
Identification of malware activities with rules

Bartosz Jasiul, Joanna Śliwa, Kamil Gleba
Military Communication Institute,

C4I Systems’ Department,

ul. Warszawska 22a, 05-130 Zegrze, Poland

Email: {b.jasiul, j.sliwa, k.gleba}@wil.waw.pl

Marcin Szpyrka
AGH University of Science and Technology,

Department of Applied Computer Science,

al. Mickiewicza 30, 30-059 Kraków, Poland

Email: mszpyrka@agh.edu.pl

Abstract—The article describes the method of malware ac-
tivities identification using ontology and rules. The method
supports detection of malware at host level by observing its
behavior. It sifts through hundred thousands of regular events
and allows to identify suspicious ones. They are then passed on
to the second building block responsible for malware tracking
and matching stored models with observed malicious actions.
The presented method was implemented and verified in the
infected computer environment. As opposed to signature-based
antivirus mechanisms it allows to detect malware the code of
which has been obfuscated.

I. INTRODUCTION

O
VERWHELMING number of computer systems are

connected to each other by global network – Internet,

which allows to produce results beyond those achievable by

the individual systems alone. Outcomes of cooperative work

and accessibility of information are perceived and appreciated

probably by all its users.

The advantages of this technology are available, unfortu-

nately, also for hostile goals. The number of cyber threats

arises rapidly from 23 680 646 in 2008 [1] to 1 595 587 670

in 2012 [2], and this is nowadays one of the most vexing

problems in computer system security [3]. At the end of 2012

Kaspersky Lab, the Russian producer of antivirus software,

reported that [4] it currently detects and blocks more than

200 000 new malicious programs every day, a significant

increase from the first half of 2012, when 125 000 malicious

programs were detected and blocked each day on average.

Although awareness about necessary security appliances

seems to be common and the tools used for that purpose are

getting more and more advanced, the number of successful

attacks targeted on computer systems is growing [5]. They are

mostly related to denial of offered services, gaining access

or stealing private data, financial fraud, etc. Moreover, the

evolution towards cloud computing, increasing use of social

networks, mobile and peer-to-peer networking technologies

that are intrinsic part of our life today, carrying many con-

veniences within our personal life, business and government,

gives the possibility to use them as tools for cyber criminals

and potential path of malware propagation [6]. Computer

Work has been partially financed byby the National Centre for Research and
Development project no. PBS1/A3/14/2012 "Sensor data correlation module
for detection of unauthorized actions and support of decision process" and the
European Regional Development Fund the Innovative Economy Operational
Programme, INSIGMA project no. 01.01.02-00-062/09.

systems are prone to cyber attacks even though a number

of security controls are already deployed [7], [8]. Cyber

criminals are focused on finding a way to bypass security

controls and gain access into the protected network. For that

reason organizations, companies, governments and institutions

as well as ordinary citizens all over the world are interested

in detection of all attempts of malicious actions targeted on

their computer networks and single machines [9].

Malicious activity detection starts with application of var-

ious techniques, the success rate of which depends on the

reliability of the malware model. Usually they are based

on code signatures. Security controls (e.g. antivirus tools)

might be maladjusted because signatures of new threats are

not identified yet. Hackers often use existing parts of code

in order to implement new types of malware. This allows,

in return, to quickly develop signatures of new dangerous

software. Therefore, the more signatures are deployed the

more malicious codes are identified. On the other hand, one of

the methods for misleading signature-based detection systems

is code obfuscation, the aim of which is generating – from

already existing code – a new application that cannot be

assessed yet as risky by security controls [10]. This technique

is simple to be used and potentially successful. One of

the countermeasures in this case is to follow behaviors of

malicious software in order to identify them and eliminate

from the protected system.

According to the study conducted in 2012 by the Verizon

RISK Team [11] with cooperation from many national federal

organizations, including e.g. Australian Federal Police, Irish

Reporting and Information Security Service, and United States

Secret Service new techniques that speed up the process of

malware detection to hours are necessary. Authors of the

report [12] indicate that antivirus products should be supported

by malware behavioral analysis tools in order to detect those

of attacks for which signatures were not established. An

existing example of appliance that uses behavioral analysis for

advanced persistent threats detection is Digital DNA by HB-

Gary that extends the capabilities of McAfee Total Protection

antivirus [13]. Detailed technical specifications of this solution

have not been released for public. The product brochure ex-

plains that multiple low level behaviors are identified for every

running program or binary. This leads to conclusion that each

application is observed from behavioral perspective. McAfee is

proud that the solution allowed to detect last year more 0-day

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 101–110

DOI: 10.15439/2014F265

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 101

attacks than during the previous five years combined. This

indicates the scale of new malware development and efficacy

of the behavioral approach.

II. STATE OF THE ART IN MALWARE DETECTION

Currently there are two major techniques seen as prospective

for malicious threats detection. One of them is machine

learning [14] which allows to detect anomalies in the use

of host machines by malicious software. This approach is

only applicable in systems, for which a model of normal

behavior can be established. It is only possible in such an

environment where patterns for host machine activity can be

identified, e.g. in production environment, SCADA systems,

etc. Current usage of computer systems, mobility of users,

enormous number of executed applications and visited internet

sites cause that setting up a normal behavior model for

malware detection is almost impossible. Such a method may

also generate too many false positive alarms.

