
Tool-supported Requirements-based Topology
Design for Wireless Sensor Networks

Stefan Lange, Jürgen Lösche, Krzysztof Piotrowski
IHP

Im Technologiepark 25

15236 Frankfurt(Oder)

Germany

Email: {lange|loesche|piotrowski}@ihp-microelectronics.com

Abstract—Planing the topology of wireless sensor networks
(WSN) for a specific application is a complex task. Each
application defines requirements to its WSN. Some of these
requirements have to been fulfilled by the wireless technology,
e.g., energy consumption and throughput, and some by the
network topology, e.g., redundancy and latency. Topology makes
restrictions to the wireless technology and the wireless technology
makes restrictions to the network topology.

In this paper we present an algorithm to select a network
topology and a wireless technology depending on application’s
requirements automatically.

The algorithm is part of the Sens4U approach, which aims
to simplify and possibly automate the process of building WSN
applications and support applications development done by non-
WSN-experts.

I. INTRODUCTION

W
IRELESS SENSOR NETWORK (WSN) in enviromen-

tal monitoring consists of a large number of nodes

with sensors and a wireless network device. These nodes are

deployed over a large area, take measurements, and send the

data to a sink node where the data is stored and can be

analyzed. Planing of such networks is a complex and error

prone task.

There are two approaches to deploy the nodes. For the

first approach the sensor nodes are randomly distributed over

the area, e.g., abandoned from airplane. After arriving final

positions all nodes determine their geographic coordinates

automatically and set up a network topology autonomously.

Advantage of the approach is needlessness of a proper design.

However, the main disadvantage of this approach is the

higher demand of the network nodes for systems resources.

Dedicated hardware and software components are required

to obtain the geographic position of the node. Furthermore,

each localization method has an inherent inaccuracy which

leads into divergences between the measured and the real

coordinates of the node. Moreover, maintenance of network

is complicated due to a lack of documentation.

The second approach contains a design phase to prepare the

deployment. In this phase the positions of the network nodes

are determined. During the deployment phase each sensor node

is installed at its predefined location. Thus, deployment of

nodes is well documented.

The toolchain introduced in the project Sens4u[1] follows

the second approach. The project aims to simplify and possibly

automatize the process of building a WSN application. It

brings together WSN-experts and non-WSN-experts. WSN-

experts can develop modules for WSN register them to the

Module Pool. Non-WSN-experts are enabled to specify and

build their WSN. The Sens4u toolchain transforms the WSN

application specification into an implementation using the

Module Pool. Thus, as a result of the project usage of WSN

applications have been made available for a wide spectrum of

scenarious. The proposed toolchain is given in Figure 1.

In the design flow the customer expertise into the application

domain expertise is owned by the actual customer and the,

at least basic, WSN expertise is owned by the integrator.

The integrator role is introduced to support the customer in

requirement specification. The customer explains the target

application to the integrator. They identify features of the

application and provides these to the planning tool as input.

The planning tool generates the set of technical requirements

containing the required functionalities and their required pa-

rameters. The set is forwarded to the expert system. In this

component the hardware/software configuration is generated,

based on the available modules in the module pool and the

technical requirements. An important part of the configuration

is the proposed network topology. On the one hand, several

technical requirements reduce the number of allowed topolo-

gies. On the other hand, not all topologies are supported by all

wireless technologies. In addition, the selection of a wireless

technology results can cause side effects by including several

hardware and software modules for the wireless technology.

Therefore choosing a topology for the WSN application is a

challenging task.

This paper focus strictly on topology selection in context

of the Sens4U toolchain. All other aspects are outlined briefly

only.

The remaining part of the paper is structured as follows.

The following section describes the concept in detail. Section

4 represents details about the Proof-Of-Concept followed by an

application example in Section 5. A section with an overview

of related work follows. The paper ends with a conclusion and

an outlook for future work.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1043–1047

DOI: 10.15439/2014F210

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1043



Customer Integrator Production

Planning 

Tool

Expert 

System

Module Pool

Verification

Developer

Non-technial 

requirements

Hardware and 

software 

configuration

Module, 

Description

Complete System

Fig. 1. The detailed tool-chain-oriented development flow and user roles.[1]

II. CONCEPT

A. Input Data

The expert system receives specifications of WSN applica-

tions from the planning tool. In this paper a network specifi-

cation is definied as a tuple S0 = (M, s, {R0, R1}, p, t, B,R)
consisting of

1) A set of measurement points M .

