD heuristic (described in algorithm 1) is that the look-

forward tries (evaluates) several positions at each step of the

packing process while the greedy heuristic 3DMHD selects,

at each step, only one position (the best one) in order to pack

the next sphere. Moreover, the look-forward used here contains

two levels, i.e., it places the two next spheres and continues

the placement of the remaining spheres by using the greedy

heuristic 3DMHD (algorithm 1). This is implemented by using

two nested for loops that begin at lines 5 and 10 respectively.

In addition, the first for loop considers only the best ψ1×|P|
positions with 0 < ψ1 ≤ 1 and P is the set of corner positions

in the first level. In the second for loop the algorithm considers

only the best ψ2×|P
′| with 0 < ψ2 ≤ 1 and P′ is the set of

corner positions in the second level. So if for example ψ1 =
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0.5, then only the half best positions in the list of positions

are considered in the first level of the look-forward strategy,

and if ψ1 = 1, then this means that all the positions will be

considered. Using a value of ψ1 and ψ2 lower than 1 will of

course decrease the computation time of the algorithm.

More precisely, the positions in set P are sorted in de-

creasing order of their hole degree value (λ ). This is done at

line 4. In the first for loop, the algorithm expends the current

solution {Sin,Sout,P} by choosing at each time a position

p ∈ P by creating a copy of the current solution denoted

by {S′in,S
′
out,P

′} (line 6) and inserts the next sphere s′i+1 at

that position (line 7). At line 8, a variable called density∗ is

set to 0. This parameter is used in order to store the best

density obtained in the second level of the look-forward. The

corner positions of set P′ are after that sorted in decreasing

order of their λ value (line 9). The second for loop starts at

line 10, after placing sphere s′i+1. Like in the first level, only a

proportion ψ2×|P
′| of the best corner positions are taken into

account in set P′. Then for each selected position p′ ∈ P′, the

procedure creates a copy, denoted by {S′′in,S
′′
out,P

′′}, for the

current partial solution {S′in,S
′
out,P

′} (line 11). After that, the

next sphere s′′i+2 is placed at position p′ (line 12). Then, the

partial solution is evaluated by calling the 3DMHD heuristic

(algorithm 1) at line 13 in order to try to pack the remaining

n − i − 2 spheres. If 3DMHD succeeded to pack all the

remaining spheres, then it returns TRUE (line 14), the current

length of the container is then set to the length computed by

3DMHD (line 15). The algorithm then exits at line 16 since

it has succeeded to pack all the spheres (it returns TRUE).

Otherwise (found=FALSE), this means that 3DMHD did not

succeed to place all the remaining spheres, then the density

of the obtained solution density(S′′in) is assigned to the best

known density density∗ if a better value is obtained (line 19).

The second for loop ends when all the selected positions

p′ ∈ P′ are evaluated and the best obtained density (density∗)
is assigned to position p ∈ P that is currently considered in

the first for loop.

At the output of the two for loops, the next sphere si+1

is placed at position p∗ (line 26) that has obtained the best

density after calling 3DMHD. The set P of positions is then

updated at line 27 by removing those that overlap the new

inserted sphere and new positions are computed at line 28.

The number of placed spheres (i) is incremented at line 29.

Instructions of the while loop (lines 3–30) are executed

until a feasible solution is obtained (found=TRUE) or the

set of positions P becomes empty. So if i = n (line 31),

this means that a feasible solution is reached, then the true

length of the container is computed at line 32 and the best

known length is updated if a better one is obtained (line 33).

The algorithm returns TRUE (line 34). If (i < n), then this

means that algorithm LF-3DMHD did not succeed to compute

a feasible solution and returns FALSE (line 36).

Finally, algorithm 2 can for example be called by an

interval-search procedure that modifies the value of the length

L of the container at each call as described in section III-B

below.

Algorithm 3 (LF2)

Require: Instance S containing n spheres, the height H, and

the depth D of the three-dimensional bin B;

Ensure: The best length L∗ obtained and the corresponding

density density∗;

1: Set Lmin ← max
(

4×π×∑
n
i=1(r

3
i )

3×H×D
,2× rmax

)

be the lower

bound of the interval search;

2: Set Lmax← 3×Lmin;

3: Set ∆L← 0.01;

4: L← Lmax;

5: L∗← L;

6: density∗← 0;

7: while (L≥ Lmin) do

8: Sin← /0;

9: Sout← S;