Other methods used for identification of malicious actions

are based on different forms of specially prepared behavioral

patterns prepared in the process of static code analysis or var-

ious host-based honeypots and sandboxes. Those patterns can

be then applied in detection tools, e.g. rule based engines and

complex event processing (CEP) tools. This article presents

the method that uses rules [15] in order to identify malicious

actions of the host machine and filters out from the number

of system activities only these that are typical for malware.

III. IDEA OF THE SOLUTION

In our work we proposed and developed behavior-oriented

malware hunting tool, so called PRONTO, that could be used

in parallel to existing signature-based tools.

The main assumption for the introduced method is that the

malware was not recognized yet by the signature mechanisms.

The aim therefore is to track its suspicious activities in order

to find it while running in the system.

PRONTO hunting tool performs its activity in two stages

(Fig. 1):

• Filtering of the system events registered by the system

monitors (sensors) to discover the main features of the

hostile activity. These features are related to particular

objects and actions triggered on that objects – e.g. registry

(add entry, modify entry, delete registry entry, etc.), pro-

cess (start, stop process, etc.), file (copy, delete, run, open,

close file, etc.), domain (connect to, etc.), IP address

(connect to, etc.);

• Tracking suspicious activity in order to discover ma-

licious exploits running in the system. Filtered events

are correlated in order to find similarities with the stored

malware activities modeled in the form of Colored Petri

nets [16]. The result of malware tracking is the alarm

that contains information vector about malicious activity,

similarity to the known attacks and list of incidents that

affected the system.

This article presents only the first stage which is related

to capturing events from sensors and analyzing them with

an expert system that uses – defined for the purpose of the

method – comprehensive ontology, so called PRONTOlogy.

Registered events in the form of XML objects are sent to

the PRONTOntology engine and lifted to add entries to the

Knowledge Base. PRONTOlogy describes events registered

by system monitors and is able, on the basis of rule engine

and inference, with the use of specially defined rules [17],

to classify an event as potentially suspicious, malicious or

regular. As a result, markings of the modeled malware in the

form of CP-nets [18][19] are delivered for further analysis.

The second element of the threats’ tracking component of

the solution is PRONTOnet [20]. It provides formal model

of malware behavior and allows to track suspicious activities

potentially assigning them to the class of known malware types

or identifying unknown ones. Known exploits can be invisible

to signature-based malware detecting tools after their code

has been obfuscated, although their activities can be easily

observed. It also happens often that a new malware piece of

software is composed of known components from other ones.

This results in another behavior pattern that can be tracked as

a new exploit, not identified yet. The result of threats tracking

stage is an alert informing about identification of suspicious

or malicious events with a certain similarity rate to the known

malware types.

IV. IDENTIFICATION OF MALICIOUS ACTIONS

Static analysis of malicious code or intelligent algorithms

for malware behavior recognition provide patterns that can

be defined in low level programming language (e.g. Assem-

bler) or can be represented on the level of operating system

activities. In case of our solution the second approach was

selected, which means that identification of malicious actions

is performed while monitoring actions of the host machine. It

was mainly due to availability of tools for operating system

monitoring and easiness of processing.

The two-stage malware hunting process presented in this

article starts with sifting through a great number of actions

that are generated by the up and running operating system.

This aimes for identification of those events that should be

perceived as suspicious and processed further on. This process

should enable automatic filtering of events on the basis of their

characteristic features. However, it is not trivial to assume

an action is suspicious since the mechanism must catch the

context of its invocation in order to assess if it is a regular

operating system or user activity, or anomaly that should be

investigated further on. For this reason, it was necessary to use

a method that could provide the possibility to deduce from the

gathered data and analyze possible correlation among events.

These requirements were met by the semantic techniques

based on ontology and rules that enable to create knowledge

base and infer additional facts automatically.

According to [21] An ontology is an explicit and formal

specification of a conceptualization.

In general, ontology describes a domain of discourse for-

mally. Typically, ontology consists of a finite list of terms,

and relationships between those terms. This set describes so

102 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 1. PRONTO – malware hunting tool

called TBox statements, which are Terminological statements

describing the domain in terms of controlled vocabularies.

They describe important concepts (classes of objects) of the

domain and their properties.
For the purpose of this solution there has been proposed

an ontology modeled in the Web Ontology Language (OWL)

titled PRONTOlogy.owl that describes basic classes and

relationships among them. Since the investigated domain needs

the description that would enable to reflect and represent

facts that a resource executes an action on another resource

particular object properties are used. They indicate actions

executed on resources and enable to define appropriate triples

(e.g. run (x,y), where x, y are members of Resource

class and run is object property, with domain and range equal

to Resource).
Based on TBoxes there can be defined e.g. the following

general statements:

Event(x)

Resource(y)

ResFile(z)

hasResource(x,y)

Resource(y) is a ResProcess

ResFile(z) is a Resource

run (y,z)

where:

• Event, Resource, ResProcess, ResFile –

are classes,

• hasResource, run – are object properties,

• is a – is subclass relationship.

According to Fig. 2 the model ontology consists of the three

main classes: Event, Place, Resource.
In order to differentiate types of resources that perform

actions observed by system monitors, there have been defined

Fig. 2. PRONTOlogy model

the following subclasses of the Resource class:

• ResFile – where the resource is a file,

• ResRegistry – where the resource is a registry,

• ResProcess – where the resource is a process,

• ResDomain – where the resource is a domain the system

is trying to connect to,

• ResIPAddress – where the resource is an IP address

the system is trying to connect to.

