
The inverse infection problem
András Bóta

University of Szeged,
Institute of Informatics,

P. O. Box 652.,
6701 Szeged, Hungary

Email: bandras@inf.u-szeged.hu

Miklós Krész
University of Szeged,

Gyula Juhász Faculty of Education,
Boldogasszony sgt. 6,
6720 Szeged, Hungary

Email: kresz@jgypk.u-szeged.hu

András Pluhár
University of Szeged,

Institute of Informatics,
P. O. Box 652.,

6701 Szeged, Hungary
Email: pluhar@inf.u-szeged.hu

Abstract—The applications of infection models like the Linear
Threshold or the Domingos-Richardson model requires a graph
weighted with infection probabilities. In many real-life appli-
cations these probabilities are unknown; therefore a systematic
method for the estimation of these probabilities is required.
One of the methods proposed to solve this problem, the Inverse
Infection Model, was originally formulated for estimating credit
default in banking applications. In this paper we are going to
test the capabilities of the Inverse Infection Model in a more
controlled environment. We are going to use artificially created
graphs to evaluate the speed and the accuracy of estimations. We
are also going to examine how approximations and heuristics can
be used to improve the speed of the calculations. Finally, we will
experiment with the amount of a priori information available in
the model and evaluate how well this method performs if only
partial information is available.

I. INTRODUCTION

T
HE STUDY of infection processes has roots in two
seemingly different fields of research: sociology and the

medical sciences. In the latter, it was used to model the spread
of epidemics [9]. Applications focused on prevention, and the
identification of the “choke points" during an epidemic. In the
former, the spreading of information or opinions came into
focus. One of the earliest models in sociometry, Granovetter’s
Linear Threshold [12] model is still considered to be a viable
description of information diffusion.

In economics, Domingos and Richardson developed the
Independent Cascade model (IC) [10] for the purpose of
viral marketing. They proposed the influence maximization
problem, that is to find the set of k initial infectors for any k

that results in the largest expected infection. Kempe et al. [15],
[16] proved the influence maximization problem was NP-hard,
proposed a greedy algorithm for it, and also showed that the
generalization of the IC model is in fact an equivalent of the
Linear Threshold model. They also used random simulations
to approximate the vertex infection probabilities, and they
choose an arbitrary constant for edge infection probabilities.
This result stresses the importance of the exact computation
of vertex infection probabilities. This problem was proven to
be #P-complete by Cao [4].

Computing the maximal infection or the exact probabilities
of infection with any kind of model requires a weighted
network, that is the edge infection probabilities must be
available. This information is usually not known beforehand.

In most real-life applications, the edges are considered to
be some constant, or estimated using intuition guided trial-
and-error method based on known edge or vertex attributes.
Recently, a few papers were published in this topic discussing
systematic approaches for the estimation of edge infection
probabilities. In some of them [11], [17], the steps or iterations
of the infection process are assumed to be known, which is
realistic in the case of twitter or blog-based networks.

The Inverse Infection Problem, an application-driven ap-
proach was proposed recently by the authors [1] for the
prediction of credit default in bank transaction networks.
Unlike the above mentioned methods, this does not require
information on the individual steps of the infection process.
Instead it builds on other available data, such as estimations
of the probabilities of default for individual companies and
additional information characterizing the connection between
the companies.

Based on the good results of this method in applications, our
goal in this paper is to provide a solid foundation to the Inverse
Infection Problem in a more controlled environment. Our
method is based on the Generalized Cascade (GC) model [3], a
generalization of the Independent Cascade model. To compute
the edge infection probabilities themselves we will use a
meta-heuristic: the Particle Swarm Algorithm of Kennedy and
Mendes [14].

The paper is constructed as follows. In the next section
we will give a short introduction into infection mechanisms,
define the GC model, and the Inverse Infection Problem.
In Section III we will describe several ways to accurately
estimate the infection probabilities, including gradient-based
methods and Particle Swarm Optimization. Then we will
discuss various options to customize the estimations including
heuristics of the GC model, choices for attribute functions
and the number of patterns required to accurately estimate the
infection probabilities.

