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Abstract—In  the  present  article  we  describe  the
implementation  of  the  finite  element  numerical  integration
algorithm for the Xeon Phi coprocessor. The coprocessor is an
extension  of  the  idea  of  the  many-core  specialized  unit  for
calculations  and,  by  assumption,  its  performance  has  to  be
competitive  with  the  current  families  of  GPUs.  Its  main
advantage is the built-in set of 512-bit vector registers and the
ease  of  transferring  existing  codes  from  normal  x86
architectures. However, the differences between standard x86
architectures  and  Xeon  Phi  do  not  guarantee  performance
portability. We choose an alternative approach and, instead of
porting standard multithreaded code,  we  adapt  to Xeon  Phi
previously  developed  OpenCL  algorithms  for  finite  element
numerical  integration.  The  algorithm is  tested  for  standard
FEM  approximations  of  selected  problems.  The  obtained
timing  results  allow  to  compare  the  performance  of  the
OpenCL  kernels  executed  on   the  Xeon  Phi  and  the
contemporary GPUs.

I. MOTIVATION

N RECENT years there has been a noticeable increase of

popularity of programming with the use of graphic cards.

Their computing power allows for significant acceleration of

calculations for properly implemented programs. However,

there is a price to be paid, in the form of  complex program-

ming model with a complicated memory organization [1],

[2]. Huge performance of GPUs can be seriously limited due

to data  transfers  between  different  memory levels.  There-

fore, an important step is to design an algorithm that takes

into account characteristics of memory access mechanisms

for a particular architecture. 

I

The development of multi-core architectures has resulted

in many interesting ideas for further evolution of hardware

for scientific and technical calculations. GPUs are an exam-

ple of massively multi-core microprocessors with the large

number  of  relatively  simple  cores  equipped  with  small

amount  of  memory.  Another  development  trend  in micro-

processor architecture is to increase the amount and width of

vector execution units within a single processor, clearly visi-

ble in recent general purpose cores [3]. The other idea was

to combine the architecture of a general purpose processor

with SIMD units encountered in graphics cards. The first ex-

ample which achieved a fairly considerable popularity is the
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CellBE architecture used in Sony Playstation 3 consoles and

successfully adapted to the scientific purposes as PowerX-

Cell 8i processor [4]. In our previous studies, we focused on

the development of an algorithm for the finite element nu-

merical integration on the aforementioned processors which

resulted in the development of highly efficient implementa-

tions for higher order elements of the Discontinous Galerkin

approximation  [5].  At  the  same time authors  developed  a

version for the graphic card which was then successfully re-

designed to use a standard approximation of the finite ele-

ment method [6]. The resulting version of the algorithm has

been tested on different types of graphic cards and the re-

sults of these tests will soon be presented in [7]. Both men-

tioned architectures can be considered as predecessors of the

new Intel Xeon Phi architecture. This architecture combines

large number of cores with wide vector units in each core.

Opposite to standard GPUs, coprocessor cores are less nu-

merous and their complexity lies in between standard, gen-

eral  purpose  cores  and  simple  GPU  cores.  As  in  GPUs,

Xeon Phi shares the same way of memory organization and

therefore all  codes  developed for  graphic cards  should be

easily adapted to coprocessor architecture, but as in all types

of such architectures, data movement between different lev-

els of memory may become an issue of primary importance

[8]. With the introduction of Intel Xeon Phi numerical co-

processors, there is a need to test the previously developed

algorithms on the new architecture and verify whether the

widely advertised adaptability of existing codes also applies

to the transition from GPU to coprocessor. 

II. NUMERICAL INTEGRATION ALGORITHM

Numerical integration algorithm is one of the most impor-

tant parts of the finite element method codes. FEM assumes

the  division  of  the  whole  computational  domain into  ele-

ments for which the integrals, corresponding to pairs of ele-

ment basis functions, are calculated and the results are col-

lected in local, element stiffness matrices. Local load vectors

are  also  obtained  through  integration  of  corresponding

terms. Final structure of the formula to calculate the exam-

ple entry to the element stiffness matrix depends on the form

of the weak statement for the considered problem and can

look as (1).
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In the formula above, C
i D jD are coefficients that depend

on the problem with  iD,jD = 0,1,2,3 and ϕ iS , ϕ jS  are

global basis functions.   