In order to indicate particular registry entries, file names,

etc. datatype properties have been proposed. They describe

name of the Resource (ResourceName) and name of par-

ticular Event (EventName).

In order to reflect activities on system resources there have

been modeled the following object properties that resemble

BARTOSZ JASIUL, JOANNA ŚLIWA, KAMIL GLEBA, MARCIN SZPYRKA: IDENTIFICATION OF MALWARE ACTIVITIES WITH RULES 103

types of system activities:

• run – e.g. running a service, process;

• open – e.g. opening a file, registry;

• close – e.g. closing a file, application, process;

• modify – e.g. modification of registry entry, file, pro-

cess;

• execute – e.g. executing an application;

• terminate – e.g. terminating a process;

• connect – e.g. connecting to the IP address or domain;

• query – e.g. querying the registry entry state;

• download – downloading data from remote location;

• create – creating a new object, e.g. registry entry, file;

• delete – deleting an object, e.g. file, registry entry.

For all object properties listed above Domain and Range

are equal to Resource, which means that one resource can

execute actions on other resources.

There are also additional object properties that can reflect

the fact:

1) that particular event should be perceived as a Place:

hasPlace, where

Domain = Event, Range = Place,

2) that particular marking appears for particular Place:

hasColor, where

Domain = Place, Range = Resource, and

3) that particular event is related to a Resource:

hasResource, where

Domain = Event, Range = Resource.

The above defined types of classes and object properties

enable to describe events that are registered by system moni-

tors (sensors). Additionally, the model was constructed in such

a way that it can reflect the fact that particular observed activity

should be perceived as a token in the Petri net - used further

on at the second stage of malware hunting tool operation.

This process is performed automatically with the use of

reasoning rules modelled with Semantic Web Rule Language

(SWRL) [22], which offers appropriate expressiveness and tool

support in order to use it for the assumed purpose [23].

A. PRONTOlogy engine

The ontology model presented above is used in the PRON-

TOlogy engine. System activities that are logged by different

system sensors form a stream of hundreds to even hundred

thousands of events per minute. They record activities of the

user and related background activity of the system. In terms of

presented solution sensors that cover the spectrum of incidents

describing the behavior of different malware types are process,

registry, file and network monitors, reflected in the ontology.

Sensors allow to log file system, registry and process/thread

activities in real-time. After a proper configuration they enable

sifting through incoming events and comprehensive event

properties such as session ID numbers, user names, reliable

process information, full thread stacks with integrated symbol

support for each operation, simultaneous logging to a file, etc.

The first stage of the PRONTOlogy engine operation is

devoted to the analysis of this events’ stream and classification

of single events as either suspicious or regular ones. This

classification is assumed as a background activity for the mon-

itoring of the system state realized by the second component

of PRONTO, that is threats’ tracking (PRONTOnet).

Particular types of malware perform distinctive activities.

Each of them is different or, what is more, they can have

their types. This entails various malware realization. If mal-

ware signature is unknown (the code has been obfuscated),

identification of its activity can be done by analyzing system

events. The first stage of this process is related to filtering of

events and classifying them as neutral or suspicious. In the

latter case information about the event is passed down to the

next stage – threat tracking.

The stage of events filtering is based on the ontology engine

that automatically, with the use of the knowledge base and a set

of rules, defines if the registered event is suspicious and should

be tracked further by the PRONTOnet module. Knowledge

base is created with lifting the information about events

registered by sensors to create assertions and facts (entering

ABox statements into the knowledge base). Suspicious actions

are modeled as instances of the Place class. As already men-

tioned, the rules will provide the possibility to infer facts that

particular event indicates existence of a Place in the CP-net

model (hasPlace object property) and therefore particular

token (hasColor object property) exists and this fact should

be passed further on to the PRONTOnet. For instance, the rules

can infer that e.g. an event called winlogon.exe_run_VRT7.tmp

which means that the winlogon.exe process has run

VRT7.tmp file is suspicious and sends on this information

to the threat tracing module for further investigation.

As events from sensors are delivered to PRONTOlogy

engine, new facts are inserted into the knowledge base in

the form of ABox statements. In order to provide additional

facts to the knowledge base in terms of appearance of a new

token in the CP-net model of particular attack, the rules are

proposed. The following listing shows the rule which head

defines a condition: an event where a process named csrss

opens a file named open.exe, which in fact is an infected file.

When this condition is met, it results in identification of a new

Place in the CP-net model, which is a File with token

open.exe.

Place(?c) ^ Resource(?y) ^ resourceName(?y,

"csrss.exe") ^ open(?y, ?z) ^ ResFile(?z)

^ resourceName(?z, "open.exe") -> File(?c)

^ hasColour(?c, ?z)

A new set of rules will be prepared whenever new threats

appear in the process of system vulnerabilities analysis. For

the purpose of the solution verification there has been shown

an exemplary set that will provide the possibility to discover

markings of places defined in the CP-net model and used in

PRONTOnet.

V. PRONTOLOGY.OWL EVALUATION

This section is devoted to ontology evaluation which, ac-

cording to [24], should consist in validation and verification

104 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

of an ontology in terms of its scope, consistency and expres-

siveness.

Semantic model defined in PRONTOlogy is devoted to

reflect events that occur in the monitored system and enable

to identify these suspicious ones. This model has direct rela-

tionship with the CP-net through the use of the Place class

the instances of which are passed over to the PRONTOnet.