II. PROBLEM DEFINITION

The process of infection takes place on a graph G, where
V (G) denotes the set of vertices, and E(G) denotes the set of
edges. While most traditional models require directed edges,
depending on the application, they can be easily modified
to handle undirected ones. We also need to know the edge

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 75–83

DOI: 10.15439/2014F261
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 75

infection probabilities, that is a weight we ∈ [0, 1] for each
edge e.

The notion of states is important. Each vertex of the
network has a state of infection. The number of states and the
transitions between them are governed by the specific model.
One of the most basic approaches, the SIR model, [9] has three
states: Susceptible, Infected and Recovered. Infected nodes
infect susceptible ones, but after a certain period, which is
usually a parameter of the model, they may recover, no longer
infectious. Models in epidemics have a variety of states and the
transitions between them are often more complicated. Models
in economics or models describing information diffusion can
be considered simpler. In the case of the Independent Cascade
model, there are three states loosely corresponding to the ones
in the SIR model and the infection period only lasts for one
iteration. These three states are: susceptible, just infected (and
still infectious), infected (but no longer infectious).

Most infection processes are also iterative, that is the
process takes place in discrete time steps. Those models, that
allow nodes to become susceptible again some time after
becoming infected, may not terminate. It is easy to see, that
the IC model terminates in finite steps.

A. Infection Models

Any infection model can be described as a process, that
has two inputs: the first one is a weighted graph, where the
edge weights are probabilities. The second input is the set
of initial infectors A0 ⊂ V (G). These nodes are considered
as infected at the beginning of the process. The process
terminates at iteration t, and results in the set of infected nodes
A =

⋃t

i=0 Ai.
The specific way one vertex infects another varies depend-

ing on the model. In the case of the IC model [10], let
Ai ⊆ V (G) be the set of nodes newly activated in iteration i.
In the next iteration i+ 1, each node u ∈ Ai tries to activate
its inactive neighbors v ∈ V \∪0≤j≤iAj according to the edge
infection probability wu,v, and v becomes active in iteration
i + 1, if the attempt is successful. If more than one node
is trying to activate v in the same iteration, the attempts are
made independently of each other in an arbitrary order within
iteration i+1. If At = ∅, the process terminates in iteration t.
It is easy to see, that the process always terminates in a finite
number of iterations.

B. Generalized Cascade Model

Following the works of Bóta et al. [3], we can generalize this
model in the following way. Instead of using vertex sets for
representing the initial infectors, we work with two probability
distributions. The a priori distribution defines the probability,
that a vertex becomes infected on its own, independently of
other vertices at the beginning of the process. The a posteriori

defines the probability, that a vertex becomes infected at the
end of the process. For all vertices v ∈ V (G), we will denote
the a priori probability of infection as pv , the a posteriori as
p′v.

In some applications, an estimate of one or both of the above
described probability distributions is available. For example,
in the case of the banking application [1], [7] an accurate
estimation of the probability of default for each company
was given by standard models used by the bank1. Another
application in telecommunications uses estimations for the
probability of churn using similar methods. If such estimations
are not available we can resort to a crude but effective method.
Suppose we can observe the beginning and the end of the
infection process k times. By counting the frequencies of
infection, for all vertices v, how many times did v belong to A0

or A we can construct the respective probability distributions.
The accuracy of the estimation obviously depends on k, but k
does not have to be a large number. We will show in section
IV.D, that 6-8 observations are enough to produce outputs with
acceptable quality.

Based on these remarks and formulations, we can define the
Generalized Cascade model [2]:

The Generalized Cascade Model: Given an appropriately

weighted graph G and the a priori infection distribution pv,

the model computes the a posteriori distribution p′v for all

v ∈ V (G).

The infection process itself is the IC model, although other
models might also be used for different applications. We
have chosen the Independent Cascade model as the basis of
our method, because it performs well in modeling infection-
like processes in business applications [7]. Alternatively, this
model can be considered as a general framework of infection.

Unfortunately, the computation of the a posteriori distribu-
tion in the IC model is #P-complete. There are several existing
heuristics to provide estimations of p′v [5], [6], including the
ones the authors proposed in [2]. Two of these are Monte Carlo
based simulations. Complete Simulation is a direct adaptation
of the idea of Kempe et al. to the framework of the GC
model. The basis of the idea is the notion of reachability. By
selecting the edges (u, v) ∈ E(G) independently of each other
according to their infection probabilities wu,v , they construct
an unweighted graph which is a realization of the infection
process. Any vertex, that can be reached from any initially
infector is considered to be infected. We can adapt this process
into the GC model by computing a large number of individual
runs of the model and counting the frequencies of infections
(both a priori and a posteriori). The process has an unfortunate
property: the frequency (or sample size) must be high enough
to reduce the standard deviation characteristic of Monte Carlo
based methods.

