
Pragmatic Model-Driven Software Development
from the Viewpoint of a Programmer:

Teaching Experience

Jaroslav Porubän, Michaela Bačíková, Sergej Chodarev and Milan Nosál’
Technical University of Košice, Department of Computers and Informatics

Letná 9, Košice, Slovak Republic

Email: {jaroslav.poruban, michaela.bacikova, sergej.chodarev}@tuke.sk, milan.nosal@gmail.com

Abstract—Model-driven software development is surrounded
by numerous myths and misunderstandings that hamper its adop-
tion. We have designed our course of model-driven development
approach with the goal to introduce it from the viewpoint of
a programmer as a pragmatic tool for solving concrete problems
in development process. The course covers several techniques and
principles of model-driven development instead of concentrating
on a single tool. To explain these techniques we use a case-study
that is iteratively developed by the students during the course.
In the paper we explain the structure of our case study, contents
of individual iterations, and our overall experience with this
approach.

I. INTRODUCTION

MODEL-DRIVEN software development approach

(MDSD) promises increase of development speed and

quality of resulting software by the use of formal model of the

system as a basis for its implementation [1]. Understanding

MDSD, however, suffers from several myths that hamper its

adoption. This section discusses these myths to provide the

motivational context to our work. In the rest of the paper we

present our approach to MDSD teaching that is tailored to

overcome these myths.

A. Myth 1: MDSD is a large-scale approach

MDSD is mostly viewed from the perspective of large-

scale software architecture. A new system or a family of

systems is supposed to be implemented by describing every

significant part and aspect of the system using formal models

(for example in [2]). In practice, however, it is not always

the case. When a system development begins, it may not be

known that a whole product family would be needed in the

future. Therefore, it is not clear beforehand that model-driven

development would be applicable and that investment in it

would pay off.

Of course, in reality MDSD can be considered in a smaller

scale, where only specific parts of the system are generated

based on models. In this case, the knowledge of MDSD can be

useful even for a single programmer (or a small team) working

on a part of the system and introduction of MDSD may not

require significant changes in the architecture of the system as

a whole.

B. Myth 2: MDSD requires massive tool support

MDSD is often associated with integrated modelling tools

or language workbenches. These tools cover development

of meta-model, a domain-specific language used to express

models and a generator that produces runnable code based on

a model. Modelling tools may also provide environment for

development of the model itself. These tools, however, are

often complex and require high learning costs. What is more

important, the use of such tools poses the risk of vendor lock-

in.

Although integrated tools may be useful in a lot of situa-

tions, they are not necessarily required by the model-driven

approach. It is possible to use a set of independent tools for

separate parts of the model-driven development infrastructure

(e.g., for language processing, for code generation, etc.). This

approach allows looser coupling and greater flexibility in the

choice of tools.

C. Myth 3: MDSD requires special software development

process

It is considered that model-driven approach requires the use

of a special software development process, where meta-model

and modelling language must be completely specified and im-

plemented before a model of a system can be developed. This

opinion renders MDSD as very inflexible and incompatible

with agile development processes that are currently favoured.

Modelling infrastructure, however, can be developed iter-

atively. Meta-model, language processor and generator can

evolve together with the rest of the system. The use of

small-scale MDSD and simpler tools as described in previ-

ous paragraphs greatly simplifies such iterative development

process and allows using MDSD along with common agile

methodologies.

D. Myth 4: MDSD is not widely used in practice

Without a deeper insight it seems that MDSD is not a

widely used approach in practice. In reality, model-driven

and generative approaches are indeed wide-spread and even

considered a good practice for pragmatic programming [3].

Most of the examples, however, represent small-scale MDSD

applications which include:

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1647–1656

DOI: 10.15439/2014F266

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1647

• Generators of database schema and object-relational map-

ping (ORM) code from the description of a data structure

(used in various ORM tools).

• Generators of code for accessing web services based on

WSDL description.

• Tools for graphical user interfaces design that generate

code according to a graphical representation of the user

interface.

• IDE plugins for specific technologies that are able to gen-

erate skeletons of repetitive artefacts (e.g., GWT plugin

for IntelliJ Idea that can generate standard GWT RPC

service artefacts).