10: Create set P of positions corresponding to the placement

of each sphere si ∈ S of radius ri at position (ri,ri,ri)
in the bin of dimensions L×H×D;

11: found ← LF-3DMHD(Sin,Sout,P,L);
12: if (found = TRUE) then

13: Update L if a lower value was obtained by LF-

3DMHD;

14: L∗← L;

15: Update the best density density∗;

16: end if

17: L← L−∆L;

18: end while

B. Interval Search for Computing the Best Packing

This section describes the interval search, denoted by LF2

and described in algorithm 3, used in order to compute the best

feasible packing. The search principle consists to decrease the

value of the bin length L from an upper bound Lmax by a given

step ∆L until matching the lower bound Lmin. The search may

also stop if the computation time limit is reached.

Algorithm 3 (LF2) explains how the heuristic proceeds

in order to compute the best packing of the n spheres into

the three-dimensional bin of minimum length. Procedure LF2

receives as input parameters the instance S = {s1, ...,sn} con-

taining n spheres of radii r1, ...,rn respectively as well as the

height H and the depth D of the three-dimensional bin B. The

output of the algorithm is the best length found L∗ and the

corresponding density (density∗) that is equal to the sum of

the volumes of the spheres divided by the volume of the bin

(L∗×H×D).

The continuous lower bound for the length of the container

is used as the minimum value (Lmin) of the interval search

(line 1). Note that if this value is lower than the diameter of

the greatest sphere, then this diameter (2× rmax) is used as

the lower bound. The upper bound Lmax of the interval search

is set equal to 3×Lmin. The step ∆L with which the length is

decreased at each step is defined at line 3, this value is set to

0.01. The length of the container is then set equal to the upper

bound L← Lmax (line 4) and the best length L∗ is set equal to
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L at line 5. The next instruction serves to initialize the value

of the best known density (density∗) associated with the best

length L∗ (line 6).

After that, at each step in the while loop (lines 7–18) a

starting configuration is created where the set Sin of spheres

already packed is set equal to the empty set (line 8) and the

set of the remaining spheres to pack (Sout) is set equal to the

instance S. List P of positions for spheres in set Sout is then

computed (line 10) so that each position is placed at (ri,ri,ri).
This is a novel method because most of the greedy heuristics

start by placing one or several objects, here only the list of

positions is computed and no object is placed.

Algorithm LF-3DMHD is then called at line 11 in order to

try to compute a feasible solution (packing the n spheres into

the bin of dimensions L×H×D.) If procedure LF-3DMHD

succeeded to pack the n spheres (found=TRUE) then the value

of L is updated if a lower value was computed by LF-3DMHD

(line 13) and the best length L∗ is set equal to L (line 14). The

best density density∗, corresponding to L∗ is then updated

at line 15. The value of the length L is after that deceased

(line 17), even if a feasible solution was not obtained by

procedure LF-3DMHD. Indeed, this method is, to our opinion,

preferable to a basic dichotomous search where the dimensions

of the container are increased when a feasible solution was not

obtained. This is not always a good strategy because, in our

case for example, if a feasible solution is not obtained by using

a given value of the length L, it may be obtained by using a

lower value L−∆L. In fact, decreasing the value of the length

L is a good strategy to escape from local optima in order to

increase the solution quality.

Algorithm LF2 stops when the value of L becomes lower

than the lower bound Lmin or when the computation time limit

is reached.

IV. COMPUTATIONAL RESULTS

In order to evaluate the performance of the proposed

algorithm LF2 (algorithm 3), two sets of instances were

considered:

• Six instances, denoted by SYS, proposed by Stoyan,

Yaskov, and Scheithauer [12]. The number of spheres

varies from 25 to 60. All the spheres have different radii

in each instance (strongly heterogeneous instances).

• Twelve instances, denoted by KBG1,...,KBG12, proposed

by Kubach, Bortfeldt, Tilli, and Gehring [5]. Here, the

number of spheres is equal to 30 for the first six instances

and 50 spheres for the six last ones. Moreover, instances

KBG1–KBG3 and KBG7–KBG9 are strongly heteroge-

neous since all the radii are different. The other six

instances KBG4–KBG6 and KBG10–KBG12 are weakly

heterogeneous because there are only n/10 different radii

in each instance, each radius is duplicated 10 times.

