
Experimental evaluation of selected tree structures
for exact and approximate k-nearest neighbor

classification

Aleksander Cisłak
Technical University of Munich,

Department of Informatics,

Boltzmannstr. 3, D-85748 Garching, Germany

Email: a.cislak@tum.de

Szymon Grabowski
Lodz University of Technology,

Institute of Applied Computer Science,

Al. Politechniki 11, 90–924 Łódź, Poland

Email: sgrabow@kis.p.lodz.pl

Abstract—Spatial data structures, for vector or metric spaces,
are a well-known means to speed-up proximity queries. One
of the common uses of the found neighbors of the query
object is in classification methods, e.g., the famous k-nearest
neighbor algorithm. Still, most experimental works focus on
providing attractive tradeoffs between neighbor search times and
the neighborhood quality, but they ignore the impact of such
tradeoffs on the classification accuracy.

In this paper, we explore a few simple approximate and
probabilistic variants of two popular spatial data structures, the
k-d tree and the ball tree, with k-NN results on real data sets.
The main difference between these two structures is the location
of input data — in all nodes (k-d tree), or in the leaves (ball
tree) — and for this reason they act as good representatives of
other spatial structures. We show that in several cases significant
speedups compared to the use of such structures in the exact k-NN
classification are possible, with a moderate penalty in accuracy.
We conclude that the usage of the k-d tree is a more promising
approach.

I. INTRODUCTION

F
INDING objects similar to a given one in a large database

is a classic research topic, with applications in pattern

recognition, multimedia processing, genomic analyses, and

other fields. There exist many particular variants of the prob-

lem, but one of the most popular is: given object x, we wish

to find its k nearest neighbors in a given database D of size n,

according to the specified similarity measure. The parameter

k ≥ 1 is usually selected at query time. A naïve solution to

this problem is to calculate the distances between the query x
and all objects in the database and choose k nearest ones, but

this approach requires computation of n distances. If database

preprocessing is allowed, we can usually reduce the query

time. One of major applications of the proximity search is

classification, when the query sample is assigned a class label

according to the known class labels of its neighbors, and the

rest of this paper is focused on this application.

We assume a vector space, in which objects are identified

with d real-valued vectors (tuples). The distance function in

this space is usually a metric (i.e. it satisfies non-negativity,

identity of indiscernibles, symmetry, and the triangle inequal-

ity), and the most common particular metrics used are the

Euclidean or Manhattan (city-block) one. In vector spaces,

the popular search structures include the k-d tree, R-tree, quad-

tree, X-tree, and their numerous variants. Their common trait is

to cluster objects in space, to allow pruning the dataset during

most queries. For example, the popular k-d trees partition the

space along different coordinates while R-trees group objects

in hyperrectangles.

As the (in)famous curse of dimensionality subdues the per-

formance of practically any (however sophisticated) nearest-

neighbor finding data structure in high dimensions, it is

interesting to investigate how approximate or probabilistic

variations of the true nearest neighborhood of the given

query affect the classification accuracy. This question has met

significant interest from both theoreticians and practitioners,

see for instance Arya et al. [1], Indyk and Motwani [2], or

Jones et al. [3].

In this work we introduce simple modifications to well-

known spatial data structures: the k-d tree and the ball tree, in

order to explore how approximate or probabilistic speedup idea

(e.g., via more aggressive pruning than in the original method)

affect the time-accuracy tradeoff. While our conclusions are

hardly definite, we believe that experimentations with popular

(and relatively easy to implement) data structures have their

own, practice-oriented, value.

II. K-D TREE

One of the oldest spatial data structures, the k-d tree, was

introduced by Jon Louis Bentley in 1975 [4], and the name

refers to k dimensions it operates on. To avoid confusion with

the number of neighbors in the k-NN rule, from now on we

will use the symbol d for the number of dimensions.

The k-d tree is a binary tree, where every instance of the

indexed data corresponds to one node. The left child together

with its descendants contain points whose values of the feature

(coordinate) f are smaller than the f value of the splitting

hyperplane H — analogously, the right child together with its

descendants contain points with higher f values. As regards

the selection of H , the most popular approach is to choose

the point whose f is the median, and divide the points into

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 93–100

DOI: 10.15439/2014F194

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 93

two parts of equal size (assuming that the number of points

to divide is even).