PRONTOlogy defines:

• The event instance modeled with the use of Event

class. Data about occurred events is received from the

sensors, then lifted to the ontology model as instances of

the Event class. Each instance has eventName (data

property) defined by the sensor. The description of an

event is modeled with the use of hasResource object

property which indicates initiator of the event which is

some system resource.
• System resources that are under monitoring by sensors

– File, Registry, Process, Domain, IPaddress. They

are modeled by the following classes: ResFile,

ResRegistry, ResProcess, ResDomain,

ResIPAddress, which are subclasses of the

Resource class.
• The event description modeled with the use of

object properties (run, create, modify, delete,

download, open, close, read, execute,

terminate, connect, query). These object

properties domain and range is the Resource class,

which means that resources perform actions on other

resources.
• An abstract Place class that defines the fact that partic-

ular event is suspicious and should be handled over by

the CP-net model for further investigation. This class has

five subclasses that define the type of a Place, which in

turn results from event originator and reflects Places in

the CP-net model.

With the use of the proposed ontology it is possible to

describe the event of running a file by particular process. For

instance occurrence of winlogon.exe_run_VRT7.tmp

event would cause inserting of the following instances into

the knowledge base:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Event_1

http://wil.waw.pl/secor/PRONTOlogy.owl#

eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_1,

"winlogon.exe_run_VRT7.tmp")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_8

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_8,

"winlogon.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResFile_9

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResFile_9, "vrt7.tmp")

http://wil.waw.pl/secor/PRONTOlogy.owl#

run(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_8,

http://wil.waw.pl/secor/

PRONTOlogy.owl#ResFile_9)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasResource(http://wil.waw.pl/secor

/PRONTOlogy.owl#Event_1,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_8)

The stage of events filtering is based on the ontology

engine that automatically, with the use of the knowledge

base and a set of rules defines if the registered event is

suspicious and should be tracked further by the threat tracing

module. As already mentioned knowledge base is created with

lifting the information about events registered by sensors to

create assertions and facts. Suspicious actions are modeled as

instances of the Place class. The knowledge about the object

which is also an instance of the Place class is derived by

the set of rules proposed for the purpose of PRONTOlogy.
If the following rule is applied:

Place(?c)^Resource(?y)^resourceName

(?y, "winlogon.exe")^run(?y, ?z)

^ResFile(?z)^resourceName(?z,

"vrt7.tmp") -> File(?c)^hasColour(?c, ?z)

the following instances are added to the knowledge base:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Place_1-is a member of File class

(inferred knowledge)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_1,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResFile_9).

If the following rule is applied:

Event(?e)^Place(?c)^hasResource(?e,?y)

^Resource(?y)^resourceName(?y,

"winlogon.exe")^run(?y, ?z)^ResFile(?z)

^resourceName(?z, "vrt7.tmp")

-> hasPlace(?e,?c)^File(?c)^

hasColour(?c, ?z)

additionally the relation

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl# Event_1,

http://wil.waw.pl/secor/PRONTOlogy.owl#

Place_1).

is added.
If an event has hasPlace relation to any Place instance,

it is a suspicious event.

BARTOSZ JASIUL, JOANNA ŚLIWA, KAMIL GLEBA, MARCIN SZPYRKA: IDENTIFICATION OF MALWARE ACTIVITIES WITH RULES 105

The PRONTOlogy defines all entities that are necessary

to describe events monitoring system behavior and identify

suspicious events. Moreover, the direct relation between on-

tology and CP-nets has been modeled with the use of the

Place class. That is why, they satisfy the required scope and

expressiveness of ontology.
The second ontology evaluation step consists in check-

ing the ontology consistency. According to [25] ontology is

consistent (also called satisfiable) when it does not contain

a contradiction. The lack of contradiction can be defined in

either semantic or syntactic terms. The syntactic definition

states that a theory is consistent if there is no such P formula

that both P and its negation are provable from the axioms

of the theory under its associated deductive system. The

ontology model that contains formal definitions of classes,

properties and individuals allows inferring new knowledge

from knowledge that is already present. The fact that it is

based on formal description logic makes it prone to logical

reasoning and enables to infer knowledge from existing facts

and axioms [26].
The consistency of PRONTOlogy.owl has been verified

in the Protégé ontology editing tool (version 3.4.6) [27] using

the Pellet 1.5.2 [28] reasoner on a machine with the following

configuration:

• Processor: Intel Core i7 (2 cores 2,8 GHz each);

• RAM: 6 GB;

• Operating System: Windows 7 (64 bit).

The consistency check on this machine was successful

and PRONTOlogy.owl has been proven consistent in 0,022

seconds.

To satisfy verification of events filtering with ontology

and reasoning a web service PRONTOlogyInterface was

implemented in Java programming environment. The service

was developed with utilization of Protégé, Pellet, SWRL Jess

bridge, and Jess71p2 programming libraries. Web Service was

run on the GlassFish Server 3.1.2.
PRONTOlogyInterface consists of two programming

packages:

• wil.waw.pl.protegeclass.prontology

• wil.waw.pl.prontology.

Java classes of wil.waw.pl.protegclass.

prontology package were developed with Generate

Protégé-OWL Java Code plug-in of Protégé editor. The

generator allowed to define Java classes on the basis of

PRONTOlogy.owl automatically.
Package wil.waw.pl.prontology consists of the fol-

lowing classes:

• InferenceResult.java,

• OperationType.java,

• ResourceType.java,

• PRONTOlogy.java.