In order to calculate the integrals we need to perform the

change  of  variables,  which  means  that  the  integration  is

made for a particular type of reference element. The transfor-

mation from the reference element to the real element is de-

noted by  x(ξ). For a reference element we use shape func-

tions instead of global basis functions and apply one of the

forms of quadrature. In our case, we used one of the most

popular Gaussian quadrature. This quadrature allows for the

transformation  of  the  integral  to  the  sum over  integration

points within the reference domain. Number of integration

points is dependent on the required accuracy of the calcula-

tions and the type of the reference element. For  NQ integra-

tion points with coordinates ξQ and weights wQ we can trans-

form the integral (1) to the sum (2).
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Where ϕ̂
i S

and ϕ̂
j S

are shape functions and J
T
e

is

the Jacobian matrix of transformation x(ξ). 

Performance of numerical  integration algorithm depends

greatly on the problem being solved (weak formulation) and

the approximation method employed. With the use of stan-

dard linear approximation the time of the creation of element

stiffness matrix is relatively small. From the computational

point  of  view,  numerical  integration  algorithm consists  of

multiple independent calculations for each element. For this

reason, the computational cost increases with growing num-

ber of elements. Calculated integrals correspond to the dif-

ferent  terms  in  the  weak  formulation  of  the  problem  for

which there is a need to define the matrix of coefficients for

integration. Therefore,  for  the various problems we obtain

different combinations of integration components for partial

integrals of the test functions.

The  problem dependent  contribution  mainly consists  of

the set of coefficient for numerical integration. Besides stan-

dard iD and jD indices that corresponds to the different spatial

derivatives for test and trial functions, there can be also sec-

ond pair  of indices  iE,  jE.  This indices are introduced,  be-

cause for vector problems, the same approximation can be

used for different unknowns in the solved system of partial

differential equations (PDEs). Hence, for each combination

of iD and jD there may be a small matrix of coefficients with

the NE dimension equal to the number of equations in solved

system of PDEs. Moreover, in the most general cases there

may be different  values  of coefficients at  each integration

point. Hence for the generic numerical integration algorithm

array  of  coefficient  should  be  considered  in  a  form

C
iQ iD j DiE jE .  The problem dependent indices indicate that

element stiffness matrix entry is also dependent on the prob-

lem solved. Hence, we can define full equation for our com-

putations,  with  the  definition  of
∂ϕ̂

i

∂ξ
as ψ

iQ iDi S and

det J
T
e

w
Q

as vol
iQ (3)
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The corresponding right hand side vector is calculated us-

ing the formula (4)
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As the conclusion of  the numerical  integration problem

definition we provide the algorithm for computing stiffness

matrices and load vectors for a set of elements of the same

type and the order of approximation :

1: read  quadrature  data  ξQ and  weights  wQ for  the

reference element of particular type.

2: for e=1 to Ne do

3: read problem dependent coefficients common for all 

integration points (e.g. material data, previous 

iterations (or time steps) degrees of freedom etc.)

4: read element geometry data for x(ξ) transformation

5: initialize element stiffness matrix Ai E jE i S j S

e
and 

element load vector bi E i S

e

6: for iQ=1 to NQ do

7: read or calculate(on a basis of the coordination of 

the integration points) values of shape functions 

and their derivatives with respect to their local 

coordinates for a given integration point.

8: read or calculate jacobian matrix, its determinant 

and inverse.

9: calculate vol
iQ

10: using the jacobian matrix calculate derivatives of 

shape functions ϕ̂
i Q

with respect to the global 

coordinates for a given integration point

11: basing on the values of unknowns obtained through 

the use of ϕ̂
i Q

calculate the C
iQ and D

iQ

coefficients for a given quadrature point

12: for iS=1 to NS do

13: for jS=1 to NS do

14: for iE=1 to NE do

15: for jE=1 to NE do

16: for iD=0 to ND do
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17: for jD=0 to ND do

18: A
e
[iS][jS][iE][jE]+=

C[iQ][iE][jE][iD][jD]×

ψ[iQ][iS][iD]×

ψ[jQ][jS][jD]×vol[iQ]

19: end for (jD)

20: end for (iD)

21: if iS=jS && iE=jE then

22: for iD=0 to ND do

23: b
e
[iS][iE]+=D[iQ][iE][iD]×ψ[iQ][iS][iD]

24: end for (jE)

25: end for (iE)

26: end for (jS)

27: end for (iS)

28: end for (iQ)

29: end for (e)

As we see from algorithm above, we can either read or

compute most of the necessary components for numerical in-

tegration. This leads us to the conclusion that we can steer

the amount of data sent from the memory and the amount of

computations,  depending  on  the  available  hardware  re-

sources and the problem solved. 