• Spring Roo generative framework that allows to imple-

ment custom code generators for various repetitive code

artefacts (currently published generators focus on web-

based CRUD application domain).

Furthermore, the MDSD application is often hidden from a

programmer by libraries and frameworks that allow to specify

behaviour using a model without knowing details of model

processing. In case of dynamic languages such as Ruby,

internal domain-specific languages can be used for description

of models and code generation can be replaced with run-time

program modification using reflection. This approach makes

the use of MDSD even less obvious.

II. PRAGMATIC MODEL-DRIVEN PROGRAMMING

We designed the MDSD course with these considerations

in mind. The course is intended for graduate students that

would mostly become software engineers in their future career.

Because of this, we wanted to demonstrate the approach from

the viewpoint of a programmer. This led us to the following

goals:

1) Keep it practical. We wanted to maximize the possibility

that our students would be able to use the learned skills

and techniques in their future careers. This means that

these techniques should be applicable in a wide range

of situations.

2) Teach principles using realistic examples. Students

should understand the basic principles of the topic as

they have much higher level of applicability than any

concrete tool. At the same time we should illustrate these

principles using realistic examples, tools and approaches

that can be directly used in practice.

For these reasons we need to teach MDSD in a way that

challenges myths described in the previous section. First of

all, we show the students that model-driven approach is not

limited to large-scale solutions. Although we demonstrate

development of a complete system using MDSD, parts of

the system are modelled and generated separately showing

different scales of modelling.
We also do not use any full-fledged MDSD tool for the

whole development process. Instead, we concentrate on several

development techniques and tools behind them from the per-

spective of the main components of the MDSD infrastructure.

If we apply the language-oriented perspective, we can divide

the components and techniques that we teach as follows:

1) Abstract syntax – meta-model that describes structure of

models:

• definition of meta-model using classes in object-

oriented language,

• composition and reuse of models.

2) Concrete syntax – domain-specific language used to

specify a model:

• implementation of delimiter-directed parser,

• internal domain-specific languages,

• the use of parser generator,

• generic XML parser.

3) Semantics – generator used to produce code based on

the model:

• generation by direct transformation,

• generation using templates, templates composition

and reuse.

All of the listed technologies and approaches are used

in the course. In the beginning of the course students are

building simple version of MDSD tools themselves (e.g.

parser, generator). Later on, when the complexity of tasks

arises we are fluently switching to the well-known MDSD

tools (e.g. parser generators, tempalting engines). In the end of

the course, students are able to compare tools and approaches

and choose the most effective one in a particular situation.

The techniques that we teach can be combined in various

ways to power MDSD. At the same time, they can be used

even separately for a wide range of programming tasks. From

this aspect our approach is similar to the one used by Folwer

in [4].

All taught techniques are demonstrated on a single case

study that is developed in an iterative manner. Meta-model

used in a case study is gradually extended showing evolution

and composition of meta-models and languages during the

system development. We also show that a meta-model can be

reused even if the implementation of a language processor is

replaced. Thus we demonstrate parallel evolution of different

components of the MDSD infrastructure. It also shows the

possibility to use usual agile development processes with

connection to MDSD.

III. CASE STUDY

In this section we introduce the case study we use to teach

MDSD in our course. CrudComp is a fictive company, which

develops CRUD (create, retrieve, update delete) applications

for different domains storing entities and their properties and

relationships (e.g. employee, department). They have started

with a single application but their success brought them new

customers. CrudComp soon identified fundamental require-

ments shared across all the applications they developed for

their customers. Each CRUD application has to provide means

for:

• data entry,

• data validation,

• data persistence into an (external) memory, and

• data presentation in a user interface.

1648 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

They also identified a few non-functional requirements for

the applications concentrating on technology.

• User interface technology – the customers expect a mi-

gration to a new user interface type in the near future

(e.g., mobile, web).

• Storage technology – currently the applications are sup-

posed to work with a relational database, but some of the

customers consider transition to a file system or a NoSQL

database.

• Service-oriented architecture – CrudComp providentially

expects that the customers will want to export the CRUD

functionality as the web services for integration with

other business applications.