A. Construction of the tree

During the construction, the current feature space is recur-

sively divided into two subspaces, with half of the points lying

in each subspace. This division is based on the current dimen-

sion, and the algorithm switches to the next dimension with

each step as the recursion progresses. After all dimensions

have been processed, it goes back to the first dimension in

a circular manner. The recursion stops when there is only a

single point left, and this point is stored in a leaf. The result

is a binary tree, where inner nodes represent points situated

on the splitting hyperplanes, and leaves represent the rest of

the given data.

B. K-nearest neighbor search

When the k-NN search is performed, the tree is traversed

from the root to the leaf. The algorithm goes left or right

depending on feature values, and this can be represented by

following relations, where Q is the queried point, N is the

point corresponding to the current node, and d is this node’s

split dimension: Qd ≤ Nd → left, Qd > Nd → right.
Dimensions are switched in the same way as during the

construction, so that the dimension which is checked at each

level is always the one on which the space was split in halves.

After a leaf has been found, the search goes back towards

the root, following the same path which was traversed down-

wards. From this moment, the algorithm maintains the list of

k points with smallest distances to the queried point Q, and

tries to update it every time a new node is visited.

At each step upwards, there is a possibility of inspecting

a subtree whose root is the sibling of the current node Ncur.

Such a subtree can be pruned if and only if k points have

already been found, and all distances from Q to these k
points are smaller than or equal to the distance between Q
and the point Pspl. Pspl represents the point located on the

splitting hyperplane, and it is associated with the node which

is the parent of Ncur. This is demonstrated by the relation in

Figure 1, where P represents the set of points found so far,

and D refers to the distance.

prune ↔ |P | = k ∧ ∀
p∈P

D(p,Q) ≤ D(Q,Pspl)

Fig. 1. Pruning condition in an exact k-d tree.

If the subtree S could not be pruned and it has been checked,

the list of best points from S must be merged with the current

list of best points. This is rather straightforward, because we

simply select k points with lower distances from both lists, or

if the size of the combined list would be smaller than k, all

points are retained.

The whole k-NN search procedure can be summarized as

follows:

1) Find the leaf.

2) Go to the parent and try to update the list of k best

points.

3) Recursively check the subtree whose root is the sibling

of a current node, unless the relation in Figure 1 is

satisfied.

4) If checked the subtree, merge the lists of best points.

5) Repeat 2. until found the root of the whole tree.

C. Complexity

As regards search time complexity, the average case for the

nearest neighbor lookup (1-NN), under favorable assumptions

(discussed in the next sentences), is equal to O(log n) [4],

and the worst case, where all points are checked, is clearly

equal to O(n). Performance degrades to linear time when,

roughly speaking, the number of dimensions is large, and for

this reason the number of visited nodes also tends to be large.

In general, for optimal performance the relation 2d ≪ n
should hold [5]. When it comes to k-NN, the average case

expands into O(log n · log k), and the worst case expands into

O(n log k), assuming a heap is used to maintain the list of

best points. In practice, a k-d tree might turn out to be slower

than a naïve method, due to the search procedure overhead.

The construction takes O(n log n) time, assuming the me-

dian required to split points in halves is found with a linear

worst-case time algorithm [6, Ch. 9]. Since the number of

nodes is proportional to the number of points, the space

complexity is equal to O(n).

III. BALL TREE

The aim of the ball tree is akin to the one of the k-d tree, as

it attempts to reduce time spent on a nearest-neighbor query

by partitioning the feature space. Just as the name suggests,

this is achieved by constructing closed balls, that is geometric

objects containing a sphere S and the space inside S.

The ball tree is a binary tree, where each internal node NI

is associated with one ball, and this ball contains all balls of

the descendants of NI . Hence, the biggest ball is stored as

a root and it contains all other balls in the tree. The training

data are stored in the leaves, with one leaf corresponding to

one training instance, and internal nodes act only as guidance

during the search. Subspaces resulting from the partitioning

are clearly overlapping, unlike in the case of other structures,

such as the aforementioned k-d tree.