The different procedures and algorithms are coded in C++

language and executed under Linux environment on a com-

puter with a 2.4 GHz processor. The results obtained are

compared to those given the B1.6 algorithm [5] that is mainly

based on a look-forward strategy and starting configurations,

the results taken from [5] were also obtained on a 2.4 GHz

processor. Algorithm B1.6 is in fact the adaptation of algo-

rithm B1.5 [4] for placing circles inside a rectangular container

to the three-dimensional case. Algorithm B16 however tries

more starting configurations than B1.5 does. In addition, B1.6

uses a parameter denoted by τ (0 < τ ≤ 1) that serves to

indicate the proportion of corner positions evaluated at each

step of the look-forward process. The authors in [5] tried two

values: τ = 0.8 and τ = 1. The first case means that only

80% of positions are evaluated by the look-forward while the

second case means that all positions are evaluated. So in fact,

algorithm B1.6 is executed two times (60 minutes for each

value of τ). It is to note that the proposed algorithm LF2 is

executed only once during 60 minutes on each instance.
In algorithm LF2, the number of positions evaluated by the

look-forward is set to 50% in the two levels (ψ1 = ψ2 = 0.5).
So at each time the corner positions are sorted in decreasing

order of their hole degree λ and only the first half ones are

evaluated. The objective is of course to save computation time.
Table I shows the results obtained by the different algo-

rithms. Column 1 indicates the instance’s name and column 2

its size. The two next columns indicate the height H and the

depth D of the container. Column 5 (SYS) indicates the results

(best length) obtained by the SYS method [12] on instances

SYS1–SYS6. Columns 6 and 7 contain the best results (the

best length L and the corresponding density respectively)

obtained by algorithm B1.6 on the 18 instances (SYS and

KBG) when parameter τ is set equal to 0.8 (80% of positions

are evaluated by the look-forward). The next two columns

display the same results as the two previous columns but when

parameter τ is set equal to 1 (all the positions are evaluated in

the look-forward). Columns 10–14 contain the results obtained

by the proposed algorithm LF2 on all the considered instances.

Column 10 (L) gives the best length obtained and column 11

the corresponding density. Column 12 (t∗) indicates the time

needed by algorithm LF2 for computing the best solution. The

two last columns of table I indicate the percentage of improve-

ment obtained by the proposed algorithm LF2 on algorithm

B1.6. Column “Imp. 0.8" shows the improvement obtained

when considering B1.6 with τ = 0.8 and the last column “Imp.

1" is the percentage of improvement when B1.6 with τ = 1

is considered. Note that the percentage of improvement is

computed as follows: Imp. = Density(LF2)−Density(B1.6)
Density(LF2) . Finally,

note that some solutions for KBG instances are optimal, this

is the case for instances KBG2, KBG4, and KBG10. This is

why there is an “*" before each value in the three columns

that contain the corresponding density in table I.
The results of table I indicate that the proposed algorithm

LF2 improves all the results obtained by the SYS method on

the first six instances (the results of the SYS method are not

known for instances KBG). Algorithm LF2 improves B1.6

with τ = 0.8 in 11 cases out of 18 and the two algorithms

reach the optimal value of the container length for instances

KBG2, KBG4, and KBG10 since the computed length is equal

to the greatest diameter in the instance. Algorithm B1.6 with

τ = 0.8 remain better than LF2 on instances KBTG5, KBTG6,
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TABLE I
RESULTS OBTAINED BY THE PROPOSED METHOD LF2 ON INSTANCES SYS AND KBTG

SYS B1.6 τ = 0.8 (3600 s) B1.6 τ = 1 (3600 s) Algorithm LF2 (3600 s)