These specifications led the CrudComp to design a multi-

tier architecture for their CRUD applications consisting of 3

layers: user interface, service and data access. The architecture

skeleton is depicted in Figure 1.

Data

Store

Entity Object

User Interface

Layer

Service

Layer

Data Access

Layer

form or table

dialogs

mimics

DAO interfaces

DAO

implementations

presents stores, reads

manipulates

Fig. 1. Multi-tier architecture used by CrudComp CRUD applications

The architectural framework defined applications skeleton,

but there would still be quite a lot of repetitive work. Luck-

ily, one of the CrudComp employees was an enthusiast for

MDSD and generative programming. The vision presented

to the management was that the MDSD solution would not

only speed up the development, but it would also make the

communication with the customer more efficient. The domain-

specific language used to specify the model of an application

would be readable also by customers (in this context they were

domain experts). Moreover, the customer would be even able

to write the input file by himself. This way CrudComp would

not only spare the time and money for the development, but

it would also gain more effective ways to communicate with

the customer. They have started with the application of the

MDSD in a small scale (generating just small parts of the

system) not to hamper the development of currently developed

applications. And so he with the rest of the team decided

to iteratively build a full MDSD solution with each iteration

covering just a small portion of the whole CRUD application.

Until the whole solution would be ready the programmers

would have to implement the rest of the system manually to

meet the deadlines.

The input of CrudComp MDSD solution was a simple

model of the domain in terms of entities, their properties

and relations. The output was supposed to be a part of a

CRUD application. They decided to start with entity classes

generation since the entity classes are the simplest artefacts

of a CRUD application source code. Entity classes define the

data structures manipulated in a CRUD application. Later they

wanted to generate also data-access objects implementations,

validators, etc. The only thing the programmers would need

to do to get entity classes or later even the complete CRUD

application is to write a simple input file that models the

domain for a given customer. After running the generator

they only needed to add a hand-written specific code to the

generated source code to finish the application so that it would

be fully functional and tailored for the specific customer. Thus

they were able to reduce the amount of their repetitive work.

CrudComp presents a simple case of possible MDSD adop-

tion candidate. As the reader can see we use the case study

to motivate and explain the adoption of the MDSD technique.

However, on the other hand we do not avoid development

process issues. The case study context puts students in the

role of CrudComp developers that need to iteratively and in-

crementally build an MDSD solution for a CRUD application

family. Incremental MDSD adoption is a necessity to fit into

the agile development processes.

We selected a CRUD application software family for our

case study because it is the most common information system

type in practice. It is also very similar to common project

assignments at our university that our students are already

used to. Moreover, examples in many tutorials (e.g. Spring,

NetBeans JSF) are illustrated on a CRUD application.

During the course, each student works individually on

his/her CrudComp project at home or in the class. Their

progress is controlled in the class on a week basis to prevent

procrastination and to help them with issues that raise during

the development of the case study.

IV. TEACHING MDSD ITERATIVELY

The CrudComp case study is divided into 4 relatively self-

contained incremental iterations. They all solve problems in

the same problem domain – the implementation of CRUD

applications. However, rather than solving the whole problem

at once, each iteration solves a smaller sub-problem of the

CRUD application generation. The first iteration starts with

generating entity classes and DAO implementations, and each

next iteration adds generation of some new functionality. This

iterative approach allows us to teach 4 different approaches to

MDSD while keeping the case study quite simple1. Thanks to

the variety of the MDSD techniques used in the case study we

can give the students a brief insight into the problems, advan-

tages and disadvantages of these techniques and the students

can compare them by themselves. Multiple approaches also

enable us to introduce the problem of language composition.

While each iteration uses a different technique they all share

the same tooling infrastructure used in MDSD (see Figure 2).

1Of course, this iterative approach is not only about showing multiple
techniques. As we argued in Section II, its main objective is to explain
(and illustrate, too) to the students that MDSD can be applied just to small
portions of the whole system and one can even combine multiple approaches
in context of the same system. Moreover, iterative approach nicely fits into
agile development.

JAROSLAV PORUBÄN ET AL.: PRAGMATIC MODEL-DRIVEN SOFTWARE DEVELOPMENT 1649

As the reader can see from the scheme in Figure 2 we accent

the importance of the model that connects the problem domain

with the implementation.