A. Construction of the tree

We opt for the bottom-up construction algorithm, which is

the most efficient one with respect to the search time of k-NN

queries performed on the resulting tree [7]. This efficiency

results from the fact that we try to reduce the volume (the

radius) of the balls.

At the beginning of the construction, we create a set of

balls from the training data, with one ball corresponding to

one instance. At each step, we search for a pair of balls,

whose resulting ball RB (one that contains the selected pair

of balls) is the smallest. Subsequently, two selected balls are

set as children of RB , and RB is inserted back into the set of

94 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

available balls. Thus, at each step we reduce the size of the

set by one. When we are left with only one ball, this ball is

associated with the root node and the algorithm terminates.

For more details on other construction algorithms, we refer

the reader to the original article by Omohundro [7].

Fig. 2. Space partitioning with balls and the resulting binary tree using the
bottom-up construction algorithm; reproduced from Omohundro [7].

B. K-nearest neighbor search

When the k-NN search is performed, the tree is traversed in

the depth-first manner. At each step, there is a possibility of

recursively inspecting two children of the current node, and

each child can be pruned together with all of its descendants,

if and only if the following condition is satisfied. For safe

pruning, it is required that we have already found k points,

and the ball that is centered at the query point and that contains

all k points found so far does not intersect the ball of the child

in question. This is demonstrated by the relation in Figure 3,

where P represents the set of points found so far, and BQ

and BC refer to the ball centered on the query and the ball

centered on the child, respectively.

prune ↔ |P | = k ∧ intersects(BQ, BC) == false

Fig. 3. Pruning condition in an exact ball tree.

Whole k-NN search procedure can be summarized as fol-

lows:

1) If we are at the leaf, try to update the list of k nearest

neighbors and terminate.

2) If k nearest neighbors have already been found, compute

the ball that is centered at the query point and contains

these k points.

3) Recursively inspect the left child, unless the relation in

Figure 3 is satisfied.

4) If k nearest neighbors have already been found, recom-

pute the ball from step 2).

5) Recursively inspect the right child, unless the relation in

Figure 3 is satisfied.

C. Complexity

We construct a binary tree, whose bottom level contains n
nodes, because all training data are stored as leaves. For this

reason, the space complexity of the ball tree is equal to O(n).

As regards the search time complexity, the worst case where

all nodes are checked is clearly proportional to the size of the

tree, that is O(n). Because of the time overhead resulting from

tree traversal, the ball tree can turn out to be slower than

a brute-force algorithm. Assuming optimal space partition,

where branches can be pruned, for a k-NN search it is possible

to achieve the best case bound of O(log n+ k).
Since our focus is solely on finding nearest neighbors, we

ignore the preprocessing time complexity, however, it is worth

noticing that it can be fairly expensive. For instance, a naïve

bottom-up construction algorithm requires O(n3) time.

IV. APPROXIMATE ALGORITHMS

The objective of approximate search algorithms based on

tree data structures introduced in previous sections is to

decrease the time spent on classification, at the cost of an

increase in the error rate. This is accomplished by limiting the

visited area of a tree.

We utilize the notion of bounds, where after the specified

bound has been crossed, current list of nearest neighbors is

returned. This means that the bound should be chosen with

care, since the list can actually contain less than k points when

the algorithm terminates. For probabilistic pruning (Subsec-

tion IV-D), we ensure that branches are pruned only after k
points have been found.

It is to be noted that time and space overheads presented

in this section are relevant only to described modifications,

and for a complete analysis, complexities of exact algorithms

should be added.

A. CPU time bound

CPU time refers to the time spent by the processing unit

on executing actual instructions, which means that it is not

affected by context switches or time changes. The bound is

checked for the first time after the leaf has been found, which

is required for the ball tree, and allows us to concentrate the

search in the bottom part of the k-d tree. Bounds checking

introduces a small time overhead O(v), where v refers to the

number of nodes visited by the algorithm after the first leaf

has been reached. The space overhead is constant.

B. Depth bound

The depth bound specifies a maximum depth of the tree

that can be reached by the search algorithm. This is relevant

only for the k-d tree, since in the ball tree all training data are

situated in the leaf nodes. The depth is checked every time a

new node is visited, and for this reason the time overhead is

equal to O(vt), where vt refers to the total number of nodes

visited by the algorithm. The space overhead is equal to O(n),
because every node stores its depth.

