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Abstract—In the article a new approach for solving complex
and highly nonlinear differential-algebraic equations (DAEs) was
presented. An important kind of applications of DAE systems is
modeling of biotechnological processes, which can have a very
different course. An efficient solving of equations describing
biotechnological industrial inlets results in better optimization
of the processes and has a positive impact on the environment.
Some of the mentioned processes were characterized by a highly
nonlinear dynamics. To obtain the trajectories of the state
numerically, the backward differentiation formula was used in the
presented method. As a result, a large-scale system of nonlinear
algebraic equations was obtained. To solve a such system, the
inexact Newton matrix-free approach was proposed. The new
algorithm was tested on a mathematical model of a fed-batch
fermentor for penicillin production. The numerical simulations
were executed in MATLAB using Wroclaw Center for Networking
and Supercomputing.

Keywords—inexact Newton methods, matrix-free methods, DAE
systems, system of nonlinear equations.

I. INTRODUCTION

NOWADAYS, biotechnological processes are widely used
in many real-life industrial plants. They can be often met

in food industry, production of medicines and in many other
sectors of industry, especially, when biodegradable components
have to be used for the protection of the environment [16], [21].

Very often, the mathematical models of the bioprocesses
have highly nonlinear dynamics. Technological and resources
constraints on both the state and the control variables are also
frequently present. Hence, a commonly used way to describe
complex processes are both nonlinear ordinary differential
equations and differential-algebraic equations [3], [4].

In recent years, many efforts have been devoted to the
model-based optimization of processes in biotechnology and
bioengineering. An example of a problem which has received
major attention is the dynamic optimization of fed-batch
bioreactors [17]. Dynamic optimization allows the computation
of the optimal operating policies for these units to ensure
the maximization of a predefined performance index. The
performance index reflects a productivity or an economical
index derived from both the operation profile and the final
concentrations [22].

The development of information technology, robust nu-
merical methods and computing capacity, enables to obtain
optimal operating policies of the complex biotechnological

processes. An efficient solving of the differential-algebraic
systems enables the use of optimization strategies, what can
improve a process flow significantly [5], [10].

In this work, the general problem of solving dynamical
models of bioprocesses described by nonlinear differential-
algebraic equations was considered. A solution strategy based
on the matrix-free inexact Newton method was presented.

The article consists of 5 sections. The problem of solving
complex and highly nonlinear differential-algebraic equations
(DAEs) will be introduced in the next section. In the 3rd
section the matrix-free Newton-Krylov method will be pre-
sented. The inexact Newton method will be discussed in the
4th section. The inexact Newton matrix-free approach will be
tested on the fed-batch fermentor for penicillin production. The
numerical results will be presented in the 5th section.

II. STATEMENT OF THE PROBLEM

In general, real-life biotechnological systems with dynam-
ics and conservation laws can be described in a fully-implicit
form

B
(

ẏ(t), y(t), z(t), u(t), p, t
)

= 0. (1)

Here y(t) ∈ Rny represents the differential state trajectory,
whereas z(t) ∈ Rnz denotes the algebraic state trajectory,
u(t) ∈ Rnu a vector representing control function and p ∈
Rnp indicates a vector of parameters constant in the time.
Then, the nonlinear vector-valued function is considered

B : Rny×nz×nu×1 → RnB . (2)

On the other hand, when only dynamical features of the
systems are pondered, the ordinary differential equations are
enough

ẏ(t) = G
(

y(t), u(t), p, t
)

. (3)

Hence, some interesting relations between variables and their
physical interpretations can be lost [6].

The first general technique for the numerical solution of
the fully-implicit DAEs was the backward differential formula.
The idea of this technique was that the derivative ẏ(t) could
be approximated by a linear combination of the solution y(t)
at the current mesh point and at several previous mesh points
[19].

Previously, the backward differential formula was defined
for the differential equations systems coupled to the algebraic
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equations. The application of this method was soon extended
to any fully-implicit system of the differential-algebraic equa-
tions.

The first order backward differential formula has been
considered as the simplest method for solving differential-
algebraic systems [14]. It consists of replacing the derivative
in eq. (1) by the backward difference quotient

F
(yn+1 − yn

h
, yn+1, zn+1, tn+1

)

= 0. (4)

where h = tn+1 − tn.