The Edge Simulation method decreases the standard de-
viation of the previous method. In each run, a subgraph
containing all of the vertices able to infect the individual vertex
v is constructed for all vertices v ∈ V (G). This way the a
posteriori infection of v can be computed directly in each
run. The results of individual runs are averaged. The authors
have proposed two additional heuristics: In the Neighborhood

Bound Heuristic a tree is constructed from the 2-neighborhood

1The BASEL II default probabilities were computed using vertex attributes.

76 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

of a given vertex v representing all possible routes of infection.
Both the tree and the a posteriori infection of v can be
computed in a short time, resulting in a very fast heuristic.
The Aggregated Linear Effect model is a linear approximation
of the mechanism of the IC model. A more detailed description
of these methods can be found in [2].

C. Inverse Infection Problem

Based on the framework of the Generalized Cascade model,
we can define the Inverse Infection Problem.

Inverse Infection Problem: Given an unweighted graph G,

the a priori and the a posteriori probability distributions pv
and p′v, compute the edge infection probabilities we for all

e ∈ E(G).

Directly estimating each individual edge in a graph is
computationally infeasible even in small graphs. However,
in real-life applications the probability of infection between
vertices is a combination of other properties of the edges,
vertices and the graph itself. We are going to take advantage
of this fact to simplify computations and make the problem
solvable in reasonable time. We are going to assume, that
on each edge there are several attributes2, and the infection
probability of the edge is a parametrizedfunction of these
attributes3. This way, only the coefficients of this function have
to be estimated, which is a small number compared to the
number of edges.

There are multiple ways to define these functions. In this
paper, we are going to consider, that there is a polynomial
function fi on each individual attribute ai, i = 1, . . . , ℓ, where
ℓ is the number of attributes. Then, a normalized sum or
product is calculated from each fi(ai) resulting in the infection
probability we. The degree of these polynomials should be
low, but we allow different polynomials on different edges,
with possibly different degrees. If the maximum degree of
these polynomials is fmax, then there are at most (fmax+1)ℓ
coefficients to estimate.

III. ESTIMATION WITH LEARNING METHODS

To provide a solution for the Inverse Infection Problem,
we have developed the following learning algorithm. The
problem definition states, that the a posteriori distribution is
required as an input of any algorithm. In the case of a learning
algorithm, it is considered as a test or reference dataset. By
taking the a priori distribution we compute an estimation
of the a posteriori distribution with some initially random
starting coefficients. Then, an error function calculates the
difference between the reference set and the newly calculated
infection values. Our goal is finding the global minimum of
this error function: the difference between the a posteriori
vertex infections. Using an optimization algorithms, we can
efficiently estimate the coefficients of the attribute-functions
and thus the edge weights.

2Vertex attributes can be easily converted into edge attributes.
3It is possible, that some of these attributes have no influence on the

infection probability, but we expect the method to ignore the effect of these.

Fig. 1. The error surface of an IIP with one edge attribute and f1(a1) =
c0 ∗ a1 + c1 as the attribute function. Root mean squared error was used for
the evaluation.

A. Previous approaches and experiences

We have tried several optimization algorithms, including
more simple ones, like grid search, gradient-based methods
and meta-heuristics. Our first analysis was performed on
banking data where we used grid search for optimization.
While this early approach provided promising results [7], it
was clear that further refinement of the optimization algorithm
was required. Later, we have implemented a multi agent
gradient based method, and compared the performance of it
with our previous results [3]. The gradient method provided
more accurate estimations, but highlighted several unfortunate
properties of the problem itself.

Our first observation was that the error function was noisy.
This comes from using Monte Carlo methods to approximate
the IC model, since the deviation of these simulations makes
different runs with the same coefficient values have different
results. The noise can be reduced by increasing the frequency
parameter of the simulation, but this also increases the time
complexity of the method [3].