In our case, we focused on the problem of convection-dif-

fusion for  NE = 0 in two cases - one with simple Laplace

equation, where the coefficient matrix C is sparse and coeffi-

cients appear only on the main diagonal in the case of iD = jD

(3 coefficients for stiffness matrices, one for the right hand

side  (RHS)  vector)  and  a  second  with  enhanced  convec-

tion-diffusion  problem for  the  full  sixteen  coefficients  for

stiffness matrix and four for RHS vector. Furthermore, for

solving the Laplace task all coefficient were the same for all

Gaussian integration points for stiffness matrix and different

for the RHS vector. In the second, convection-diffusion task,

all coefficients were constant for all Gauss points. For our

reference elements we use prisms with 6 degrees of freedom.

Our assumptions are illustrated by the data in Table I.

TABLE I.

NUMBER OF PARAMETERS FOR NUMERICAL INTEGRATION OF PRISMATIC

ELEMENT

NQ 6

NS 6

N_geo_dofs 6

Nr_coeff_SM

Laplace

3

Nr_coeff_LV 6

Nr_coeff_SM

Convection-diffusion

16

Nr_coeff_LV 4

For optimization of the data transfer we need to decide

which coefficients should be computed on the host system

side and which on the accelerator side. This depends on the

available  resources  and  the  type  of  the  solved  problem.

Amount of  data  to  send/store  for  one element  can be  ob-

served in Table II.

TABLE II.

NUMBER OF DATA ELEMENTS FOR ARRAYS USED IN NUMERICAL

INTEGRATION FOR PRISMATIC ELEMENTS

Gauss data 24

Shape functions at point 24

Shape functions total 144

Geometric data 18

Jacobian terms at point 10

Jacobian terms total 60

Coefficients at point

Laplace 

4

Coefticients total 9

Coefficients at point
Convection-

diffusion 

20

Coefticients total 20

For the GPU implementation the most important part is a

proper way of data transfer organization and utilization of a

limited resources. In order to port the code to the Xeon Phi

coprocessor we need to reorganize the code, based on the ex-

perience gained when implementing the numerical integra-

tion for the PowerXCell 8i architecture.

III. INTEL XEON PHI

With the development of multi-core architectures and a si-

multaneous trend of using the graphics cards for the calcula-

tion, an idea came up to combine several different architec-

tures  in a  single  hardware  unit  whose individual  elements

would be responsible for processing different type of code

fragments. The first device of this type – mentioned earlier

PowerXCell  8i  processor  was  unveiled  by  IBM  and  was

equipped with two core with IBM Power architecture (Power

Processing  Element)  and  a  few  specialized  SIMD  cores

(Synergistic Processing Elements). Its hybrid design allowed

for sending to SPE a pieces of code for which you can apply

the SIMD paradigm in order  to speed up calculations [9].

Truncated version of this processor has been successfully ap-

plied  for  commercial  purposes  in Sony Playstation 3 con-

soles and its scientific version was part  of the Roadrunner

computer which in 2008 exceeded the petaflops performance

barrier [10]. PowerXCell 8i processor was a very big step in

the development of architecture and despite the discontinua-

tion of its production it  has become a base used by other

manufacturers for a hardware development for high-perfor-

mance computing. At the same time Intel was working on its
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line of graphics cards codenamed Larabee trying to eliminate

the main disadvantage in programming CellBE or GPU ar-

chitectures, which is complicated programming model. The

main features of this architecture was the use of a very wide

vector units (512bit), texture units taken from the GPU, the

coherence memory hierarchy and compatibility with x86 ar-

chitecture [11]. On the basis of this project Intel Many Inte-

grated Core (MIC) architecture was developed,  which was

successfully  applied  in  Intel  Xeon  Phi  coprocessors  [12].