InferenceResult.java class defines result

code of PRONTOlogyInterface service.

OperationType.java defines types of operations

on resources:

public enum OperationType {RUN,EXECUTE,

CREATE,MODIFY,DELETE,CLOSE,OPEN,

DOWNLOAD,CONNECT ACCESS,TERMINATE,

QUERY,READ,OTHER}.

Enumerate class ResourceType.java defines types of

resource:

public enum ResourceType{RESDOMAIN,

RESIPADDRES,RESUSER,RESREGISTRY,

RESFILE,RESPROCESS}.

PRONTOlogy.java is the main class of

PRONTOlogyInterface and it implements the following

web methods:

• readOntologyFromFile() that reads the ontology

from the file;

• inferKnowledge() that realizes ontology reasoning;

• queryForPetriPlace() that identifies the Place in

CP-net on the basis of defined knowledge base;

• queryForPetriToken() that identifies, on the basis

of the knowledge base, a token assigned to a particular

Place.

VI. CYBER ATTACKS DETECTION – AN EXPERIMENT

A. Data acquisition

The verification based on experimental data was made with

the use of the most popular target of cyber infections –

Microsoft Windows operating system. The authors do not

claim that this is the most vulnerable system. In the authors’

opinion the reason of cyber attacks on Windows operating

system is the popularity of the system and potentially high gain

from conducted attacks. Microsoft products are very popular

which makes them attractive for cyber criminals.

For the observation of activities, applications, services and

network connections in the native Microsoft Windows 7 op-

erating system environment Sysinternals Suite utility pack-

age [29] was used. The Sysinternals Suite is a set of over

70 advanced diagnostic and troubleshooting programs for the

Windows platform. These programs are available for free

download from Microsoft’s Technet web page [30].

Majority of events were observed with Process Monitor

utility [31] – part of the Sysinternals Suite. Process Monitor is

an advanced monitoring application for Windows that registers

events which relate to file system, registry, and process activity

in real-time. It enables monitoring event properties such as

session IDs, user names, process information, thread stacks,

simultaneous logging to a file, etc. It is a powerful utility

that supports PRONTOlogy module with detailed information

on activities in the protected system. An example of a single

event acquired with Process Monitor is presented in following

listing:

<event>

<ProcessIndex>14340</ProcessIndex>

<Time_of_Day>17:22:25,1104786</Time_of_Day>

<Process_Name>ThreatProc.exe</Process_Name>

<PID>2728</PID>

106 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

<Operation>RegQueryValue</Operation>

<Path>HKLMS\Microsoft\Windows NT\...\

SurrogateFallback\Plane2</Path>

<Result>SUCCESS</Result>

<Detail>Type: REG_SZ, Length: 24, Data:

SimSun-ExtB</Detail>

</event>

Process Monitor allows to report system events for further

analysis and reasoning to the PRONTOlogy module. Detailed

report on system activities includes, but is not limited to:

• process name – the name of the process performing the

operation;

• operation – the name of the operation being logged;

• path (if applicable) – the path of the object that the

operation is performed on (e.g. a registry path, a file

system path);

• result – the result of the operation (e.g. Success, EoF,

Buffer Overflow);

• detail – additional operation-specific information about

the event.

For the purpose of data acquisition it is also possible to use

API hooking tools [32], [33], however, they inject themselves

(like viruses) to the processes, thus they can affect results of

the verification. In case of utilization of PRONTO malware

hunting tool for detection of network attacks various network

utilities, e.g. SNORT [34], ARAKIS [35], iptables [36], should

also be used [37], [38].

Having stored CP-net models of cyber attacks in the

database, it is possible to go further with the experiment to

malware detection phase. As mentioned above, the aim of the

experiment is not only to identify existing malware that was

obfuscated, but also 0-day attacks that have, to some degree,

similar behavior to the already identified one.

B. Malware detection scenario

Within one minute operation of Windows 7 OS thousands

or even hundreds of thousands single events may be observed.

Report from the Process Monitor includes everything that took

place in the system. It includes both regular and suspicious

activities.

For the purpose of verification and, in particular, generation

of these unwanted activities, three different machines were

infected by Virut, VBMania@MM, and 0-day attack that was

simulated with events typical to different parts of malicious

codes.

At the same time, various programs were executed on these

three machines in order to simulate legitimate user activity.

This allowed us to generate background regular events.

In the article we show only the first example and provide

the reader with information on steps of PRONTO operation in

terms of malware detection with emphasis on events filtering

phase.

Let us assume that data acquisition phase allowed to gather

information about events collected by the Process Monitor.