The second observation was that the problem is underde-
termined. Different edge weight configurations can result in
the same infection pattern, the same a posteriori distribution.
This results in alleys and plateaus on the error surface. In the
case of the example on Figure 1, the global minimum is in
the middle of the alley. Even in this simple example neither
algorithms are able to reliably find the best solution.

Grid search had serious performance issues both in finding
the global minimum and in time complexity. Due to its search
pattern, its precision is simply not enough to tackle with this
surface, and it also scales exponentially with the number of
coefficients. The gradient method also performs poorly: it
easily gets lost on the alleys and plateaus especially if they
are noisy as well. As a consequence, it rarely finds a solution
close to the global minimum, and the number of steps it takes
to find a solution at all can be quite high.

We have tried several error functions, mainly vector distance

ANDRÁS BÓTA ET AL.: THE INVERSE INFECTION PROBLEM 77

measurements, and ROC evaluation. One of our first expe-
riences was, that the latter is not enough to properly guide
the optimization method to the global minimum, so we have
shifted our attention to other measurements, and finally settled
on the root mean squared error. In this work we are going to
use the RMSE as an error measurement, that is we are looking
for the minimum of

√

√

√

√

1

|V (G)|

∑

v∈V (G)

(~̂p′v − ~p′v)
2, (1)

where ~̂p′v denotes the estimated a posteriori infection of vertex
v.

B. Particle-Swarm Optimization

In order to handle the above mentioned problems, we
have decided to implement the particle swarm optimization
algorithm of Kennedy [13]. This is an iterative method based
on the interaction of multiple agents or “particles". Each agent
corresponds to a different coefficient configuration, represent-
ing a coordinate in the parameter space of the problem4.

Apart from the coordinates themselves, the agents also have
a velocity. In each iteration the position of an agent is updated
by adding its velocity. The velocity of the agent is computed
using the best solution the agent has found and the best solu-
tions of the neighboring agents; the goodness of the solution is
measured by evaluating the error function on the coordinates
visited by the particles. Agents are connected to each other
according some topology describing the neighborhood of each
agent.

The specific way the velocities of the agents are updated and
the topology itself is not fixed: there are various approaches
in the literature for specific applications and for more general
problem solving. In our work we have followed the recom-
mendations of Kennedy and Mendes [14], and found, that it
performs well in finding coefficient configurations close to the
global minimum.

We have used the Fully Informed Particle Swarm published
in [14] with 9 agents in a von Neumann neighborhood5. The
position and the velocity of the agents are updated according
to the following equations:

~vi ← χ

(

~vi +

Ni
∑

n=1

U(0, ϕ)(~bnbr(n) − ~xi)

Ni

)

, (2)

~xi ← ~xi + ~vi, (3)

where ~xi and ~vi denotes the coordinate and velocity of particle
i, U(min,max) is a uniform random number generator, ~bi is
the best location found so far by particle i, Ni is the number
of neighbors i has and nbr(n) is the nth neighbor of i. The
formula has two parameters: χ is the constriction coefficient

4Again, the subject of the optimization is the coefficient values of the
attribute function(s)

5Each agent has four neighbors in a grid, connected to the upper, lower,
left and right, while wrapping around the edges.

Algorithm 1 Particle Swarm Optimization

1: for all ai do

2: Initialize ~xi for agent ai within the boundaries of the
search space

3: Initialize ~vi for agent ai
4: Set ~bi ← ~xi

5: Select the neighbors of ai according to the topology
6: end for

7: repeat

8: for all ai do

9: Update ~vi according to equation 2
10: Update ~xi according to equation 3
11: Calculate the error function e(~xi) in position ~xi

12: if e(~xi) < e(~bi) then

13: ~bi ← ~xi

14: end if

15: end for

16: until termination criterium is met

and ϕ is the acceleration constant. Again, we have used the
recommendations of Kennedy et al., and set χ = 0.7298 and
ϕ = 4.1.

At the beginning of the search, the agents are initialized
with zero velocities and random starting coordinates within
some reasonable bounds of them. Then in each iteration these
two vectors are updated according to equations 2 and 3 in a
synchronized manner. The search is completed if the global
minimum found considering all agents does not change for
five consecutive iterations. We have experimented with other
values and found, that increasing it does not improve the
quality of the results, and decreasing it does not reduce the
running time considerably.