The case study is divided into 4 iterations that introduce the

following techniques:

1) Entities DSL processed by a simple parser implemented

in an ad hoc manner (delimiter-directed parser). This it-

eration solves the entities definition problem and enables

the user of the generative system to generate the data

tier for the CRUD application. Source code artefacts are

generated by direct transformation and using templates.

2) Constraints DSL implemented as a Java-based internal

language. It solves the problem of defining constraints

upon entity properties and introduces the technique of

language composition. Templates composition is intro-

duced.

3) Entities DSL with references processed by a generated

parser. The language adds a new functionality to the

generated CRUD applications that allows to specify

relations between entities.

4) And finally, UI specification language parsed by a stan-

dard XML parser. The UI specification language enables

CrudComp to generate a standard user interface for a

CRUD application. This iteration introduces templates

reuse.

Each iteration ends with a full MDSD solution to a sub-

problem of the whole CRUD application generation. They all

follow the whole scheme in Figure 2. The students can see

that MDSD can be applied in a small scale and that it can

be done relatively easily and quickly (they can see that even

MDSD can be done in agile manner). The following sections

discuss the iterations in detail and explain our motivation for

each of the chosen approach.

A. Entities Language

The first iteration starts with a simple external DSL. From

the viewpoint of the parsing approaches the objective of

this iteration is to show the students that writing an ad hoc

delimiter-directed parser for a very simple language can be

the right choice – in some simple situations the "big guns"

such as parser generators could just complicate the matter. To

make the implementation of the entities language as simple as

possible we exploit the file system for the concrete syntax

(see Section IV-A2). On the other hand, the students can

also see that if the language would get a little bit more

complex, the parser implementation complexity could raise

much more (thus we are preparing the ground for introducing

other approaches).

Another reason why we start with an ad hoc parser is that

students are often scared of parser generators. Usually they

think parser generators are complicated and therefore can be

used only by experts in language theory. We start with a

simple ad hoc implementation to gain the students’ attention

and enthusiasm.

From the viewpoint of code generation we use both

template-based generation and direct transformation. Again,

we want the students to understand when a direct transfor-

mation generation is enough and when we can simplify gen-

eration with templates. To emphasize incorporating multiple

approaches in one project we also generate multiple outputs

from the same model.

1) Abstract Syntax: In the first iteration we start with a

domain model that considers entities and their properties as

the data structures handled by CRUD operations. Entity has a

unique name and a set of its properties. Each property has a

name too (that is unique in scope of one entity) and a type.

For the purposes of the project string, integer and floating

point number types suffice. The result of the first iteration is

a language that covers the domain of CRUD entities.

The abstract form of a language sentence is represented by

an in-memory object-oriented model – semantic model using

Fowler’s words [4]. For each entity there should be an in-

memory object that would have a reference to a string with an

entity name and a reference to a list of objects representing

its properties, etc. The in-memory model is defined by GPL

classes (Java classes in our case study). The language model

for the problem domain of this iteration is shown in Figure 3.

Model Entity

-name: String

Property

-name: String

Type
<<enumeration>>

+INTEGER
+REAL
+STRING

-entities

1..*

-properties

1..*

-type

1

Fig. 3. Object-oriented language model of the entities language

2) Concrete Syntax: The first parsing approach we want

the students to use is an ad hoc delimiter-directed parser. To

keep the implementation effort manageable we chose a simple

pragmatic syntax. The whole model is defined in a single

directory in a file system. In this model directory there is a set

of files that define entities. One file specifies one entity. The

name of the entity is derived from the name of the file. This

way we mimic the Java programming language that requires

the name of the file to be the same as the name of the class

specified by that file. Since we use standard file system to

specify the set of entities in the domain model we can keep

the internal structure of the entity files simple. The internal

structure of the entity files is used to specify entity properties,

each on a single line. An example of a language sentence is

shown in Listing 1.