Obviously, the whole file with captured events will not be

presented in this chapter although an exemplary excerpt from

it is presented in following listing:

<event>

<ProcessIndex>14340</ProcessIndex>

<Time_of_Day>17:20:21,1001813

</Time_of_Day>

<Process_Name>WINLOGON.EXE

</Process_Name>

<PID>2728</PID>

<Operation>ReadFile</Operation>

<Path>C:\Windows\Temp\vrt7.tmp</Path>

<Result>SUCCESS</Result>

<Detail>Offset: 734 720, Length: 16 384,

Priority: Normal</Detail>

</event>

<event>

<ProcessIndex>14560</ProcessIndex>

<Time_of_Day>17:22:25,1104786

</Time_of_Day>

<Process_Name>ThreatProc.exe

</Process_Name>

<PID>6043</PID>

<Operation>RegSetValueEx</Operation>

<Path>HKLMS\Microsoft\Windows\

CurrentVersion\Run\

Windows System Monitor:

"C:\Windows\system\winrsc.exe"

</Path>

<Result>SUCCESS</Result>

<Detail>Type: REG_SZ, Length: 24, Data:

SimSun-ExtB</Detail>

</event>

<event>

<ProcessIndex>16640</ProcessIndex>

<Time_of_Day>17:22:36,2548113

</Time_of_Day>

<Process_Name>WINWORD.EXE

</Process_Name>

<PID>6733</PID>

<Operation>RegQueryKey</Operation>

<Path>HKLM</Path>

<Result>SUCCESS</Result>

<Detail>Query: HandleTags, HandleTags:

0x0</Detail>

</event>

<event>

<ProcessIndex>19240</ProcessIndex>

<Time_of_Day>17:47:02,1294174

</Time_of_Day>

<Process_Name>mmirc.exe

</Process_Name>

<PID>12188</PID>

<Operation>TCP Connect</Operation>

<Path>MalwareTest1-VAIO:55052 ->

irc.zief.pl:6667</Path>

BARTOSZ JASIUL, JOANNA ŚLIWA, KAMIL GLEBA, MARCIN SZPYRKA: IDENTIFICATION OF MALWARE ACTIVITIES WITH RULES 107

<Result>SUCCESS</Result>

<Event_Class>Network</Event_Class>

<Image_Path>C:\Windows\Temp\

mmirc.exe</Image_Path>

<Session>1</Session>

</event>

The events presented in above listing are processed and

XML data is lifted to the semantic metadata. Based on this

example the following instances are inserted into the ontology

model (as ABox entries):

for the first event:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Event_1 - an instance of the Event class

http://wil.waw.pl/secor/PRONTOlogy.owl#

eventName(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_1,

"winlogon_read_vrt.7")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_2728

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_2728,

"winlogon.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResFile_1

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResFile_1,

"vrt7.tmp")

http://wil.waw.pl/secor/PRONTOlogy.owl#

read(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_2728,

http://wil.waw.pl/secor/ PRONTOlogy.owl#

ResFile_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_1,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_2728)

for the second event:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Event_2 - an instance of the Event class

http://wil.waw.pl/secor/PRONTOlogy.owl#

eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_2,

"ThreadProc_modify_Windows_System_Monitor")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_6043

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_6043,

"ThreatProc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResRegistry_1

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResRegistry_1,

"HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows\CurrentVersion\Run

\Windows System Monitor:

C:\Windows\system\winrsc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

modify(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_6043,

http://wil.waw.pl/secor/ PRONTOlogy.owl#

ResRegistry_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_2,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_6043)

for the third event:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Event_3 - an instance of the Event class

http://wil.waw.pl/secor/PRONTOlogy.owl#

eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_3,

"Winword_read_HKLM")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_6733

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_6733,

"Winword.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResRegistry_2

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResRegistry_2,

"HKLM")

http://wil.waw.pl/secor/PRONTOlogy.owl#

read(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_6733,

http://wil.waw.pl/secor/ PRONTOlogy.owl#

ResRegistry_2)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#Event_3,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResProcess_6733)

for the fourth event:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Event_4 - an instance of the Event class

http://wil.waw.pl/secor/PRONTOlogy.owl#

eventName(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_4,

"mmirc_connect_irc_zief_pl")

http://wil.waw.pl/secor/PRONTOlogy.owl#

108 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

ResProcess_12188

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResProcess_12188,

"mmirc.exe")

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResDomain_1

http://wil.waw.pl/secor/PRONTOlogy.owl#

resourceName(http://wil.waw.pl/

secor/PRONTOlogy.owl#ResDomain_1,

"irc.zief.pl")

http://wil.waw.pl/secor/PRONTOlogy.owl#

connect(http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_12188,

http://wil.waw.pl/secor/ PRONTOlogy.owl#

ResDomain_1)

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasResource(http://wil.waw.pl/

secor/PRONTOlogy.owl#

Event_4, http://wil.waw.pl/secor/

PRONTOlogy.owl#ResProcess_12188)

The rules that are valid in the presented scenario allow to

infer that three of the above events are suspicious. These are

the following rules:

Event(?e)^Place(?c) hasResource(?e,?y)^

resourceName(?y, "winlogon.exe")^

read(?y, ?z)^ ResFile(?z) ^

resourceName(?z, "vrt7.tmp")->

hasPlace (?e,?c)^File(?c)^hasColour(?c, ?z)

Event(?e)^Place(?c)^hasResource(?e,?y)

^modify(?y, ?z)^ResRegistry(?z)^

resourceName(?z,"HKLMS\Microsoft\...\Run\

Windows System Monitor: C:\Windows\

system\winrsc.exe")->hasPlace(?e,?c)

^ Registry(?c)^hasColour(?c, ?z)

Event(?e)^Place(?c)^hasResource(?e,?y)

^connect(?y, ?z)^ResDomain(?z)

^resourceName(?z, "irc.zief.pl")

-> hasPlace (?e,?c)^Domain(?c)^

hasColour(?c, ?z)

On the basis of these rules the following facts are inferred:

http://wil.waw.pl/secor/PRONTOlogy.owl#

Place_1 - member of the File class

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_1, http://wil.waw.pl/

secor/PRONTOlogy.owl#Place_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_1,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResFile_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#

Place_2 - member of the Registry class

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl#Event_2,

http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2).