C. Node bound

The idea of the node bound is simply to set a hard threshold

t on the number of nodes, which can be checked by the

algorithm. Analogically to the CPU time bound, this bound is

checked for the first time after the leaf has been found, which

ALEKSANDER CISŁAK, SZYMON GRABOWSKI: EXPERIMENTAL EVALUATION 95

is required for the ball tree, and allows us to concentrate the

search in the bottom part of the k-d tree. For this reason, the

total number of nodes which have been traversed might turn

out to be greater than t. Again, bounds checking introduces

a small time overhead O(v), where v refers to the number

of nodes visited by the algorithm after the first leaf has been

reached.

D. Probabilistic pruning

Similarly to approximate variants introduced in previous

subsections, the aim of this algorithm is to limit the space

that is inspected during the search procedure. This is achieved

by introducing the pruning factor σ, which describes the

probability that the subtree is pruned, even if the pruning

condition presented in Figure 1 for the k-d tree or in Figure 3

for the ball tree is not satisfied. For instance, if σ = 25%, every

time a subtree should be inspected, there is a 1/4 chance that

it will be ignored instead. It should hold that σ > 0 ∧ σ ≤ 1.

It is worth noticing that in the case of σ = 1, the algorithm’s

behavior is in fact deterministic, as all possible branches are

pruned.

Since pseudorandom number generation can be done in

constant time, the time overhead is proportional to the number

of pruning decisions which have to be taken. These decisions

are made only when the subtree cannot be safely pruned,

and the complexity is equal to O(1) in the best case, since

then all subtrees can be safely pruned. As regards the worst

case, a decision has to be made every time a new subtree is

encountered, and for this reason the time overhead expands

into O(n). The space overhead is constant.

E. Best bin first (BBF)

The best bin first (BBF) algorithm [8] is relevant only to the

k-d tree and it aims to increase the accuracy of an approximate

search. Since an inexact algorithm does not visit all nodes

which would be required to provide an exact answer, the order

in which the nodes are visited is crucial to the performance in

terms of an error rate. After the leaf has been found, instead

of following the path to the root from the bottom, going up

one level per step, the algorithm selects an optimal node lying

on this path. Subsequently, it continues to choose an optimal

node from the remaining ones, until the path is exhausted, or

some limit (such as the node bound) is exceeded. We choose a

straightforward method to determine node’s optimality, which

selects the node whose splitting hyperplane is closest to the

queried point [8].

The time overhead depends on the kind of priority queue

that is used for selecting the smallest distance. We have O(VT)
inserts and O(t) delete-min operations, where VT represents

the total number of nodes traversed by the search procedure,

and t is the number of nodes visited after the first leaf has

been found. For instance, if the Fibonacci heap [9] were used,

the complexity would be equal to O(VT + t log VT) amortized

time. As regards the space overhead, it is possible to achieve a

bound of O(VT). These complexities refer only to maintaining

a priority queue and not to bounds checking.

V. EXPERIMENTAL RESULTS

The error rates presented in this section were calculated us-

ing the leave-one-out method for the k-d tree, and 5-fold cross

validation for the ball tree, the reason for the second method

being computational demands. We used the Manhattan metric

for the similarity measure. Classification times presented in

the diagrams refer to CPU time in milliseconds spent on

classifying one sample, and the preprocessing time is not taken

into account. CPU time values are arithmetic mean values

obtained in the course of three runs, in order to minimize an

influence of external factors such as cache utilization. Error

rates presented for probabilistic variants are arithmetic mean

values obtained in the course of five runs. The value k = 5
was selected arbitrarily. The machine used for experiments

was equipped with Intel e2160 processor running at 2.9 GHz

and 4 GB DDR2 memory. The code was compiled using the

GCC suite and run on Ubuntu 12.04 64-bit operating system.

Only selected results are presented due to space constraints,

nevertheless, results reported for different data sets (for a

short description of the sets, see Appendix A) were consistent

to a satisfactory degree. Unexpected or particularly unusual

behavior was rare, and it was most probably caused by a

unique structure of specific data set in question.