Listing 1. Two entities specified in a file-based entities language

<model>
|−−−− <Department>
| name : string
| code : string
|−−−− <Employee>

name : string
age : integer

The students have to implement a simple parser

LineParser that scans a given directory for files and parses

them to create in-memory objects representing entities. File

system scanning is done using standard Java File API. Files are

1650 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Dev. system Tooling infrastructure

In memory

model

Generated

artifacts

Model

notation

Metamodel Templates

Generators Processors

instance of

based on

use

based on
Hand-written

artifacts

Framework

artifacts

Fig. 2. Tooling infrastructure of our MDSD case study solution

text based and are parsed using just the String class and its

methods and regular expressions. The syntax of an entity file

is very simple. Each line in the file specifies a single property

of the entity. The property definition starts with property name

and ends with its type that is separated from the property name

by a ’:’ character. Entity files support single line comments

starting with ’#’.

3) Semantics: Once the students have the in-memory model

they use it to generate source code artefacts. In the first

iteration they generate just a part of the whole system –

the data tier of the CRUD application (simulating small-

scale MDSD). For example, for the Employee entity from

Listing 1 they are supposed to generate a Java entity class

and a data-access object with appropriate CRUD operations.

In the standard line of the case study we use JDBC to prepare

SQL statements and run them on a database, but students are

encouraged to use other technologies (such as Hibernate) if

they have experience with them. To show to the students that

we can generate multiple output artefacts from the same model

the case study requires that the students would also generate

a database schema creation script for a specific database (e.g.

Java Derby).

We chose templates as the basic generative approach, in

particular the Velocity templating engine. Both entity and DAO

classes are written as templates that are instantiated using the

in-memory model obtained by parsing the DSL. However, we

require the database schema script to be generated using the

direct transformation approach. We want the students to realize

that sometimes (for very simple output artefacts or when the

static portion of the generated source code is relatively small)

the template-based approach is unnecessary complex and it is

more appropriate to use program transformation.

B. Constraints Language

The second iteration introduces another pragmatic solution

– internal language based on a host GPL. We want to show to

the students that if syntactic restrictions posed by the host GPL

are not a problem, an internal DSL can significantly decrease

parser implementation costs.

In this iteration the students define a new language that

have to be composed with the entities language implemented

in the previous iteration. Since the new language models an

extension of the entities domain the two languages need to

be composed. Thus the students are introduced to language

composition on models. And finally, in the process of code

generation we show them that templates can be composed, too.

Template composition can be used to modularize and simplify

the templates.
1) Abstract Syntax: The second iteration extends the prob-

lem domain with property constraints. In addition to property

name and type, we want to be able to specify constraints about

properties. For example, the value of a particular property

might be required, it might have restrictions on range or length,

etc. Students will use Java-based internal domain-specific

language for constraints specification. Instead of extending the

LineParser they will implement a new constraints language

that will be composed with the entities language.
Since the constraints internal language is a new language,

it has its own model. The model of the constraints lan-

guage is shown in Figure 4. Classes highlighted in red

represent references to the entities language. EntityRef

and PropertyRef classes have both a name attribute that

refers to an Entity concept and to a Property concept of the

original entities language, respectively. For the purpose of the

composition the entities language model has to be extended,

too. The Property class representing the Property concept

of the language gets a new attribute with a list of its constraints

(similarly as the PropertyRef class).

EntityRef

-name: String

PropertyRef

-name: String

-properties

1..*

Constraint-constraints

1..*

Regex

-regex: String

Range

-minValue: int
-maxValue: int

Length

-minLength: int
-maxLength: int

Required

Fig. 4. The constraints language model

In addition to parsing, the constraints language have to

be composed with the entities language. Students have to

implement a method that validates references from the con-

straints language so that they refer to existing entities from

the entities language model. After the validation they have to

compose both models. That basically means that they have

to assign constraints from the constraints language model to

the appropriate properties objects from the entities language

model.
2) Concrete Syntax: The second iteration of the teaching

process is aimed at internal languages. Instead of imple-

JAROSLAV PORUBÄN ET AL.: PRAGMATIC MODEL-DRIVEN SOFTWARE DEVELOPMENT 1651

menting their own parser, the students are shown how to

reuse the compiler of the host general purpose language.