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResRegistry_1).

http://wil.waw.pl/secor/PRONTOlogy.owl#

Place_3 - member of the Domain class

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasPlace(http://wil.waw.pl/secor/

PRONTOlogy.owl# Event_2,

http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2).

http://wil.waw.pl/secor/PRONTOlogy.owl#

hasColour(http://wil.waw.pl/secor/

PRONTOlogy.owl#Place_2,

http://wil.waw.pl/secor/PRONTOlogy.owl#

ResDomain_1).

Events 1, 2 and 4 have been identified as suspicious,

whereas event 3 – as a regular system activity. The SQWRL

query that allowed to select this knowledge from the ontology

had the following structure:

tbox:isSubClassOf(?subClass, Place)^

abox:hasIndividual(?subClass, x)->

sqwrl:select(?subClass)

Place(?p)^hasColour(?p, ?c)^

resourceName(?c, ?n)->sqwrl:select(?n)

The rules applied in the PRONTOlogy module allowed to

pass forward to the PRONTOnet module only information

about suspicious events in the form of Places and appropriate

tokens assigned to them (with the use of hasColour object

property). It takes place in the acquisition module as presented

in the architecture of solution. Then, in the PRONTOnet, these

tokens are passed to verification module where marking Ma

of Places is:

Ma = MFile ∪MDomain ∪MRegistry , where:

• MFile={vrt7.tmp},

• MDomain={irc.zief.pl},

• MRegistry = {HKLMS\Microsoft\...\

Run\Windows System Monitor:"C:\Windows

\system\winrsc.exe"}.

At the machine described in this scenario the detection

realized with the use of CPN MM and marking Ma allowed

to identify Virut attack. The result vector is as follows:

BARTOSZ JASIUL, JOANNA ŚLIWA, KAMIL GLEBA, MARCIN SZPYRKA: IDENTIFICATION OF MALWARE ACTIVITIES WITH RULES 109

1’ 1|Virut|vrt7.tmp,irc.zief.pl,

Windows System Monitor:

"C:\Windows\system\winrsc.exe"

VII. SUMMARY

Realization of this scenario allowed to prove that the pro-

posed ontology model as well as applied reasoning rules were

successfully adapted to detection of single malicious incidents.

Then, these incidents were collected and compared with the

CP-net models. As a result, Virut malware has been detected.

Ontology presented for malware activities identification

together with rules allows to filter out suspicious system

activities and strongly supports malware detection mechanism

implemented in PRONTO. The effectivenes of signature-based

antivirus software is rapidly decreasing. Behavior based meth-

ods give promissing effects and should be investigated further

on in modern security controls such as one presented here.

REFERENCES

[1] A. Gostev, Kaspersky Security Bulletin: Statistics 2008,
http://www.securelist.com/en/analysis/204792052/

[2] D. Maslennikov and Y. Namestnikov, Kaspersky Security Bulletin. The

overall statistics for 2012,
http://www.securelist.com/en/analysis/204792255/

[3] M. Conti, R. Di Pietro, L. Mancini, and A. Mei, “Mobility and
cooperation to thwart node capture attacks in MANETs,” EURASIP J.

Wirel. Commun. Netw., vol. 2009, no. 1, pp. 8:1–8:13, 2009.
http://dx.doi.org/10.1155/2009/945943

[4] C. Raiu, Virus News: 2012 by the numbers, http://www.kaspersky.com/
[5] H. Tibbs, S. Ambler-Edwards, and M. Corcoran, The Global Cyber

Game: Achieving strategic resilience in the global knowledge society,
2013, Defence Academy of The United Kingdom.

[6] S. Adair, R. Deibert, R. Rohozinski, N. Villeneuve, and G. Walton, Shad-

ows in the cloud: Investigating Cyber Espionage 2.0, 2010, Information
Warfare Monitor Shadowserver Foundation,
http://shadows-in-the-cloud.net

[7] M. Szpyrka, B. Jasiul, K. Wrona, and F. Dziedzic, “Telecommunications
networks risk assessment with Bayesian networks,” in Computer Infor-

mation Systems and Industrial Management, LNCS, Springer, 2013, vol.
8104, pp. 277–288. http://dx.doi.org/10.1007/978-3-642-40925-7_26

[8] P. Bereziński, M. Szpyrka, B. Jasiul, and M. Mazur, “Network anomaly
detection using parameterized entropy,” in CISIM 2014, ser. LNCS,
K. Saeed and V. Snášel, Eds. Springer, 2014, vol. 8838, pp. 473–486.

[9] Z. Tarapata, M. Chmielewski, and R. Kasprzyk, “An algorithmic ap-
proach to social knowledge processing and reasoning based on graph
representation – a case study,” in Intelligent Information and Database

Systems, LNCS, Springer, 2010, vol. 5991, pp. 93-104.
http://dx.doi.org/10.1007/978-3-642-12101-2_11

[10] P. Szwed and P. Skrzyński, “A new lightweight method for security risk
assessment based on fuzzy cognitive maps,” Applied Mathematics and

Computer Science, vol. 24, no. 1, pp. 213–225, 2014.
http://dx.doi.org/10.2478/amcs-2014-0016

[11] Verizone. 2012 Data Breach Investigations Report,
http://www.verizonenterprise.com/DBIR/2012/.