2) A sink s ∈M .

3) Two reference points R0 and R1 with given geographi-

cally coordinates. These points are used to map the coor-

dinates of the specification to geographically coordinates

by applying cross-multiplication.

4) A function p : M ∪ {R0, R1} → (x, y) which maps

measurement points to coordinates.

5) A function t : M → T which maps measurement points

to measurement task definitions.

6) A polygon B describing the outer borders of the area.

7) A set of requirements R. Current status is that equations

key = value are supported. The supported keys are

given in Table I. If no requriement defines a value for a

key, the default value is used for the key.

B. Architecture of the Expert System

The expert system component is the core of the Sens4U

toolchain. The expert system is composed out of five subcom-

ponents which are given in Figure 2. The figure also shows

the dataflow between the subcomponents. The functionality of

each subcomponent is described in the following text.

• The Task Specification Compiler builds from the task

definition of each measurement point an application

modell. In addition it calculates the expected datarate

during measurement operation. The result is extended to

tuple S1 = (M, s, {R0, R1}, p, t, d, B,R). The function

d : M → Q maps each measurement point to the

calculated datarate. The functionality dealing with the

generated application modell is not covered by this paper.

For this reason the applciation modell is not declared as

an element in S1.

Geometric Analysis

Topology Generation

Requirements 

Verification

Hardware/Software 

Configuration 

Generation

Task Specification 

Compiler

Fig. 2. Data flow in the Expert System

• During the Geometric Analysis the network specification

is analyzed. The set M is treated as a fully connected

undirected graph G0. The distance between its incident

nodes is assigned to each edge. A graph G is created as

a copy from G0 but without all edges with a distance

longer then maxrange. For G the values in Table II are

calculated.

• Topology Generation: This subcomponent creates topol-

ogy suggestion according to the information received

from the geomtric analysis. If no topology suggestion can

be made, the process exists returning an empty result. The

exact behaviour of this subcomponent is described in the

text later.

• The component Requirements Verification looks for vi-

olations of requirements caused by the topology. If a

violation is found the topology suggestion is rejected and

topology generation will try to create another suggestion.

The utilization of defensive programming simplifies the

development of new algorithm for creation of topology

suggestions and defining new requirement keys. Due to

this addtional requirements verification the algorithms

need only evaluate subsets of R.

• The Hardware/Software Configuration Generation trys

to create hardware/software configuration for the wire-

less sensor nodes. It looks up the module pool for

a hardware/software plattform which firstly is able to

implement the application modell and secondly supports

a wireless network technology able to form the given

topology suggestion. This step can result in three different

states.

1) Firstly, there can be no solution. In this case the ex-

pert system terminates and returns with no solution.

2) Secondly, the Expert System have found one or

more possible solutions. In this case the process

ends and returns the solutions to the planning tool.

3) The third case means that there can be solutions

with additional requirements. The topology

suggestion is discarded and the additional

1044 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



TABLE I
KEY/VALUE PAIRS SUPPORTED AS REQUIREMENTS

Key Description Default Value

maxrange The maximum range of the wireless network technology. +∞

rmaxdegree The maximum degree of a network node in the topology. +∞

maxhops The maximum number of hops between a network data and the data sink. +∞

maxdatarate The maximum throughput supported by the network technology. +∞

minredundancy The minimum path redundancy of the topology. 1

TABLE II
PROPERTIES DETERMINED IN STEP 1.

Key Description

maxdistance The largest geometrical distances between two measurement points in G0.
diameter The longest path between two nodes in G.
pmaxdegree The biggest degree of a node in G.
components The number of components in G.
nodescount The number of vertices in G.

requirements are added to R. Then the process

restarts at the geometric analysis.