IV. EVALUATION

The most natural way to evaluate the stability of the
optimization method is by counting the average and maximum
number of iterations the method takes before it finishes.
However, the quality of the solution of the Inverse Infection
Problem depends on additional factors; we will discuss three
of these. The first one is the choice of the attribute func-
tions. Choosing an appropriate function is important, since
depending on the available attributes this function either maps
into the [0, 1] interval directly or some additional form of
normalization is required. The second one is the choice of
heuristics applied for the GC model. These have a serious
impact on both the accuracy and the running time of the
learning method. The third factor is the number of learning
patterns available. In case the exact a priori and a posteriori
infection probabilities are not available, the only thing to do
is to rely on counting the frequencies of infections. In real life
we cannot hope to witness an infection process on any network
in more than a handful of times. It is therefore necessary to
investigate the sensitivity of our method to low-quality inputs.

As a basis of our analysis we have used graphs generated
with the forest fire method of Leskovec et al. [18]. We have

78 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 2. The average number of iterations with different function configura-
tions.

created a series of graphs of sizes n = 1000, . . . , 100000, with
parameters p = 0.37 and pb = 0.32, for forward and backward
burning probabilities, respectively. We have assigned a number
of edge attributes ai, i = 2, . . . , 10 to these networks. These
attributes are randomly generated: they were drawn indepen-
dently from a uniform distribution between [0, 0.5]. We have
also used randomly generated a priori infections. The expected
size of the set of initial infectors is 0.3∗n. If v is selected, then
an a priori infection probability was drawn from an uniform
distribution between [0, 0.5], otherwise pv = 0. We have used
various attribute functions, description of these will be given
in section IV.B. Finally for each network and each attribute
function we have created an a posteriori infection distribution
as the reference dataset. For this purpose we have used
Compete Simulation with sample size k = 10000, because
this method gives the best approximation of the original IC
model.

A. Stability of the optimization

The performance of the optimization method itself can be
measured in two ways. The distance between the solution
found by the method and the global minimum is conveniently
measured by the error function itself. However, the precision
of the algorithm also depends on the heuristics used to
approximate the Generalized Cascade model. Consequently,
we will discuss this in the following sections.

The time complexity of the method is the sum of two
distinct parts of the algorithm: evaluating points on the error
surface and the search method itself. The latter consists of the
repeated evaluation of the formula above, after initializing the
neighborhood and the starting coordinates. Since the number
of agents is small, this part of the algorithm is very fast,
and has negligible impact on the running time of the overall
method.

In each iteration every agent evaluates the error function.
This evaluation is the computation of the GC model using
the coordinates - coefficients of the given agent. The time
complexity of this step heavily depends on the used heuristic.
Altogether, we can say, that the time complexity of a single
run is s ∗ a ∗ h, where s is the number of iterations, a is the
number of agents (a constant) and h is the time complexity of

the infection heuristic. This also means, that we can describe
the time complexity of the algorithm by measuring the average
or maximum number of iterations and multiplying it with the
time complexity of the infection method and the number of
agents. Breaking the time complexity of the method into two
different factors makes sense because of another reason: the
individual runs of the GC heuristics may be run on multiple
threads simultaneously, significantly improving the speed of
the method.

On Figure 2 we can see the average number of iterations
for different numbers of coefficients. We have used a small
network with |V (G)| = 1000. The point of interest here is,
starting from a simple problem with only two coefficients to
more complex ones, the expected number of iterations grows
slowly, and stabilizes around 12. The maximum number of
iterations remains bounded as well, even in the experiment
with 21 coefficients, it does not go beyond 30. The results
shown on Figure 2 were computed with 9 agents. We have tried
this problem with 16 agents as well and got similar results.
If we compare the different infection heuristics, they perform
similarly, with the non-Monte Carlo methods finishing slightly
sooner, usually by 4-5 iterations.

We can conclude, that the Particle-Swarm Optimization
method described in this section is able to solve the Inverse
Infection Problem with satisfying results. The algorithm is
very stable, and even in the worst case, it finishes within 30
iterations. We will evaluate the precision and running times of
this method considering different heuristics of the Generalized
Cascade model in section IV.C. We will also discuss choices
for attribute functions, and the number of patterns required to
get good estimations of the edge infection probabilities.