Selected diagrams were published in the Bachelor’s Thesis

of the first author [10].

A. CPU time bound

CPU time bound values are significantly smaller than the

times spent on classification shown in other diagrams. This

results from the fact that the execution time spent on clas-

sifying one sample is calculated as the total time used by

all procedures in the k-NN algorithm, such as allocating the

memory or comparing class counts. On the other hand, the

CPU time bound refers only to the internal approximate search

procedure.

Just as expected, we observed a growth in the error rate as

the time bound decreased. Above certain higher bound value

there was no change with respect to exact algorithms, and as

the bound approached zero, there was a dramatic increase in

the error rate. For the k-d tree with Ferrites data set, there

was only a marginal increase in the error rate until the bound

value of about 0.35 ms, as demonstrated in Figure 4. Other

data sets and the ball tree behaved similarly, although relative

increases in the error rate were more significant.

B. Depth bound

The depth bound introduced a rather moderate increase in

the error rate, although associated time decreases were lower

than in the case of other bounds. For instance, for Banknotes

data set, there was almost no increase in the error rate up

to the bound value of 7, with a roughly 3-fold decrease in

classification time (see Figure 5). At the other extreme was

the Isolet data set, for which both time decrease and error

rate increase were more substantial than for other sets (see

Figure 6).

96 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

0.00.20.40.60.81.0
CPU time bound (ms)

8

10

12

14

16

18

20

22

Er
ro

r r
at

e
(%

)

Ferrites data set (k=5)

k-d tree w. time bound
exact

Fig. 4. Error rate vs CPU time bound for the k-d tree with Ferrites data set.

345678910
0

10

20

30

40

50

Er
ro

r r
at

e
(%

)

Banknotes data set (k=5)

345678910
Depth bound

0.0

0.5

1.0

1.5

Cl
as

si
fic

at
io

n
tim

e
(m

s) k-d tree w. depth bound
exact k-d tree

Fig. 5. Error rate and classification time vs depth bound for the k-d tree
with Banknotes data set.

C. Node bound

Similarly to other algorithms with bounds, as the node

bound value decreased, expected increase in the error rate and

a decrease in classification time were observed. Lower limit

for the node bound t was set so that the relation t ≥ k was

satisfied, and above higher limits there was no change in the

error rate with respect to an exact result.

For the k-d tree, all data sets demonstrated roughly similar

behavior, showing that the node bound is indeed a promising

approach. For instance, in the case of Ferrites data set, for t =
9 the time was reduced approximately 5-fold, with the absolute

increase in the error rate of around 1.2% (see Figure 7).

The best bin first algorithm achieved mostly a slight im-

provement over the regular search procedure (e.g., for Ban-

knotes data set demonstrated in Figure 8), and it turned out to

be most effective for the Isolet data set with 617 dimensions

345678910
20
30
40
50
60
70
80
90

Er
ro

r r
at

e
(%

)

Isolet data set (k=5)

345678910
Depth bound

0
2
4
6
8

10
12
14

Cl
as

si
fic

at
io

n
tim

e
(m

s) k-d tree w. depth bound
exact k-d tree

Fig. 6. Error rate and classification time vs depth bound for the k-d tree
with Isolet data set.

(see Figure 9). Nonetheless, very optimistic results reported

by Lowe [11] were not reproduced for data sets used in this

article. The difference between classification time for BBF and

the regular node bound approach was negligible, and thus the

former is omitted.

As regards the ball tree, the error rate behaved rather

strangely. For Banknotes and Iris data sets (presented in

Figure 10 and Figure 11, respectively), we can see unexpected

spikes in the error rate, although there remained a steady

decrease in classification time.

567891011128
10
12
14
16
18
20
22

Er
ro

r r
at

e
(%

)

Ferrites data set (k=5)

exact k-d tree
k-d tree w. node bound
k-d tree w. node bound and BBF

56789101112
Node bound

2

4

6

8

10

Cl
as

si
fic

at
io

n
tim

e
(m

s)

Fig. 7. Error rate and classification time vs node bound for the k-d tree with
Ferrites data set, with and without BBF.