C. Subcomponent Topology Generation

In this subcomponent two tasks have to be processed. The

network nodes are placed and a topology suggestion for the

network is created. The topology suggestion is stored as a

Directed Acyclic Graph(DAG) GT = (VT , AT ). Each vertex

v ∈ VT represent a network node. Each directed edge d ∈ AT

describes a suggested network link. The data flows from source

to target of each edge. The root node of GT is the data sink.

The rules how a topology suggestion is derived from a

network specification are implemented in several Topology

Creators. The Topology Creators are registered at process

chain a priori. The Topology Creator is selected according

to the requirements in M and the properties of G. For this

purpose each topology creator stores a set of constraints for

requirements and properties. Only under the given constraints

the topology creator can create a topology suggestion.

A prolog engine is used to identify topology generators

unable to fulfill given reguirements. Constraints, properties,

and requirements are loaded as predicates to the prolog engine.

From the set of topology generators fulfilling requirements

one is randomly choosen and executed. The result is sent to

requirements verification component. If no topology generator

is able to fulfill the requirements, the expert system terminates

and return an empty result to the planning tool. The behaviour

described above is given in Algorithm 1.

In the parargaphs folloqing two Topology Generators are

introduced in detail.

a) Single-Hop Star Topology Creator: This generator im-

plements the most simple way to create a topology suggestion.

On each measurement point a network nodes is placed and all

nodes are connected directly to the sink. This algorithm works

only if each node is within range of the sink.

The constraints of the Single-Hop Star Topology Generator

are given in Figure 3. Lines 1 to 3 define constants. First

parameter gives the name , second parameter gives the value,

and third parameter gives the unit of the constant. Lines 4

to 7 define the constraints. First parameter of a constraint

gives the name of the generator. The other parameters of each

constraint define an equation between requirements, proper-

ties and constants. In Line 4 a constraint limiting reachable

redundancy is given. A star topology does not provide any

redundancy which implies a maximum value of 1 for the

requirement redundancy. Due to, the generator does not place

any repeating nodes and generates a Single-Hop topology,

line 5 declares that G1 must consists of only one component.

Line 6 gives an essential but not sufficient constraint over

the diameter of G. The diameter of a star is 2. Due to,

the diameter of G must be less or equal to 2. However, the

constraint does no check for the sink as the central node. From

all measurement points data should be sent to the sink. As

follows, the sink node will have a degree equal to the number

of measurement points. Line 7 ensures that the requirement

rmaxdegree allows such a topology.

b) Multi-Hop Tree Topology: This generator gets a min-

imum spanning tree from G1 as topology suggestion. As

described for the previous generator the nodes are placed at

the positions of the measurement points. The constraints are

given in Figure 4. This definitions differs in two points. There

is no constraint on rmaxdegree. The generator has to check

for degree of each in node in the spanning tree itself. If no

valid spanning tree can be found the generator has to return

an empty result. Even, there is no constraint on diameter.

The existence of a spanning tree in a graph can not be derived

from equation with the diameter of that graph.

c) Topology Generator Selection: The Prolog source to

find topology generators, which can not fulfill the given

requirements, is shown in Figure 5. Determining the suitability

of a generator needs a proof of all constraints. Showing the

inadequacy needs one failed proof of constraint, only. Thats

why choose(T ) checks for violations and has all unusable

topology generators as its result. Each valid value for T in the

formular choose(T ) gives an topology generator which cannot

be used with given requirements.

STEFAN LANGE, JÜRGEN LÖSCHE, KRZYSZTOF PIOTROWSKI: TOOL-SUPPORTED REQUIREMENTS-BASED TOPOLOGY DESIGN 1045



c o n s t a n t ( ’ S t a r T o p o l o g y . maxpcomponents ’ , 1 , ’ 1 ’ ) .

c o n s t a n t ( ’ S t a r T o p o l o g y . r edundancy ’ , 1 , ’ 1 ’ ) .

c o n s t a n t ( ’ S t a r T o p o l o g y . maxdiamete r ’ , 2 , ’ 1 ’ ) .

c o n s t r a i n t ( ’ S t a r T o p o l o g y ’ , ’ r edundancy ’ , ’== ’ , ’ S t a r T o p o l o g y . r edundancy ’ ) .

c o n s t r a i n t ( ’ S t a r T o p o l o g y ’ , ’ components ’ , ’== ’ , ’ S t a r T o p o l o g y . maxcomponents ’ ) .