This procedure results in system of nonlinear equations for
yn+1 at each step. To obtain the solution from time tn to time
tn+1, the system of equations (4) should be solved.

There are two main assumptions to solve the system (4).
The initial value y(t0) is known and t (time) is the independent
variable.

In practical applications, if the time interval, in which the
system has to be considered, is known, it can be scaled to the
interval [0, 1].

The presented methodology leads to the following equation

F (χ) = 0. (5)

This equation is very general and often found in scientific
and engineering computing areas. It was assumed, that the
function F is considered, where F : Rn → Rn is a nonlinear
mapping with the following properties:

(1) There exists a point χ∗ ∈ Rn with F (χ∗) = 0.

(2) F is continuously differentiable in a neighborhood of
χ∗.

(3) The Jacobian matrix F ′(χ∗) ≡ J (χ∗) is nonsingular
and for

F (χ) = [F1, F2, · · · , Fn] (6)

and
χ ∈ Rn, (7)

the (i, j)th element (ith row, jth column) of the Jacobian
matrix is calculated as

Ji,j =
∂Fi(χ)

∂χj

. (8)

There have been a lot of methods for solving the nonlinear
equations (5). The most popular and important are both the
Newton and different variations of the inexact Newton methods
[18].

III. MATRIX-FREE NEWTON-KRYLOV METHOD

The matrix-free Newton-Krylov method stands the iterative
approach consisting of some nested levels, generally, from two
to four. The name of the method come from the primary levels,
which are the Newton correction step and the loop building up
the Krylov subspace, out of which each Newton correction is
computed [15].

In some applications two additional levels are present.
There is a preconditioner in the interior to the Krylov loop,
and, outside of the Newton loop, a globalization method is
often required.

A. Newton method

The Newton iteration for F (χ) = 0 derives from a
multivariate Taylor expansion about a current point χk

F (χk+1) = F (χk) + F ′(χk)(χk+1 − χk) + · · · . (9)

Neglecting the terms of the higher-order curvature and
setting the left-hand side to zero yields a strict Newton method.
It is as an iterative process of solving the sequence of the linear
systems

J (χk)δχk = −F (χk), (10)

to obtain δχk and to determine

χk+1 = χk + δχk, k = 0, 1, · · · , (11)

where the starting point χ0 is given, F ′(χ) is a vector-valued
function of nonlinear residuals, J (χ) is the Jacobian matrix
associated with F ′(χ), χ stands the state vector to be found,
and k is a nonlinear iteration index.

The Newton iteration is terminated based on a required
decrease in the norm of the nonlinear residual

‖F (χk)‖

‖F (χ0)‖
< ∆res, (12)

and a sufficiently small Newton update

‖δχk‖

‖χk‖
< ∆update. (13)

In a scalar example, there is a one-to-one mapping between
grid points and rows in the Jacobian. But forming each element
of J requires taking analytic or discrete derivatives of the
system of equations with respect to χ. This can be both time
consuming and possible source of error for many problems in
control and optimization of the biotechnological processes.

B. Krylov method

Krylov subspace methods are approaches for solving large-
scale linear systems. They are projection or generalized pro-
jection methods for solving

Aχ = b, (14)

using the Krylov subspace Kj defined as

Kj = span(r0, Ar0, A
2r0, · · · , A

j−1r0), (15)

where r0 = b−Aχ0.

These methods require only matrix-vector products, not the
individual elements of the matrix A, to perform the iteration.
This is the key to their use with the Newton method.
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C. Matrix-free Newton-Krylov methods

In the matrix-free Newton–Krylov approach, a Krylov
method is used to solve the linear system of equation given
by eq. (10). For the Newton step, an initial linear residual r0
is defined, and an initial guess δχ0 is given

r0 = −F (χ)− J (χ)δχ0. (16)

The nonlinear iteration index k has been omitted, because
the Krylov iteration is performed at a fixed k. Let j be the
Krylov iteration index. Since the Krylov solution is a Newton
correction, and a locally optimal move was just made in the
direction of the previous Newton correction, the initial iterate
for the Krylov iteration for δχ0 is typically zero. This is
asymptotically a reasonable guess in the context of the Newton
step, as the converged value for δχ0 should approach zero in
late Newton iterations.