These coprocessors are sold as a PCI-express cards (Fig 1.)

and are  equipped with its  own operating system based on

Linux, and depending on the version 57-61 cores with hard-

ware multithreading support (4 threads per core). 

For  testing  purposes,  we  used  5110P  coprocessor

equipped with 8GB of RAM and 60 cores with a speed of

1GHz. However, in order to function properly, a single co-

processor core and 2GB of memory are reserved for the in-

ternal  operating  system  which  results  in  a  236  available

threads and 6GB of memory for performing the calculations

[14]. MIC Architecture cores design is based mainly on the

Pentium architecture but it is enhanced with 512-bit vector

units. The x86 compatible architecture theoretically allows

for easy transfer of existing code to be used on the coproces-

sor with a significant increase in  performance. Fig 2. shows

the internal structure of the single coprocessor core.

Every core  is  connected  to  the  ultra  fast  interface,  and

thanks to a coherent cache memory, the data between cores

are exchanged almost immediately (Fig. 3). 

IV. OPENCL PROGRAMMING MODEL

OpenCL is a  software development platform that  sup-

ports  many kinds  of  available  hardware,  from  standard

CPUs, through hybrid architectures to the GPUs [16]. In

recent years this platform has gained popularity due to its

portability  and  similarity  to  the  previously  used  CUDA

programming model  developed  by Nvidia [17].  OpenCL

code is compiled and run for a given platform, representing

the  environment  for  code  execution.  Each  platform  is

equipped with sets of devices of three types: CPU, GPU or

Accelerator. For one host system there could be many plat-

forms installed, varying on the vendor and supported de-

vices. Host system runs standard code and manages the ex-

ecution of an OpenCL code on device.  OpenCL code is

called a kernel and is written in a slightly modified C lan-

guage,  with  the  special  extensions  to  manage  different

types of devices. Each device in the platform is composed

of compute units, that are further divided into processing

elements. Individual threads are running on processing ele-

ments with capabilities  depending on  the architecture  of

device.  In  OpenCL  nomenclature  all  threads  are  called

work items and they are grouped into work groups. This al-

lows for  direct  hardware  mapping for  different  architec-

tures.  OpenCL programming model  is  shown on Fig.  4.

Threads within a single work group execute concurrently

and can be synchronized using fast system calls. Moreover,

they can share some of the data in their fast shared memo-

ry, called local memory in OpenCL nomenclature. Differ-

ent  work-groups  are  scheduled  independently  and  have

Fig 1. Xeon Phi coprocessor board schematic [13]

Fig 3. Xeon Phi microarchitecture [15]

Fig 2. Single coprocessor core [15]
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their own resources. OpenCL execution model specifies a

set of events that has to occur in order to run a kernel.  

 The first phase includes initialization of the OpenCL plat-

form, data structures and checking the available devices.

Then the kernel code has to be prepared (read or compile)

for running on the devices. Because of the ability of pass-

ing arguments to kernels, the space for them has to be allo-

cated on device, before executing a kernel. Host is also re-

sponsible for preparing and allocating the space needed for

variables and arrays in different types of memory that are

explicitly available to programmers. All memory transac-

tions are performed by sending a request to the OpenCL

management  layer.  Then  the  requests  are  realized  asyn-

chronously to the host code. The same strategy is used to

request kernel execution or transfer of data, back from de-

vice memory to the host memory [18]. 