c o n s t r a i n t ( ’ S t a r T o p o l o g y ’ , ’ d i a m e t e r ’ , ’<= ’ , ’ S t a r T o p o l o g y . maxdiamete r ’ ) .

c o n s t r a i n t ( ’ S t a r T o p o l o g y ’ , ’ rmaxdegree ’ , ’<= ’ , ’ n o d e s c o u n t ’ )

Fig. 3. Prolog source for the constraints of the Single-Hop Star Topology Creator

c o n s t a n t ( ’ TreeTopology . maxcomponents ’ , 1 , ’ 1 ’ ) .

c o n s t a n t ( ’ TreeTopology . r edundancy ’ , 1 , ’ 1 ’ ) .

c o n s t r a i n t ( ’ TreeTopology ’ , ’ minredundancy ’ , ’== ’ , ’ TreeTopology . r edundancy ’ ) .

c o n s t r a i n t ( ’ TreeTopology ’ , ’ components ’ , ’== ’ , ’ TreeTopology . maxcomponents ’ ) .

Fig. 4. Prolog source for the constraints of the Multi-Hop Tree Topology Creator

v i o l a t e s ( ’== ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA \= VB.

v i o l a t e s ( ’ != ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA == VB.

v i o l a t e s ( ’<= ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA > VB.

v i o l a t e s ( ’>= ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA < VB.

v i o l a t e s ( ’< ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA >= VB.

v i o l a t e s ( ’> ’ ,A, B):− e v a l (A,VA, B ,VB) ,VA =< VB.

choose ( T):− c o n s t r a n t ( T , A, R , B) , v i o l a t e s (R , A, B ) .

Fig. 5. Prolog source to find topology generators violating the requirements.

Fig. 6. GUI of the expert system.

III. PROOF-OF-CONCEPT

At first this section gives an overview on the implementation

of the expert system. Secondly, the result of processing a

application specification is presented.

A. Implementation

The expert system has been implemented as a web appli-

cation based on Java Server Pages running on an apache-

tomcat server. The user interface is shown in Figure 6. The left

side of the window contains a list with uploaded application

specifications are or being processed. When a request get the

state "PROCESSED" the data for the planning tool can be

downnloaded using the link in the last row. The right side of

the window contains the upload dialog. Here data from the

planning tool is imported to the expert system.

The process described in the previous subsection has been

implemented as part of Network-Analyzer in project Sens4u.

The data is stored in GEXF[2] format. Requirements are stored

in RuleML[3], which is inserted in GEXF file.

Fig. 7. GUI of the expert system.

B. Example

In context of the project a wireless sensor network is

planned at the artificial catchment Hühnerwasser1. The ap-

plication specification received from the planning tool and

imported to the expert system is given in Figure 7.

In figure 8 the topology suggestion produced by the Sens4U

toolchain is shown. There are still no requirements defined for

the application, the topology is a star.

1http://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html

1046 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



Fig. 8. A generated star topology for Hühnerwasser WSN application.

IV. RELATED WORK

In [4] the software environment POWER for planning and

deploying wireless sensor networks is introduced. POWER

implements an iterative process. Firstly, nodes are placed in

a virtual environment. Secondly, the network in virtual envi-

ronment is simualeted and evaluated. If an optimal solution is

found the process terminates at this point. If not, the network

in the virtual environment is optimized in the third step and the

process starts again. Unlike the Sens4U toolchain POWER do

not enable non-WSN-experts to specify its WSN application.
The framework FLEXOR[5] defines a software architecture

for wireless sensor nodes and development environment

with tools dealing with WSN applications based on the

FLEXOR software architecture. Like Sens4U it addresses

non-WSN-experts as users of WSN applications. However,

while the expert system decides about hardware and software

components to use, FLEXOR supports software modules

only. Furthermore, the FLEXOR-toolchain does not support

topology design.

Algorithm 1 Selection of a topology generator

Require: TC is the set of all registered topology generators.