This pragmatic solution is a façade to the language model

that can be used to build constraints language expressions

using domain-specific concrete syntax. In Listing 2 there is

an example of a sentence specifying constraints on the name

property of the Employee entity from Listing 1. The example

specifies that every Employee must have a name and it cannot

exceed 30 characters.

Listing 2. Constraints for the Employee entity in the constraints language

public class Constraints extends ConstraintBuilder {
protected void define() {

entity_ref("Employee",
property_ref("name",

required(),
max_length(30)));

}
}

The façade to the language model is called expression

builder. Expression builder in the CrudComp case study is

implemented as a Java class that provides creation methods

with names from the problem domain. Part of the implemen-

tation for constraints expression builder is shown in Listing 3.

It is implemented using the nested methods design pattern of

internal languages inspired by Fowler [4].

Listing 3. Expression builder for the constraints language

public abstract class ConstraintBuilder {
private List<EntityRef> entities = new ArrayList<EntityRef>();
private Model model;

protected abstract void define();

protected void entity_ref
(String name, PropertyRef... properties) {

entities.add(new EntityRef(name, properties));
}

protected PropertyRef property_ref
(String name, Constraint... constraints) {

return new PropertyRef(name, constraints);
}

protected Required required() {
return new Required();

}
:

}

3) Semantics: From the viewpoint of the constraints lan-

guage semantics the students have to extend the DAO imple-

mentation to add a test method that validates objects of entity

classes to match the specified constraints. Here we introduce

another concept – template composition. For each constraint

there should be a template just with the corresponding test.

For example, in Listing 4 there is a Velocity template for

the required constraint that tests whether an attribute of an

entity class is not null (the toUCIdent method transforms

the name into upper case identifier). In the test method of

the DAO template there is a loop that goes through all the

constraints assigned to the properties of the current entity

class and instantiates and includes the appropriate template

for each found constraint. This way we can avoid multiple

’if-else’ conditional branches in the DAO template.

Listing 4. Test template for the required constraint

if(object.get${generator.toUCIdent($property.name)}() == null) {
throw new ValidatorException("Property ’$property.getName()’"

+ " of entity ’$entity.getName()’ is required.");
}

C. Entities Language with References

The third iteration moves the focus to the traditional MDSD

tools. Now a new parser is not implemented in an ad hoc

manner, but the students are supposed to work with a parser

generator. The previously used approaches were supposed to

show to the students that a simple DSL can be easily built

without a lot of knowledge about the language theory. This

iteration is used to show them that with modern approaches

to parser generation, generating a parser is not difficult and for

a non-trivial language it is much more effective than writing

an own implementation.
To keep the course pragmatic we favoured model-based

approach to parser generation (introduced in [5]). Students use

the YAJCo [5] model-based parser generator that considers

the object-oriented model of the entities language to be the

specification of the language abstract syntax. Thus the students

do not have to explicitly worry about the language grammar

(although we show them the correspondence between the

EBNF-based and model-based grammar specification). Using

model-based parser generation does not necessarily require

extensive knowledge of language and grammar theory.
1) Abstract Syntax: In the third step the problem domain is

extended with relationships between entities. An entity uses a

reference to other entity to express a relationship. For example,

an employee works in a specific department. This relationship

will be expressed by a reference from the Employee entity to

the Department entity.
In this iteration we create a new parser for an external DSL

that supports entities, constraints and references. The language

model from previous iterations is reused thus mimicking agile

evolution of the MDSD solution. Prototype parsers imple-

mented in previous iterations are discarded, but the model

and the generators are still used. A new parser populates

the same Model, Entity, Property, and Constraint

classes that were previously instantiated by the LineParser

and the ConstraintBuilder. From the viewpoint of the

language model, only the Reference class is an addition.

Figure 5 shows the new Reference class with relations to

the existing Entity class.
2) Concrete Syntax: The new entities language with refer-

ences is an external language that is parsed by a generated

parser. YAJCo parser generator uses the language model

expressed by Java classes as a definition of the language

abstract syntax. In addition to the model, students have to

specify the concrete syntax of the language so that sentences

like the one in Listing 5 can be processed.