In OpenCL the programmers have several types of mem-

ory regions explicitly available to use. Each of memory ob-

jects can be created in OpenCL memory model with differ-

ent mappings to hardware resources.  Individual variables

defined  inside  kernel  belong  to  private  memory.  Each

thread has its own copy of each variable, and they can be

stored in scalar or vector registers. Other memory regions

can be assigned through specific qualifiers. Typical memo-

ry regions are divided into three types – global, constant

and local. Global memory stores variables that are visible

to  all  threads  executing the  kernel.  Constant  memory is

also available for all threads but it is only accessible for

reading. Variables stored in fast local memory are shared

by threads in a single work-group. Because of the portabili-

ty of created code OpenCL contains procedures that allows

for adapting to different platforms and devices [19]. The

code can query the environment to get information about

many available  resources.  For  our  case  we compare  the

available  resources  of  all  three types of  devices  – CPU,

GPU and Accelerator.  The results are presented in Table

III. As we notice CPU and a Xeon Phi cards share the same

amount of local and constant memory which indicates the

same origins of this architectures.  The Tesla K20m card

used for testing our GPU implementations of numerical in-

tegration has bigger local  memory size but less compute

units.  Hence,  one can conclude that  it  should  be  slower

than the other devices, but OpenCL hardware layer  does

not  provide  information  on  deeper  division  of  compute

units into processing elements. OpenCL in both, CPU and

Intel MIC architectures treat their cores as a single com-

pute unit but it  ignores all CUDA or STREAM cores in

GPUs. Our reference Tesla K20m card is equipped with 13

compute units with the Kepler architecture [20] that indi-

cates that we have a massive amount of 192 processing ele-

ments per one compute unit, giving total 2496 cores avail-

able [21]. Despite of that all three architectures are treated

as a direct opponents in the domain of high performance

computing. This happens because each of these architec-

tures has its own unique characteristics that allow for direct

TABLE III.

COMPARISON OF DIFFERENT TYPES OF DEVICES AVAILABLE IN OPENCL

OpenCL properties CPU GPU Accelerator

CL_DEVICE_NAME
Intel(R) Xeon(R) CPU E5-2620 0

@ 2.00GHz
Tesla K20m

Intel(R) Many Integrated Core

Acceleration Card

CL_DEVICE_VENDOR Intel(R) Corporation NVIDIA Corporation Intel(R) Corporation

CL_DEVICE_VERSION OpenCL 1.2 (Build 67279) OpenCL 1.1 CUDA OpenCL 1.2 (Build 67279)

global memory size (MB) 32083.020 4799.563 5773.180

global max alloc size 

(MB)
8020.755 1199.891 1924.391

local memory size (kB) 32 48 32

constant memory size (kB) 128 64 128

cache memory size (kB) 256 208 0

cache line size (B) 64 128 0

number of compute units 24 13 236

Fig 4. OpenCL programming model
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comparison between them (e.g. architecture of cores, clock

speed, vector registers etc.). This determines also, that in

order to fully exploit possibilities of the hardware, all exist-

ing algorithms should be adapted separately for each of the

architectures.  The task of  numerical  integration becomes

non-trivial and therefore very interesting from the perfor-

mance point of view.

V. NUMERICAL INTEGRATION ON INTEL XEON PHI

For our tests we use ModFEM code - a computational

framework developed for solving various scientific and en-

gineering problems by the adaptive finite element method

[22]. Due to its modular structure it allows to test different

levels of the FEM. Therefore,  we can easily separate the

numerical integration algorithm and make a parallel ver-

sions for different architectures. 

For numerical integration algorithm we have several lev-

els of parallelism available. The chosen way of parallelisa-

tion will depend on the size of data and the number of cal-

culations in the solved problem. Therefore, we can choose

which loop from algorithm 1 should be divided. On first

level we can parallelize the outermost loop over elements.

Then, we can divide the loop over integration points and

subsequently two inner loops over shape functions. In our

previous works [5],[6] we have tested several strategies for

higher order finite elements. Because of the quite big sizes

of computed matrices in the problems described above, we

have tested division of the inner loops over  shape func-

tions, and also a loop over Gaussian integration points. In

the current case we decided to test standard approximation

module. Therefore, our stiffness matrices and load vectors

are quite small as we can see in Tables I and II. Hence, as

the method of parallelization the most natural way of paral-

lelizing the loop over elements is selected.

As it was mentioned above we decided to test two cases for

our  implementation  –  small  Laplace  and  big  Convec-

tion-Diffusion  problem.  Moreover,  we  have  tested  this

problems with the use of double precision and single preci-

sion variables to check the differences between DP and SP

hardware  units.  For  our  tests  on  graphic  cards  we have

tried two versions of kernels – one with the stiffness matrix

and load vector stored in registers and the second with the

matrices stored in shared memory. In this article we will

reference to them by using acronyms REG_ONE_EL for

register  and SHM_ONE_EL for  shared  memory version.