Instance n H D L L Density L Density L Density t∗ Imp. 0.8 Imp. 1

SYS1 25 5.5 6.9 9.8668 9.5397 53.160 9.2874 54.604 9.2234 54.983 1911 3.32 0.69

SYS2 35 6.5 7.9 9.6221 9.2608 55.077 9.1280 55.878 9.1138 55.965 2680 1.59 0.16

SYS3 40 5.5 6.9 9.4729 9.0540 53.554 8.9850 53.965 8.9316 54.288 2900 1.35 0.59

SYS4 45 8.5 9.9 11.0862 10.8932 53.771 10.8760 53.856 10.7653 54.410 3600 1.17 1.02

SYS5 50 8.5 9.9 11.6453 11.2170 54.975 11.3494 54.334 11.1948 55.084 2030 0.20 1.36

SYS6 60 8.5 9.9 12.8416 12.5339 54.346 12.3745 55.046 12.2519 55.597 3330 2.25 0.99

KBG1 30 10 10 – 53.772 – 54.096 11.2063 54.494 2400 1.32 0.73

KBG2 30 10 10 – * 30.071 – * 30.071 1.9900 * 30.071 2 0.00 0.00

KBG3 30 10 10 – 50.614 – 51.387 18.9231 51.693 3300 2.09 0.59

KBG4 30 10 10 – * 37.765 – * 37.765 1.9960 * 37.765 1 0.00 0.00

KBG5 30 10 10 – 48.278 – 48.278 1.9279 48.181 1930 -0.20 -0.20

KBG6 30 10 10 – 48.966 – 47.792 18.8807 48.847 3400 -0.24 2.16

KBG7 50 10 10 – 54.623 – 55.372 13.5075 55.824 2030 2.15 0.81

KBG8 50 10 10 – 44.924 – 45.060 2.6027 46.639 326 3.68 3.39

KBG9 50 10 10 – 52.210 – 52.732 29.7023 51.783 3420 -0.82 -1.83

KBG10 50 10 10 – * 51.866 – * 51.866 1.8100 * 51.866 9 0.00 0.00

KBG11 50 10 10 – 51.629 – 52.708 5.2640 52.658 420 1.95 -0.09

KBG12 50 10 10 – 52.120 – 51.757 22.2060 52.063 1000 -0.11 0.59

Average 50.096 50.365 50.678 1.09 0.61

 

Density = 0.1653 ln(time) + 53.678 

R² = 0.9058 
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Fig. 3. Estimation of the evolution of the best density obtained with the time
by algorithm LF2 on instance SYS4 (n = 45) spheres. The regression is based
on a logarithmic function, R2 = 90.58%.

KBTG9, and KBG12). Finally, the last row of the table

(column “Imp. 0.8") indicates that algorithm LF2 improves

B1.6 with 1.09% in average.

Table I indicates also that algorithm LF2 improves B1.6

with τ = 1 in 12 cases. The two algorithm reach the optimal

solution on instances KBG2, KBG4, and KBG10. And algo-

rithm B1.6 with τ = 1 is better than LF2 on instances KBTG5,

KBTG9, and KBG11) but the percentage of improvement has

decreased to 0.61%.

Fig. 3 indicates the evolution of the density of the solution

according to the computation time on instance SYS4 (n=45

spheres). The evolution follows a logarithmic function with a

Fig. 4. Solution obtained by algorithm LF2 on instance SYS4 (n = 45, L =
10.7653 (Density = 54.410%)).

coefficient of determination R2 > 90%. This means that the

density of the obtained solution begins by increasing quickly

since the length is near to the upper bound Lmax and it is

then easier to compute a feasible solution. The improvement

of the density slows down when the length approaches the

lower bound Lmin.

Fig. 4 gives the solution obtained by the proposed algorithm

LF2 on instance SYS4 that has 35 spheres. The best length

obtained is equal to 10.7653 (the best value obtained by B1.6

was 10.8760), this corresponds to an improvement of 1.02%.
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Fig. 5. Solution obtained by algorithm LF2 on instance KBG1 (n =
30, Density = 54.494%).

Fig. 6. Optimal solution obtained by algorithm LF2 on instance KBG10
(n = 50, Density = 51.866%).

Fig. 5 displays the solution obtained by algorithm LF2 on

instance KBG1 that contains 30 spheres. The density obtained

is equal to 54.494% (the best value obtained by B1.6 was

54.096%), so the improvement obtained is equal to 0.73%.

Finally, Fig. 6 displays the optimal solution obtained by

algorithm LF2 on instance KBG10 that contains 50 spheres

but where the number of different radii is only 5. The optimal

density is in this case equal to 51.866% and the corresponding

optimal length is equal to 2× rmax, i.e., L = 1.810, where

rmax = 0.905 is the greatest radius in the instance.

V. CONCLUSION

In this paper, a look-forward heuristic was proposed in

order to solve the problem of packing spheres into a three-

dimensional bin. The first novelty is that method starts with

an empty configuration instead of placing one or several pieces

inside the container. The second difference is that the interval

search proceeds by decreasing the value of the length of the

bin instead of using a dichotomous search, the objective is to
escape from local optima. Finally the look-forward procedure

uses a double search (two levels) instead of one level.

The obtained results on the tested instances showed that the

proposed method is effective since it has succeeded to improve

or reach almost all the best known results published in the

literature. As a future work, it will be interesting to design

a new heuristic for packing weakly heterogeneous spheres

because it is well-known that the MHD heuristic was designed

for packing strongly heterogeneous circles and spheres.
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