1652 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Entity

-name: String
-properties: Property

Reference-outgoingReferences

0..*

-to 1

-from 1

Fig. 5. Reference class and its relationship with the Entity class

Listing 5. Sentence in the entities language with references

entity Department {
name : string required, length 5 30
code : string required, length 1 4

}
entity Employee {

name : string required, length 2 30
age : integer

}
reference from Employee to Department

YAJCo uses Java annotations to associate concrete syntax

patterns with the language abstract syntax expressed by Java

classes. Each constructor of a language model class is con-

sidered an alternative in the grammar rule for expanding the

language concept represented by that class. A constructor is

a mean for creating an object from formally defined input.

Annotations are used to associate concrete syntax to these

rules, e.g., keywords with @Before/@After, number of

occurrences with @Range, etc. Listing 6 illustrates modelling

an expansion rule for the Entity concept of the class by

annotating parameters of the constructor (for illustration of

the duality there is an EBNF-based version of the rule).

Listing 6. Entity concept concrete syntax expressed by YAJCo annotations

public class Entity implements Named {
:
// Entity −> ’entity’ NAME ’{’ Property+ ’}’
public Entity(@Before("entity") String name,

@Before("{") @After("}") @Range(minOccurs=1)
Property[] properties) {

this.name = name;
this.properties = properties;

}
:

}

In this point the students already have the abstract syntax of

the language – they have the language model. To generate a

parser they only need to properly annotate constructors of the

model classes to specify the concrete syntax of the language.

3) Semantics: This iteration introduces only small additions

to the generated artefacts. The students have to alter the

database schema script generator, entity class template and

DAO template to support references between entities.

D. User Interface Specification Language

The last iteration we use to teach the concept of generic

languages (called Commercial-Off-The-Shelf by Kosar et al.

in [6]). If a language designer keeps the syntactic restrictions

defined by a generic language he/she can then reuse its generic

parser. Generic languages (XML, YAML, .properties, etc.) are

currently very popular in industry, especially for configuration

languages [7]. This popularity is the reason why we believe

that generic languages should be a part of an MDSD course.

From the viewpoint of code generation and templates we use

this iteration to show how the templates can be reused.

1) Abstract Syntax: In the last iteration the problem domain

is extended to consider the user interface of the CRUD

application. Entity objects are presented to application users

in tables, each of which has a set of columns corresponding to

entity properties. Not all the properties of a particular entity

have to be presented and therefore there does not necessarily

have to be a column for each property. To support creating and

editing entity instances, a form has to be specified. Again, for

each property, a field in the form can be defined.

The language model for the UI specification DSL includes

new classes that describe concepts of a CRUD user interface.

In Figure 6 there is a class diagram showing the language

model of the UI specification language. A user interface

consists of tables and forms for the entities. Tables and forms

are special cases of a dialog. Each dialog has its components;

in case of tables those are columns and in case of forms the

components are fields. The Dialog and the Component

classes have attributes prepared for composition with the

entities language.

UserInterface

Dialog

-name: String
-entityName: String
-entity: Entity

Component

-label: String
-propertyName: String
-property: Property

-components

0..*

Table Form

-tables 0..* -forms 0..*

Field

Column

Fig. 6. User interface specification language model

2) Concrete Syntax: The concrete syntax of the UI spec-

ification language is XML-based. For parsing the language

we chose the Java Architecture for XML Binding (JAXB).

JAXB enables to marshal (serialize) a Java object tree into a

corresponding XML document and to unmarshal (deserialize)

an XML document into its in-memory object oriented repre-

sentation. The classes that JAXB works with are indeed the

model of the XML-based language that specifies its abstract

syntax. JAXB uses convention over configuration design pat-

tern to assume a concrete XML-based syntax of the language.

For example, by default, JAXB maps class attributes to XML

elements with the same name (mapping options between XML

format and object trees are discussed in detail in [8]). The

JAXB schemagen tool that can be used to generate XML

Schema Definition for the XML language.

Listing 7 shows a simple user interface specification for

the CRUD application with Employee entities using an XML-

JAROSLAV PORUBÄN ET AL.: PRAGMATIC MODEL-DRIVEN SOFTWARE DEVELOPMENT 1653

based notation. Again the students’ task is to annotate the

language model (Figure 6) so that the JAXB would be able

to marshal and unmarshal instances of the model to XML

documents with the format shown in Listing 7.