Reset Prolog Engine

2: Load R to Prolog Engine

for each tc ∈ TC do

4: Load constants of tc to Prolog Engine

Load constraints of tc to Prolog Engine

6: end for

TC0 ← Query Prolog Engine

8: TC1 ← TC \ TC0

if TC1 = ∅ then

10: return ∅
else

12: GT ← ∅
while GT 6= ∅ do

14: tc0 ← first element in TC1

TC1 ← TC1 \ {tc0}
16: GT ← Call tc0

end while

18: end if

[6] defines a design flow and an user model for a

component-based and composition-driven design process. The

goal is also let non-WSN-experts specify and develop WSN

applications.

GENSEN[7] is a topology generator for realiastic WSN

deployments for the network simulator NS2[8]. Input data are

not an application specification, but three parameters for node

distribution. The parameters specify the distribution strategy,

the number of different atenna orientations, and the number of

different energy levels. GENSEN is an example for a family

of topology generators for simulations.

V. CONCLUSION AND FUTURE WORK

This paper presents a solution for the difficult technical

problem of topology selection that occurs in each WSN

application. The approach itself and its integration into the

Sens4U-toolchain are described in detail. An implementation

is introduced as Proof-Of-Concept and an example calculation

is given.

Several issues are still open. Sensor node placement can

be prohibited by restricted zones or can become expensive by

problem areas. Likewise, disturbance zones can exist where

wireless communication is impossible. For these cases more

sophisticated strategies for node placement have to be devel-

oped. Complex measurement tasks can be distributed in more

than one node. Furthermore, generators for more effective and

reliable topologies must be implemented to fulfill survivability

resiliance requirements.

ACKNOWLEDGMENT

This work is part of the project Sens4U (Sensorknoten

für Umweltmonitoring) and was founded by the Bundesmin-

isterium für Bildung und Forschung (BMBF) under grant

03WKP26A.

REFERENCES

[1] K. Piotrowski and S. Peter, “Sens4u: Wireless sensor network applications
for environment monitoring made easy,” in SESENA, C. Julien and
K. Wehrle, Eds. IEEE, 2013. doi: 10.1109/SESENA.2013.6612264 pp.
37–42.

[2] GEXF Working Group, “Gexf 1.2draft primer,” Mar 2012.
[3] H. Boley, “The ruleml family of web rule languages,” in Principles and

Practice of Semantic Web Reasoning, ser. Lecture Notes in Computer
Science, J. Alferes, J. Bailey, W. May, and U. Schwertel, Eds., vol. 4187.
Springer Berlin Heidelberg, 2006. doi: 10.1007/11853107_1 pp. 1–17.

[4] J. Li, Y. Bai, H. Ji, J. Ma, Y. Tian, and D. Qian, “Power: Planning
and deployment platform for wireless sensor networks,” in Grid and

Cooperative Computing Workshops, 2006. GCCW ’06. Fifth International

Conference on, 2006. doi: 10.1109/GCCW.2006.73 pp. 432–436.
[5] A. Forster, K. Garg, D. Puccinelli, and S. Giordano, “Flexor: User friendly

wireless sensor network development and deployment,” in World of Wire-

less, Mobile and Multimedia Networks (WoWMoM), 2012 IEEE Interna-

tional Symposium on a, 2012. doi: 10.1109/WoWMoM.2012.6263698 pp.
1–9.

[6] S. Peter and P. Langendorfer, “Tool-supported methodology for
component-based design of wireless sensor network applications,” in
Computer Software and Applications Conference Workshops (COMP-

SACW), 2012 IEEE 36th Annual, 2012. doi: 10.1109/COMP-
SACW.2012.98 pp. 526–531.

[7] T. Camilo, J. S. Silva, A. Rodrigues, and F. Boavida, “Gensen: A topology
generator for real wireless sensor networks deployment,” in Proceedings

of the 5th IFIP WG 10.2 International Conference on Software Tech-

nologies for Embedded and Ubiquitous Systems, ser. SEUS’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 436–445.

[8] K. Fall and K. Varadhan, Eds., The ns Manual. The VINT Project, 2011.

STEFAN LANGE, JÜRGEN LÖSCHE, KRZYSZTOF PIOTROWSKI: TOOL-SUPPORTED REQUIREMENTS-BASED TOPOLOGY DESIGN 1047