B. Choice of attribute functions

We have seen, that in our model, the edge infection
probabilities are computed from some additional information
on the edges in the form of edge attributes by so-called
attribute functions. The choice of these attribute functions is
an important part of our method. A natural requirement of this
choice is, that it must result in infection probabilities: it must
map into the [0, 1] interval.

There are two approaches to this problem: the first one is to
construct problem-specific functions, taking into account the
structure of the network, the nature of the infection model and
the number and domain of the attributes. This way it is possible
to calculate the infection probabilities directly, without any
form of additional normalization. This is the obvious choice
if the above mentioned information is available.

If we do not have this information, we can try a more user-
friendly approach. We can apply functions to the individual
attributes, summarize them and finally normalize them. A
variety of functions might be considered for this purpose.
In our work, we have used low-degree polynomials for the
individual attributes and simple addition or multiplication to
join them. We have normalized the resulting edge infection
probabilities according to

ANDRÁS BÓTA ET AL.: THE INVERSE INFECTION PROBLEM 79

Fig. 3. The RMSE with different function configurations on a small network with n = 1000.

Fig. 4. The running time of the infection heuristics with different network sizes measured in seconds. Figure used with the permission of the authors [2].

norm(~e) =
~e−min(~e)

3(max(~e)−min(~e))
, (4)

where ~e is a vector containing the infection probabilities for
each individual edge. The reason why we have used the
multiplier 3 in the denominator is, that according to our
findings in the prediction of default events on banking data,
the edge infection probabilities are low [7]. The normalizer
function obviously distorts the shape of the individual attribute
functions, but in real-life problems a simple weighted, nor-
malized sum of attributes is sufficient to produce acceptable
results.

In this paper, we have used seven attribute function con-
figurations, ai denotes attribute i and cj denotes coefficient
j:

• Weighted sum of two attributes: c1a1 + c2a2, two coeffi-
cients in total.

• Weighted sum of four attributes:
∑

i ciai, i = 1, 2, 3, 4,
four coefficients in total.

• Weighted sum of six attributes:
∑

i ciai, i = 1, . . . , 6, six
coefficients in total.

• Weighted sum of eight attributes:
∑

i ciai, i = 1, . . . , 8,

eight coefficients in total.
• Weighted sum of ten attributes:

∑

i ciai, i = 1, . . . , 10,
ten coefficients in total.

• Sum of quadratic polynomials with eight attributes c1 +
∑

i(c2ia
2
i+c2i+1ai), i = 1, . . . , 8, 17 coefficients in total.

• Sum of quadratic polynomials with ten attributes c1 +
∑

i(c2ia
2
i + c2i+1ai), i = 1, . . . , 10, 21 coefficients in

total.

In section IV, we have tested the effect of these function
configurations on the stability and accuracy of the optimization
method. Details of these can be found in the appropriate
subsections.

C. Accuracy and the choice of heuristics

Previously, in section II.B, we have given short descriptions
of some heuristics of the GC model [2]. In this section we
will evaluate the performance of them in relation with the
learning method described above. Complete Simulation is a
direct adaptation of the idea of Kempe et al. [15], it can be
considered as the best approximation of the original IC model.
Therefore, we will use CS with sample size k = 10000 to
create an a posteriori distribution as a reference set. Then, we

80 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 5. The running time of the infection heuristics on large networks measured in seconds.

will use each heuristic together with the learning method to
compute the edge infection probabilities:

• Complete Simulation (CS) with sample size k = 10000,
a very accurate simulation.

• Complete Simulation (CS) with sample size k = 1000, a
very fast simulation.

• Edge Simulation (ES) with sample size k = 100, a
simulation based heuristic.

• Neighborhood Bound Heuristic (NBH), an extremely fast
lower approximation.

• Aggregated Linear Effect (ALE) model, a de Groot [8]
based simplification of the infection process.

Since the running time and the accuracy of the heuristics are
different, we are going to use two different datasets to evaluate
their performance. First, small networks with |V (G)| ≤ 5000
will be used to make general observations, then we will test
the more robust heuristics on large networks with |V (G)| =
10000, . . . , 100000. Our largest network has 100000 vertices
and 2.3 million edges.