Both versions has their own advantages and disadvantages.

The first  one allows for  using very fast  registers,  and it

saves local  (shared) memory for other data,  but with the

limited number of  registers  available  it  can easily cause

register spilling and therefore lose the efficiency of the al-

gorithm. The second version allows for saving fast regis-

ters,  but  it  uses  a slower shared  memory.  Our ONE_EL

versions assume that the whole element is computed by the

one  work-group,  although  one  work-group  can  (and

should)  of course compute more than one element.  At a

first stage, host code has to compute all necessary sizes of

data and thus, all needed divisions of the loops.  For our

reference platform we use a system equipped with NVIDIA

Tesla K20m GPU, whose parameters are presented in Ta-

ble III.  The main difference that we must assume during

the transformation of the GPU algorithm for the Xeon Phi

implementation,  is  the size of  warp/wavefront.  This  size

(equals 32 for NVIDIA or 64 for AMD) indicates the mini-

mal size of work-group that  should be used on a given de-

vice. Due to the hardware division of every compute unit

of Tesla GPU, we must also provide proper (high enough)

ratio of compute unit occupancy. According to [23], Intel

Xeon Phi fully utilizes its vector registers when the work-

group size is set to 16. This allows for the most optimal au-

tomatic vectorization that can fully use the advantages of a

very wide vector registers to store variables and use vector

computations on the hardware units. Other difference lay in

the use of the shared memory, because all OpenCL memo-

ry levels are mapped into Xeon Phi global memory. Hence,

the use of  shared  and constant memory should be mini-

mized and all possible data should be declared locally to

allow proper vectorization. Of course, in the case of such a

complicated algorithm there is no possibility to fit all data

in registers, so we must find a proper way of preparing and

storing the data.  For these reasons,  in opposite to GPUs

SHM and REG versions that assumes only stiffness matrix

allocation, we have considered more complex options for

Xeon Phi. 

For our tests we use a computational domain with 782336

prismatic  elements.  Because  of  the  minimal  work-group

size that should be used for a certain architecture this indi-

cates that we have to compute data of 785408 elements on

Xeon Phi and 798720 on GPU, which in this second case is

16384 elements more than our computational domain size.

While this amount seems to be very large, in fact it is only

2% more calculations and it is absolutely necessary for the

proper mapping to the hardware.  Due to the fact that one

work-group has to compute 64 elements at once, we must

divide the number of elements per  compute unit  by this

size, so we will receive 832 work-groups that will work on

960 elements. For our Xeon Phi accelerator we have ac-

cordingly 236 work-groups with 208 elements to compute.

Therefore,  for  GPU  we  have  a  total  number  of  53248

threads, while for Xeon Phi there are only 3776 threads.

All precomputed values needed for calculations are shown

in Table IV. 

After  calculations  of  all  necessary  divisions,  the  space

needed for calculation is computed, and the data prepara-

tion phase begins. At this stage all needed buffers on the

kernel side are prepared and the necessary data are com-

puted. For our algorithm we need the following data:

 - execution parameters – all values earlier computed on

the host side that may be necessary for our computations –

e.g. the number of elements per kernel and per work-group.

This data can be stored in constant memory because we do
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not need to change it. For Xeon Phi case where constatnt

memory is a part of global we can assume direct read from

the global memory.

TABLE IV.

PARAMETERS FOR NUMERICAL INTEGRATION OF PRISMATIC ELEMENT

Xeon Phi Tesla K20m

number of elements to

compute
782336 782336

number of elements for

kernel
785408 798720

compute units 236 13

number of elements per

CU
3328 61440

number of elements per

wg
208 960

wg size 16 64

number of work groups 236 832

 - Gauss points data – all necessary Gaussian integration

points data – their coordinates and associated weights can

also be stored in constant memory or read from global in

Xeon Phi case.

 - Values of the shape functions and their derivatives on a

reference  element –  needed  for  all  Jacobian calculations

and obtained in the same way as previous data.

 - Geometric data (coordinates) for all elements – stored in

global memory of the device. Here we can assume several

different cases – we can copy it to local memory for each

element separately (main method for REG version), copy it

in  coalesced  way for  all  elements  in  work  group  (main

method for  SHM version) or  use it  directly form global

memory (Xeon Phi).