When the Generalized Minimal RESidual method (GM-
RES) is used, in the jth iteration ‖J δχj + F (χ)‖2 is mini-
mized within a subspace of small dimension, relative to the
number of unknowns, in a least-square sense [20]. δχj is
drawn from the subspace spanned by the Krylov vectors,
{r0,J r0,J

2r0, · · · ,J
j−1r0}, and can be written as

δχj =

j−1
∑

i=0

βiJ
ir0, (17)

where the scalars βi minimize the residual.

Upon examining eq. (17) one can see, that GMRES re-
quires the Jacobian only in the form of the matrix-vector
products, which may be approximated by

J v ≈ [F (χ+ εv)− F (χ)]/ε, (18)

where ε is a small perturbation.

Equation (18) is a first order Taylor series expansion
approximation to the product of the Jacobian J and a vector
v.

In a simple case, when the two coupled nonlinear equations
are considered F1 = (χ1, χ2) = 0, F2 = (χ1, χ2) = 0, the
Jacobian matrix takes a form

J =





∂F1

∂χ1

∂F1

∂χ2

∂F2

∂χ1

∂F2

∂χ2



 . (19)

The matrix-free Newton-Krylov method does not require
the formation of this matrix. Instead, a result vector, that
approximates this matrix multiplied by a vector, was formed.

F (χ+ εv)− F (χ)

ε
=





F1(χ1+εv1,χ2+εv2)−F1(χ1,χ2)
ε

F2(χ1+εv1,χ2+εv2)−F2(χ1,χ2)
ε



 .

(20)

Approximation of F (χ+εv) with a first order Taylor series
expansion about χ takes a form

F ′(χ1, χ2) ≈







F1(χ1,χ2)+εv1

∂F1

∂χ1
+εv2

∂F1

∂χ2
−F1(χ1,χ2)

ε

F2(χ1,χ2)+εv1

∂F2

∂χ1
+εv2

∂F2

∂χ2
−F2(χ1,χ2)

ε






,

(21)
which simplifies

J v =





v1
∂F1

∂χ1

+ v2
∂F1

∂χ2

v1
∂F2

∂χ1

+ v2
∂F2

∂χ2



 . (22)

The error in this approximation is proportional to ε.

The most attractive advantages of the matrix-free approach
is a Newton-like nonlinear convergence without costs of form-
ing and storing the true Jacobian. In practice, one forms a
matrix for preconditioning purposes. However, the matrices
employed in preconditioning can be simpler than true Jacobian
of the problem, so the algorithm is properly said to be
Jacobian-free [15].

Since the use of an iterative technique to solve eq. (10) does
not require the exact solution of the linear system, the resulting
algorithm is categorized as the inexact Newton method.

IV. INEXACT NEWTON METHOD

The Newton method is attractive because its quadratically
rate of convergence from any sufficiently good initial point.
But the computational cost can be expensive, especially, when
the size of the problem is very large. In each iteration step the
Newton equation

F (χk) + J (χk)δχk = 0 (23)

should to be solved. Here χk denotes the current iterate,
and J (χk) is the Jacobian matrix of F (x) at point χk.
The solution δχN

k of the Newton equation is known as the
Newton correction or the Newton step. Once the Newton step
is obtained, the next iterate is given by

χk+1 = χk + δχN
k . (24)

The inexact Newton method is a generalization of the
Newton method [8], [12]. It is any method, which for given an
initial guess χ0, generates a sequence χk of approximations
to χ∗ as in Algorithm 1.

ALGORITHM 1. The inexact Newton method
1. Given χ0 ∈ Rn

2. For k = 0, 1, 2, · · · until χk converges
2.1 Choose some ηk ∈ [0, 1)
2.2 Inexactly solve the Newton equation (10)

and obtain a step δχk, such that
‖F (χk) + J (χk)δχk‖ ≤ ηk‖F (χk)‖. (⋆)

2.3 Let χk+1 = χk + δχk.

In the Algorithm 1, ηk is the forcing term in the kth
iteration, δχk is the inexact Newton step and (⋆) is the inexact
Newton condition.