As we can see on Figure 3, the Monte Carlo based simula-
tions of the GC model (CS and ES) are able to estimate the
reference distribution well, with the measured error between
0.01−0.03. The other two heuristics (NBH and ALE) are tai-
lored to small edge infection probabilities with rare infections,
hence they do not perform so well on this dataset. Note, that in
some cases even an error of this magnitude is acceptable, and
the time complexity of these methods allows them to handle
larger networks. If we compare the results computed by using
different attribute functions, we can see that they have minimal
effect on the accuracy of the methods.

Our results on the running times6 of these heuristics on
small networks correspond with our previous findings [2]. The
speed of the simulations are governed by the sample size.
Complete Simulation is considerably faster than ES7 because

6We have implemented the methods in JAVA, and we have used a computer
with an Intel i7-2630QM processor, and 8 gigabytes of memory.

7Note the sample sizes.

the latter focuses on the fast computation of smaller infections.
By decreasing the sample size CS can tackle larger networks as
well. The Neighborhood Bound Heuristic is able to compute
the a posteriori infections of the largest networks within a
minute, enabling our method to scale upwards and handle real-
life datasets and networks with possibly millions of nodes and
edges.

We can conclude, that in general, the use of Complete
Simulation is recommended. Both its precision and accuracy
are good on large graphs. If the infection probabilities are
lower than our current dataset, the use of Edge Simulation
is also advisable. The Neighborhood Bound Heuristic and the
Aggregated Linear Effect model are able to handle even larger
networks, yet this comes at the cost of a significantly lower
precision.

D. Number of patterns

In many real-life applications the a priori or a posteriori
probabilities of infections are unavailable. In this section we
are going to assume, that the initial infection probabilities are
given, but we only have a small number of observations on the
a posteriori infections. We are going to simulate this on a small
network by generating an a posteriori distribution using CS
with k = 1, . . . , 10, corresponding to 1, . . . , 10 observations.

We can see, that the proposed method gives a rough estimate
of the vertex infection probabilities in only a few iterations. If
we consider a threshold of 0.15 as an acceptable estimation,
our method only requires 6 observations to reach it. However,
it is important to keep in mind, that the method tries to create
a posteriori infections close to the reference. The problem
is underdetermined even with exact possibilities of vertex
infection, with only a handful number of observations many
attribute function configurations (and edge weights) may result
in the same infection. The results in this section only imply,
that our method is able to give one of these.

Different infection heuristics are shown on Figure 6, one can
see, that the simulations have identical performance regardless

ANDRÁS BÓTA ET AL.: THE INVERSE INFECTION PROBLEM 81

Fig. 6. The precision of the infection heuristics with a limited number of observations of the reference distribution.

of the sample size. As before, the non-Monte Carlo based
methods perform poorly, their use is not recommended with
low-quality inputs.

V. CONCLUSIONS

Our goal on this paper was to extend the previous results of
the Inverse Infection Problem and its solution. We have given a
detailed description and analysis of the Generalized Cascade
Model, the Inverse Infection Problem and a Particle-Swarm
Optimization algorithm capable of giving a good estimation
of the latter. Several aspects of the method were investigated:
We have tested the stability and accuracy of the optimization
method, we have given a general approach to choose the
correct attribute functions, we have examined the implications
of choosing between the heuristics of the GC model and we
have tested our method in low-quality inputs as well.

The given method is able to accurately predict the edge
infection probabilities in a small number of iterations while the
number of attributes and the shape of the attribute functions
have only a small effect on this. Our method also handles low-
quality inputs well. Of the infection heuristics we recommend
the use of Complete Simulation, because it gives accurate
results with acceptable standard deviation in reasonable time.

In our previous paper we have also given an application of
this method in the prediction of credit default [7]. Our method
was able to predict the default of the worst 5% of clients
accurately.

ACKNOWLEDGMENT

The first and second authors were supported by the Eu-
ropean Union and co-funded by the European Social Fund.
Project title: “Telemedicine-focused research activities on
the field of Mathematics, Informatics and Medical sciences.
Project number”: TÁMOP-4.2.2.A-11/1/KONV-2012-0073

The third author was supported by the European Union and
the European Social Fund through project FuturICT.hu (grant
no.: TÁMOP-4.2.2.C-11/1/KONV-2012-0013).