 - Problem dependent coefficients – send to global memory

for all elements. Here we can repeat the methods from the

geometric data above but for Xeon Phi we also decided to

copy it directly to the registers to speed up the calculations.

After preparing the data above we can start our computa-

tions. Firstly if we are using shared and constant memory

we must read  all  necessary execution parameters,  Gauss

data and values of the reference shape functions. At this

stage for SHM version we have to declare local arrays for

stiffness matrix and load vector. After preparation we are

entering  the  outer  loop  over  elements  processed  by  a

thread. According to the Table IV for Xeon Phi it is 208 el-

ements per work-group of size 16 which indicates that each

thread has to compute 13 elements, while for Tesla it will

be 960 elements per work-group of size 64, that results in

15 elements per  single iteration.  Inside  this loop  we are

reading all  geometrical  and coefficient  data  for  one  ele-

ment. As it was mentioned above for SHM version we can

organize  this  data  for  so-called  coalescent  access  which

theoretically enable higher performance of data transfer al-

lowing for simultaneously read all data by all threads with-

in one work-group. For Xeon Phi we can use global memo-

ry directly.  Because  of  the  use  of  the  local  memory on

GPU after reading this data we need to establish a synchro-

nization point with the use of a barrier, which can slow the

flow of calculations a little bit in opposite to Xeon Phi and

its  direct  global  memory access.  The  next  step  includes

defining (for  REG and PHI versions) and zero the local

stiffness matrix and load vector. Afterwards, we are enter-

ing the loop over Gauss points where we have to compute

the Jacobian transformation matrix and its inverse on the

basis  of  the  previously  obtained  Gauss  and  geometrical

data. After this calculations we are entering the innermost

loops over the shape functions. After computing the values

of shape functions and their derivatives for a real element

based on their values for the reference element and earlier

computed Jacobian matrix, we can compute a final entry to

the stiffness matrix and load vector according to the algo-

rithm 1. For SHM version we need to compute the right

offset  for  storing the computed matrix in local  memory.

After computations for each Gauss points we can send the

data to the device global memory. After all computations,

the data stored are read back to the host system memory

where they can be checked and used for further FEM com-

putations. The amount of data send to and received from

device global memory is shown in Table V.

TABLE V.

AMOUNT OF DATA SEND FOR NUMERICAL INTEGRATION

Device Problem
Variable

types

In data size

[MB]

Out data

size [MB]

Xeon Phi

Laplace

double 169,65 263,89

float 84,82 131,95

Conv-diff

double 238,76 263,89

float 119,38 131,95

Tesla

K20m

Laplace

double 172,52 268,37

float 86,26 134,19

Conv-diff

double 242,81 268,37

float 121,41 134,19

VI. TESTS RESULTS

For the best comparison we use the same SHM and REG

algorithms for our tests on Xeon Phi. Moreover, basing on

our experiments and the [23] we have prepared the more

optimal  version  with  the  direct  global  memory use  and

maximization of the register usage which we refer as PHI.

The performance results obtained are presented in tables

VI and VII.  For simplifying the comparison between our
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Xeon Phi card and a reference Nvidia Tesla K20m we pro-

vide corresponding figures.

SHM REG PHI SHM REG PHI SHM REG PHI SHM REG PHI

double float double float

Laplace Conv-diff

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

Sending input data to device memory

Xeon Phi 5110P

Nvidia Tesla K20m

[s
]

Fig 5. Sending input data to device memory

As we see from Fig. 5 the time for sending the data of

comparable  sizes  are  almost the same for  Xeon Phi and

Nvidia Tesla,  but in all  cases Xeon seems to be slightly

better than Tesla.

SHM REG PHI SHM REG PHI SHM REG PHI SHM REG PHI

double float double float

Laplace Conv-diff

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Time of kernel execution

Xeon Phi 5110P

Nvidia Tesla K20m

[s
]

Fig 6. Time of  kernel execution

Time of  kernel  execution  (Fig.  6)  shows more  differ-

ences depending on the tested problem and used algorithm.