In each iteration step of the inexact Newton method, a
real number ηk ∈ [0, 1) should be chosen. Then the inexact
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Newton step δχk was obtained by solving the Newton equation
approximately.

Since F (χk) + J (χk)δχk is both residual of the Newton
equations and the local linear model of F (χ) at χk, the inexact
Newton condition (⋆) reflects both the reduction in the norm
of the local linear model and certain accuracy in solving the
Newton equations. In this way, the role of forcing terms is to
control the accuracy degree of solving the Newton equations.
In particular, if ηk = 0 for all k, then the inexact Newton
method is reduced into the Newton method.

The inexact Newton method, like the Newton method, is
locally convergent.

Theorem 1 ([8]): Assume that F : Rn → Rn is contin-
uously differentiable, χ∗ ∈ Rn such that J (χ∗) is nonsin-
gular. Let 0 < ηmax < β < 1 be the given constants. If
the forcing terms ηk in the inexact Newton method satisfy
ηk ≤ ηmax < β < 1 for all k, then there exists ε > 0, such
that for any χ0 ∈ Nε(χ

∗) ≡ {χ : ‖χ−χ∗‖ < ε}, the sequence
{χk} generated by the inexact Newton method converges to
χ∗, and

‖χk+1 − χ∗‖∗ ≤ β‖χk − χ∗‖∗, (25)

where ‖v‖∗ = ‖J (χ∗)v‖.

If the forcing terms {ηk} in the inexact Newton method are
uniformly strict less than 1, then by Theorem 1, the method is
locally convergent. The following result states the convergence
rate of the inexact Newton method.

Theorem 2 ([8]): Assume that F : Rn → Rn is continu-
ously differentiable, χ∗ ∈ Rn such that J (χ∗) is nonsingular.
If the sequence {χk} generated by the inexact Newton method
converges to χ∗, then

(1) χk converges to χ∗ superlinearly when ηk → 0;

(2) χk converges to χ∗ quadratically if ηk = O(‖F (χk)‖)
and J (χ) is Lipschitz continuous at χ∗.

Theorem 2 indicates, that the convergence rate of the
inexact Newton method is determined by the choice of the
forcing terms.

Various ways for selection the forcing terms have been
widely discussed and tested in [1] and [13].

V. CASE STUDY

As the case study a fed-batch reactor for the production of
penicillin [2] was considered. The objective was to maximize
the amount of penicillin using the feed rate as the control
variable. The duration of the process was specified at 120
hours.

The mathematical statement of the dynamical optimization
problem is as follows.

Find u(t) and tf over t ∈ [t0, tf ] to maximize

J = x2(tf ) · x4(tf ) (26)

subject to differential-algebraic system

dx1

dt
= h1x1−u

(

x1

500x4

)

,

(27)

dx2

dt
= h2x1−0.01x2−u

(

x2

500x4

)

,

(28)

dx3

dt
= −h1

x1

0.47
−h2

x1

1.2
−x1

0.029x3

0.0001 + x3
+

u

x4

(

1−
x3

500

)

,

(29)
dx4

dt
=

u

500
,

(30)

h1 = 0.11

(

x3

0.006x1 + x3

)

,

(31)

h2 = 0.0055

(

x3

0.0001 + x3(1 + 10x3)

)

,

(32)
where x1, x2 and x3 are the biomass, penicillin and substrate
concentration (g/L), and x4 is the volume (L). The initial
conditions are

x(t0) = [1.5 0 0 7]T . (33)

There are several path constraints for state variables

0 ≤ x1 ≤ 40, (34)

0 ≤ x2 ≤ 25, (35)

0 ≤ x3 ≤ 10. (36)

The upper and lower bounds on the control variable (feed rate
of substrate) are

0 ≤ u ≤ 50. (37)

The control problem of the fed-batch fermentor for peni-
cillin production was solved with the matrix-free inexact
Newton method, presented in the article.