[12] A. Takeshi, K. Masaki, and T. Murakami, Cyber Security Trend – Annual

Review 2012, http://www.nri-secure.co.jp/news/2012/pdf/cyber _security
_trend_report_en.pdf

[13] McAfee and HB Garry Solution Brief. Extend McAfee Total Pro-

tection for Endpoint with HBGary Digital DNA and Responder,
http://www.mcafee.com/us/resources/solution-briefs/sb- hbgary.pdf

[14] S. Bobek, K. Porzycki, and G. Nalepa, “Learning sensors usage patterns
in mobile context-aware systems,” in Proceedings of the Federated

Conference on Computer Science and Information Systems – FedCSIS,
IEEE, 2013, pp. 993–998.

[15] M. Szpyrka, “Exclusion rule-based systems – case study,” in Computer

Science and Information Technology, IMCSIT, 2008, pp. 237–242.
http://dx.doi.org/10.1109/IMCSIT.2008.4747245

[16] M. Szpyrka, “Analysis of VME-Bus communication protocol – RTCP-
net approach,” Real-Time Systems, vol. 35, no. 1, pp. 91– 108, 2007.
http://dx.doi.org/10.1007/s11241-006-9003-0

[17] G. Nalepa and S. Bobek, “Rule-based solution for context-aware rea-
soning on mobile devices,” Computer Science and Information Systems,
vol. 11, no. 1, pp. 171–193, 2014.

[18] K. Jensen and L. Kristensen, Coloured Petri Nets: Modelling and

Validation of Concurrent Systems, 1st ed. Springer, 2009.
[19] M. Szpyrka and T. Szmuc, “Decision tables in Petri net models,” in

Rough Sets and Intelligent Systems Paradigms, LNCS, Springer, 2007,
vol. 4585, pp. 648–657.
http://dx.doi.org/10.1007/978-3-540-73451-2_68

[20] B. Jasiul, M. Szpyrka, and J. Śliwa, “Malware behavior modeling with
Colored Petri nets,” in CISIM 2014, ser. LNCS, K. Saeed and V. Snášel,
Eds. Springer, 2014, vol. 8838, pp. 667–679.

[21] G. Antoniou and F. van Harmelen, A Semantic Web P rimer. Cambridge,
England: The MIT Press, 2008.

[22] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, SWRL: A Semantic Web Rule Language. Combining OWL

and RuleML, http://www.w3.org/Submission/SWRL/
[23] J. Śliwa and B. Jasiul, “Efficiency of dynamic content adaptation based

on semantic description of web service call context,” in Proceedings -

IEEE Military Communications Conference MILCOM 2012, Orlando,

USA, 2012, pp. 1–6. http://dx.doi.org/10.1109/MILCOM.2012.6415810
[24] J. Śliwa, K. Gleba, W. Chmiel, P. Szwed, and A. Głowacz, “ IOEM –

Ontology engineering methodology for large systems,” in Computational

Collective Intelligence. Technologies and Applications, LNCS, Springer,
2011, vol. 6922, pp. 602–611.
http://dx.doi.org/10.1007/978-3-642-23935-9_59

[25] A. Tarski, Introduction to Logic and to the Methodology of Deductive

Sciences, Second Edition. New York: Dover Publications, Inc., 1946.
[26] J. Śliwa and M. Amanowicz, “A mediation service for web services

provision in tactical disadvatnaged environment,” in IEEE Military

Communications Conference, MILCOM, 2008, pp. 1–7.
http://dx.doi.org/10.1109/MILCOM.2008.4753323

[27] Protégé – ontology editor and knowledge-base framework,
http://protege.stanford.edu/

[28] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical OWL-DL reasoner,” in Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 5, 2007, pp. 51 – 53.
http://dx.doi.org/10.1016/j.websem.2007.03.004

[29] M. Russinovich and A. Margosis, Windows Sysinternals Administrator’s

Reference. Redmond, Washington, USA: Microsoft Press, 2011.
[30] Microsoft Technet – Sysinternals,

http://technet.microsoft.com/en-us/sysinternals/
[31] M. Russinovich and B. Cogswell, Process Monitor v3.05,

http://technet.microsoft.com/pl-pl/sysinternals/bb896645.aspx
[32] API hooking revealed,

http://www.codeproject.com/Articles/2082/API-hooking-revealed
[33] EasyHook, http://easyhook.codeplex.com/
[34] SNORT, http://www.snort.org/
[35] ARAKIS, http://www.arakis.pl
[36] Netfilter, http://www.netfilter.org/
[37] B. Jasiul, R. Piotrowski, P. Bereziński, M. Choraś, R. Kozik, and

J. Brzostek, “Federated Cyber Defence System – applied methods and
techniques,” in 2012 Military Communications and Information Systems

Conference, MCC 2012, 2012, pp. 145–150.
[38] M. Choraś, R. Kozik, R. Piotrowski, J. Brzostek, and W. Hołubowicz,

“Network events correlation for federated networks protection system,”
in Towards a Service-Based Internet, LNCS, Springer, 2011, vol. 6994,
pp. 100–111. http://dx.doi.org/10.1007/978-3-642-24755-2_9

110 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