A version with the use of shared memory turns out to be

non optimal in our cases,  but Xeon Phi is a much more

faster than the Tesla card. What is more interesting we can

see that  the REG version with stiffness matrix stored  in

registers is slightly more faster than the PHI version for a

small Laplace problem. All this advantage is lost when we

use more complicated Convection-diffusion problem. This

may indicate that Xeon Phi need quite big amount of data

to fully utilize its vector registers and take advantage of it. 

TABLE VI.

TEST RESULTS FOR INTEL XEON PHI

Problem
Variable

types

Kernel

version

Sending Input Data to device

memory Executing

kernel [s]

Copying Output Data from device

memory

[s] [GB/s] [s] [GB/s]

Laplace

double

SHM 0,02531 6,70280 0,07172 0,85134 0,30998

REG 0,02526 6,71710 0,03618 0,84913 0,31079

PHI 0,02540 6,67933 0,02967 0,84930 0,31073

float

SHM 0,01291 6,56829 0,03724 0,42433 0,31096

REG 0,01293 6,56175 0,02363 0,42609 0,30967

PHI 0,01286 6,59605 0,01492 0,42536 0,31021

Conv-diff

double

SHM 0,03538 6,74895 0,20397 0,85181 0,30981

REG 0,03545 6,73447 0,05066 0,85110 0,31007

PHI 0,03544 6,73691 0,03256 0,85159 0,30989

float

SHM 0,01800 6,63413 0,11021 0,42630 0,30952

REG 0,01795 6,64973 0,02525 0,43486 0,30343

PHI 0,01791 6,66460 0,01755 0,42597 0,30976
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 Unfortunately, all this gained performance is lost during

the copying the output data back from the accelerator to the

host memory (Fig. 7). As we see on Xeon Phi the organiza-

tion of the global memory has no impact on the obtained

results, in opposite to the Tesla card.

Table VIII shows the obtained results in Gflops – basing

on that we can see that our algorithm reaches almost 15%

of theoretical peak for both double and single precision ac-

cording to  [24].  This  can lead us to the conclusion that

there is a certain margin of performance that can be used

for further optimization.

TABLE VIII.

PERFORMANCE ON XEON PHI

Problem
Variable

types

Kernel

version
Performance [GFLOPS]

Laplace

double

SHM 31,92

REG 63,28

PHI 91,09

float

SHM 61,48

REG 96,89

PHI 155,47

Conv-diff

double

SHM 18,51

REG 74,53

PHI 149,75

float

SHM 34,26

REG 149,52

PHI 257,06

SHM REG PHI SHM REG PHI SHM REG PHI SHM REG PHI

double float double float

Laplace Conv-diff

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Copying output data from device memory

Xeon Phi 5110P

Nvidia Tesla K20m

[s
]

Fig 7. Copying output data from device memory

VII. CONCLUSIONS AND FUTURE WORK

As we have shown in this article Intel Xeon Phi could be

an efficient and easy to use hardware for the finite element

calculations. However, it needs quite big changes in actual-

ly developed GPU codes. In our further work we will try to

manually vectorize the calculations and change the data re-

trieving algorithm to be more efficient.  The first  method

will allow for comparing the automatic vectorization op-

tion of the compiler and check if it fully utilizes very wide

512-bit vector registers. Second method will allow to catch

up with the Tesla GPU speed of data transfer and will let to

make a full comparison of the competitive architectures.

TABLE VII.

TEST RESULTS FOR TESLA K20M

Problem
Variable

types

Kernel

version

Sending Input Data to device

memory Executing

kernel [s]

Copying Output Data from device

memory

[s] [GB/s] [s] [GB/s]

Laplace

double

SHM 0,029054 5,938045 0,232612 0,094975 2,82569

REG 0,029334 5,881336 0,022464 0,164163 1,634778

float

SHM 0,014627 5,897442 0,069616 0,142744 0,94004

REG 0,014691 5,871696 0,013967 0,047422 2,829597

Conv-diff

double

SHM 0,040705 5,965142 0,80109 0,509872 0,526347

REG 0,040874 5,940472 0,144406 0,094887 2,82831

float

SHM 0,020599 5,893718 0,188041 0,046696 2,873589

REG 0,020489 5,925403 0,058719 0,04689 2,861695
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