At first, the overall time domain was divided into 1200
equidistant intervals. The resulting model consisted of 7200
nonlinear algebraic equations and the same number of vari-
ables and it was of the form

x1,n+1−x1,n−∆t
(

h1,n+1x1,n+1−u
x1,n+1

500x4,n+1

)

= 0,

(38)
...

x4,n+1−x4,n−∆t
u

500
= 0,

(39)

h1,n+1−∆t
(

0.11×
x3,n+1

0.006x1,n+1 + x3,n+1

)

= 0,

(40)

h2,n+1−∆t
(

0.0055×
x3,n+1

0.0001 + x3,n+1(1 + 10x3,n+1)

)

= 0,

(41)
for n = 0, 1, · · · , 1200.

The initial conditions were known only for the first stage
n = 0. In this way, there are 7200 decision variables connected
with initial values for both differential and algebraic state
variables. There is one variable, which is the assumed value
of the feed rate and represents the control variable.
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The initial values for the decision variables were as follows

χ1,x1,1
, · · · , χ1200,x1,1200

= 1.5, (42)

χ1201,x2,1
, · · · , χ2400,x2,1200

= 0.0, (43)

χ2401,x3,1
, · · · , χ3600,x3,1200

= 0.0, (44)

χ3601,x4,1
, · · · , χ4800,x4,1200

= 7.0, (45)

χ4801,h1,1
, · · · , χ6000,h1,1200

= 10.0, (46)

χ6001,h2,1
, · · · , χ7200,h2,1200

= 10.0, (47)

In the simulations the following rule choice of the forcing
terms was used

η = min
{ 1

kiter + 2
, ‖F (χiter)‖

}

, (48)

where iter denotes the number of the previously iterate [9].

For the constant control function u, the final value of the
objective function was 81.1943g. The obtained value of the
control function was uconst = 12.5000. The assumed duration
of the whole process was adjusted to 120 hours. Simulations
were performed with the accuracy ∆res = ∆update = 10−6.
There are the optimal trajectories of both the biomass and
penicillin concentrations in the Fig. 1.

In the simulation for solving the Newton equation (10), the
Generalized Minimal RESidual method (GMRES) was used.
In GMRES, the Arnoldi basis vector form the trial subspace
out of which the solution was constructed. One matrix-vector
product was required per iteration to create each new trial
vector, and the iterations are terminated based on a by-
product estimate of the residual that does not require explicit
construction of intermediate residual vector of solutions. It was
a major beneficial feature of the algorithm.

In the case study, the Jacobian matrix in the Newton
equation consisted on more than 50 · 106 cells. It means, that
the matrix-vector product would be impossible to obtain by
ordinary methods.

The first proposition was to use the sparsity of the matrix,
especially for the storage and speed-up of the computations.
In the Jacobian matrix only 0.048% elements has another
value than zero. The second proposition is the Jacobian-free
approach.

These two remarks, enables us to solve the fed batch
fermentor for penicillin production described by the nonlinear
differential-algebraic equations.

The numerical simulations were executed in MATLAB
using Wroclaw Center for Networking and Supercomputing

VI. CONCLUSION

In this paper the new approach for solving the nonlinear
differential-algebraic equations in the fully-implicit form was
presented. The method consists of two main remarks. The
first, that the Newton equation can be solved inexactly. The
appropriate choice of the forcing terms to obtain the well
behaved inexact Newton method preserve locally the superlin-
early convergence rate. The second remark is that, the matrix-
free approach enables us to consider a large-scale systems

Fig. 1. The optimal trajectories of both the biomass and penicillin concen-
trations.

with thousands of variables. The sparse representation of the
Jacobian matrix and a function, which calculate the matrix-
vector product effectively, makes large-scale computations
possible.

The algorithm was tested on the nonlinear DAE sys-
tem, which described the fed batch fermentor for penicillin
production. The discretized large-scale model consisted on
7200 nonlinear algebraic equations and the same number of
variables.

The presented approach can be applied in real-life in-
dustrial plants, to optimize and control the biotechnological
processes [7], [23]. The high degree of utilization of resources
ensures a high profit and negligible waste.

At the next step, the new preconditioned Jacobian-free al-
gorithms, which could solve large-scale optimization problems
efficiently, will be studied and adjusted for new challenges in
solving the dynamical optimization problems [11].
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