D. Probabilistic pruning

Since the pruning probability (σ) is equal for all subtrees, it

might be the case that the pruned subtree contains one node,

just as well as it might be the half of the entire tree. For this

ALEKSANDER CISŁAK, SZYMON GRABOWSKI: EXPERIMENTAL EVALUATION 97

5678910

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Er
ro

r r
at

e
(%

)

Banknotes data set (k=5)

exact k-d tree
k-d tree w. node bound
k-d tree w. node bound and BBF

5678910
Node bound

0.6

0.8

1.0

1.2

1.4

1.6

Cl
as

si
fic

at
io

n
tim

e
(m

s)

Fig. 8. Error rate and classification time vs node bound for the k-d tree with
Banknotes data set, with and without BBF.

5678910
25
30
35
40
45
50
55
60

Er
ro

r r
at

e
(%

)

Isolet data set (k=5)

exact k-d tree
k-d tree w. node bound
k-d tree w. node bound and BBF

5678910
Node bound

4

6

8

10

12

Cl
as

si
fic

at
io

n
tim

e
(m

s)

Fig. 9. Error rate and classification time vs node bound for the k-d tree with
Isolet data set, with and without BBF.

reason, effectiveness of this approach is clearly subject to a

substantial amount of chance. Nevertheless, similar tendencies

were observed for all data sets.

For the k-d tree, the ratio of error rate increase to classi-

fication time decrease tended to be less favorable than in the

case of bounds presented in previous subsections — compare

Figure 5 with Figure 13 to see how depth bound performed

better for Banknotes data set. Still, for the Isolet data set

(Figure 12), there was only a marginal increase in the error

rate for σ ≤ 0.4, and for these values the time was reduced

by up to 35%.

Error rate increases for the ball tree were sharp (e.g., see

Figure 14), and we observed once again unexpected results

when the error rate for Banknotes data set actually decreased

as more branches were pruned (see Figure 15). This can be

56789100
5

10
15
20
25
30
35
40
45

Er
ro

r r
at

e
(%

)

Banknotes data set (k=5)

5678910
Node bound

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Cl
as

si
fic

at
io

n
tim

e
(m

s) ball tree w. node bound
exact ball tree

Fig. 10. Error rate and classification time vs node bound for the ball tree
with Banknotes data set.

02468101210

20

30

40

50

60

Er
ro

r r
at

e
(%

)

Iris data set (k=1)

024681012
Node bound

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Cl
as

si
fic

at
io

n
tim

e
(m

s) ball tree w. node bound
exact ball tree

Fig. 11. Error rate and classification time vs node bound for the ball tree
with Iris data set.

most probably ascribed to simple luck resulting from the par-

ticular structure of this data set. Influence of the probabilistic

nature of this algorithm was minimized by the fact that it was

run five times.

VI. CONCLUSION

We have investigated two spatial data structures with identi-

cal applications, but different mechanics. The main difference

between the k-d tree and the ball tree is the location of

nodes associated with training data. The k-d tree does not

consist of any redundant nodes, and each node corresponds

to one instance from the training data. On the other hand,

all training data in the ball tree are stored in the leaves, and

internal nodes are utilized only in order to speed up the search

procedure.

98 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

0.0 0.2 0.4 0.6 0.8 1.020

30

40

50

60

70

80

Er
ro

r r
at

e
(%

)

Isolet data set (k=5)

k-d tree w. pruning
exact k-d tree

0.0 0.2 0.4 0.6 0.8 1.0
Pruning factor σ

4

6

8

10

12

Cl
as

si
fic

at
io

n
tim

e
(m

s)

Fig. 12. Error rate and classification time vs pruning factor σ for the k-d
tree with Isolet data set.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.5

1.0

1.5

2.0

2.5

Er
ro

r r
at

e
(%

)

Banknotes data set (k=5)

k-d tree w. pruning
exact k-d tree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning factor σ

0.6

0.8

1.0

1.2

1.4

1.6

Cl
as

si
fic

at
io

n
tim

e
(m

s)

Fig. 13. Error rate and classification time vs pruning factor σ for the k-d
tree with Banknotes data set.