REFERENCES

[1] A. Bóta, M. Krész and A. Pluhár, Applications of the Inverse Infection
Problem on bank transaction networks. Submitted.

[2] A. Bóta, M. Krész and A. Pluhár, Approximations of the Generalized
Cascade Model. Acta Cybernetica 21 (2013) 37–51.

[3] A. Bóta, M. Krész and A. Pluhár, Systematic learning of edge proba-
bilities in the Domingos-Richardson model. Int. J. Complex Systems in
Science Volume 1(2) (2011) 115–118.

[4] Tianyu Cao, Xindong Wu, Tony Xiaohua Hu and Song Wang, Active
Learning of Model Parameters for Influence Maximization. Machine

Learning and Knowledge Discovery in Databases, Lecture Notes in
Computer Science, eds. Gunopulos et al., Springer Berlin/Heidelberg,
(2011) 280–295, http://dx.doi.org/10.1007/978-3-642-23780-5_28.

[5] Wei Chen, Yifei Yuan and Li Zhang, Scalable Influence Maximiza-
tion in Social Networks under the Linear Threshold Model. Proceed-

ing ICDM ’10 Proceedings of the 2010 IEEE International Con-

ference on Data Mining, IEEE Computer Society (2010) 88–97,
http://dx.doi.org/10.1109/ICDM.2010.118.

[6] Wei Chen, Chi Wang and Yajun Wang, Scalable Influence Maximiza-
tion for Prevalent Viral Marketing in Large-Scale Social Networks.
Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM (2010) 1029–1038,
http://doi.acm.org/10.1145/1835804.1835934.

[7] A. Csernenszky, Gy. Kovács, M. Krész, A. Pluhár, T. Tóth, The use of
infection models in accounting and crediting. Challenges for Analysis

of the Economy, the Businesses, and Social Progress Szeged (2009) pp.
617–623.

[8] M. H. DeGroot Reaching a Consensus. Journal of

the American Statistical Association, 69 (345): 118–21,
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10480137.

[9] O. Diekmann, J. A. P. Heesterbeek, Mathematical epidemiology of
infectious diseases. Model Building, Analysis and Interpretation. John

Wiley & Sons, 2000.
[10] P. Domingos, M. Richardson, Mining the Network Value of

Costumers. Proceedings of the 7th International Conference on

Knowledge Discovery and Data Mining, ACM (2001) 57–66,
http://doi.acm.org/10.1145/502512.502525.

[11] A. Goyal, F. Bonchi, L.V.S. Lakshmanan Learning influence probabil-
ities in social networks. Proceedings of the third ACM International

Conference on Web search and data mining. ACM (2010) 241–250,
http://doi.acm.org/10.1145/1718487.1718518.

[12] M. Granovetter, Threshold models of collective behavior.
American Journal of Sociology 83(6) (1978) 1420–1443,
http://psycnet.apa.org/doi/10.1086/226707.

[13] J. Kennedy Particle Swarm Optimization. Encyclopedia of Machine
Learning, Springer US (2010), 760–766, http://dx.doi.org/10.1007/978-
0-387-30164-8_630.

[14] J. Kennedy, R. Mendes Neighborhood topologies in fully informed and
best-of-neighborhood particle swarms. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews. 36 (4) (2006)
515–519, http://dx.doi.org/10.1109/TSMCC.2006.875410.

82 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[15] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the Spread of Influence
though a Social Network. Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ACM (2003) 137–146, http://doi.acm.org/10.1145/956750.956769.

[16] D. Kempe, J. Kleinberg, E. Tardos, Influential Nodes in a Diffusion
Model for Social Networks. Proceedings of the 32nd International Col-

loquium on Automata, Languages and Programming (ICALP), Springer-
Verlag (2005) 1127–1138, http://dx.doi.org/10.1007/11523468_91.

[17] M. Kimura, K. Saito, Tractable models for information diffusion in

social networks. Knowledge Discovery in Databases, Lecture Notes
in Computer Science Springer Berlin / Heidelberg, (2006), 259–271,
http://dx.doi.org/10.1007/11871637_27.

[18] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. Pro-
ceedings of the1th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM (2005) 177–187,
http://doi.acm.org/10.1145/1081870.1081893.

ANDRÁS BÓTA ET AL.: THE INVERSE INFECTION PROBLEM 83