Approximate algorithms based on both trees turned out to

perform rather well. The ratio of the increase in the error

rate to the decrease in classification time was favorable,

and the best results were reported for the k-d tree with

node bound and best bin first (BBF) priority search. In

the case of the ball tree, increases in the error rate were

more rapid and unpredictable, however, this can be partially

explained by the use of 5-fold cross validation instead of

the leave-one-out method. Overall, the k-d tree was faster

than the ball tree for both exact and approximate variants,

which is consistent with exact performance measures pre-

sented by Munaga and Jarugumalli [12], and Kibriya and

Frank [13].

Results depended chiefly on the data set that was used. No

particular relation between the structure or size of the input

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010

15

20

25

30

35

40

Er
ro

r r
at

e
(%

)

Iris data set (k=5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning factor σ

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Cl
as

si
fic

at
io

n
tim

e
(m

s) ball tree w. pruning
exact ball tree

Fig. 14. Error rate and classification time vs pruning factor σ for the ball
tree with Iris data set.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

5

10

15

20

25

Er
ro

r r
at

e
(%

)

Banknotes data set (k=5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning factor σ

0.0

0.5

1.0

1.5

2.0

2.5

Cl
as

si
fic

at
io

n
tim

e
(m

s) ball tree w. pruning
exact ball tree

Fig. 15. Error rate and classification time vs pruning factor σ for the ball
tree with Banknotes data set.

data and results was observed, and it can be concluded that

empirical findings remain the most valuable indicator, in spite

of general tendencies.

We conclude that approximate variants of the k-nearest

neighbor classification rule are indeed a very promising ap-

proach, and they are often indispensable when it comes to

real-world massive data sets. Other data structures, which are

based on the notion of partitioning the feature space, could also

be adapted to use aforementioned bounds (CPU time, depth,

node) and probabilistic pruning.

APPENDIX A

We list the data sets that were used for obtaining experimen-

tal results, along with their properties: class count, attribute

count, and instance count.

ALEKSANDER CISŁAK, SZYMON GRABOWSKI: EXPERIMENTAL EVALUATION 99

• Banknotes — 2, 4, 1372

• Ferrites — 8, 30, 5903

• Iris — 3, 4, 150

• Isolet — 26, 617, 1559

REFERENCES

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998. doi: 10.1145/293347.293348

[2] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth

annual ACM symposium on Theory of computing. ACM, 1998. doi:
10.1145/276698.276876 pp. 604–613.

[3] P. W. Jones, A. Osipov, and V. Rokhlin, “Randomized approximate
nearest neighbors algorithm,” Proceedings of the National Academy of

Sciences, vol. 108, no. 38, pp. 15 679–15 686, 2011. doi: 10.1073/p-
nas.1107769108

[4] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975. doi:
10.1145/361002.361007

[5] S. Arya, D. M. Mount, and O. Narayan, “Accounting for boundary
effects in nearest-neighbor searching,” Discrete & Computational Ge-

ometry, vol. 16, no. 2, pp. 155–176, 1996. doi: 10.1007/BF02716805
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms (3. ed.). MIT Press, 2009. ISBN 9780262033848
[7] S. M. Omohundro, Five balltree construction algorithms. International

Computer Science Institute Berkeley, 1989.
[8] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces,” in CVPR, 1997. doi:
10.1109/CVPR.1997.609451 pp. 1000–1006.

[9] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, 1987. doi: 10.1145/28869.28874

[10] A. Cisłak, “Approximate and probabilistic variants of the k-nearest
neighbor classification rule,” Bachelor’s Thesis, Lodz University of
Technology, 2014.

[11] D. G. Lowe, “Object recognition from local scale-invariant features,” in
ICCV, 1999. doi: 10.1109/ICCV.1999.790410 pp. 1150–1157.

[12] H. Munaga and V. Jarugumalli, “Performance evaluation: Ball-tree and
kd-tree in the context of mst,” CoRR, vol. abs/1210.6122, 2012. doi:
10.1007/978-3-642-32573-1_38

[13] A. M. Kibriya and E. Frank, “An empirical comparison of exact nearest
neighbour algorithms,” pp. 140–151, 2007. doi: 10.1007/978-3-540-
74976-9_16

100 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