Listing 7. XML-based user interface specification language

<ui>
<form name="EmployeeForm" entity="Employee"

label="Employee">
<field property="name"/>
<field property="age"/>

</form>
<table name="EmployeeTable" entity="Employee"

label="Employee" editFormDialog="EmployeeForm">
<column property="name"/>
<column property="age"/>

</table>
</ui>

JAXB annotations are used to specify deviations from the

default mapping. An excerpt from the Dialog class with

JAXB annotations in Listing 8 represents an example of a

mapping definition. @XMLTransient annotations exclude

program elements from mapping. E.g. the Dialog class it-

self is excluded since its descendants will suffice. @XmlID

annotation specifies that the name attribute is an identifier

of Dialog (or its subclasses) objects. @XmlAttribute

overrides mapping to XML element and specifies that the

name attribute of the Dialog class will be mapped rather

to XML attribute.

Listing 8. Dialog class annotated with JAXB annotations

@XmlTransient
public abstract class Dialog implements Named {

@XmlID @XmlAttribute(required=true)
private String name;
@XmlAttribute(name="entity", required=true)
private String entityName;
@XmlTransient
private Entity entity;
@XmlAttribute(required=true)
private String label;
@XmlTransient
private Component[] components;
:

}

3) Semantics: The last iteration finishes the CRUD appli-

cation generator. The students will implement generators that

will provide a user interface for the data tier generated by the

generator implemented in the previous iterations. Currently as

the standard line in the case study we use a console-based

user interface so that the project would be simpler and at

least partially manageable even for under-average students.

The standard console-based UI solution requires providing

templates for forms and tables. In addition, the students have

to write a simple template for the main class of the application

that provides the main menu for using it. Of course, we

encourage the students to rewrite the project to support other

types of user interfaces – we have seen multiple web-based

UIs (e.g., HTML+JavaScript, Java Server Faces), desktop

UIs based on Swing and also mobile clients (e.g., Windows

Phone 8 communicating with server through web services,

Blackberry) developed by our students.

From the viewpoint of generation techniques we ask the

students to reuse the templates. The UI has to validate users

input to avoid violating constraints on entity properties2. Here

they have to reuse the constraints validation templates written

in the second iteration (e.g. the template shown in Listing 4).

This way they can see that a good decomposition of templates

can also support template reusability.

V. EVALUATION

To determine the impact of using MDSD in our course,

we administered a survey to the students in our classes. 58

students responded the survey. Following questions were used

in the questionnaire

A Single choice questions:

1. What were your experiences with model-driven

software development (MDSD) before this course?

(a) I have not heard of it before, (b) I have heard

of it before but I have never used it, (c) I have

already used this approach before this course.

2. Do you think you understood MDSD?

1 - Strongly agree, 2 - Agree, 3 - Disagree, 4 -

Strongly disagree.

3. Would you use the techniques learned in this

course in practice?

1 - Strongly agree, ..., 4 - Strongly disagree.

4. Were you satisfied with the iterative way of devel-

opment used in the course?

1 - Strongly agree, ..., 4 - Strongly disagree.

5. Rate the amount of work needed to complete the

project solved in the course.

(a) Significantly more than in other courses, (b)

More than in other courses, (c) Less than in other

courses, (d) Significantly less than in other courses.

6. The course belongs to your:

(a) favourite subjects, (b) rather favourite subjects,

(c) rather not favourite subjects, (d) not favourite

subjects.

B Open text questions:

7. What did you like about the course?

8. What is the biggest problem you had during the

course?

9. What would you change about the course?

10. Which of the learned techniques would you use

and in what situations/projects/platforms?

As the reader can see, the first two questions of the ques-

tionnaire are oriented to students’ knowledge about MDSD

before and after the course. The 2nd and 10th question are

targeted to practical usage of the learned knowledge. The rest

2In this simple console-based application the validation both in data tier and
in UI is redundant, but we want the students to have an opportunity to reuse
the templates written for constraints. In the real world, most of the common
CRUD applications are web based. In web input, validation in UI forms is
important for user experience. And duplicate validation on server is necessary
if the server exports services that can be used to create or update entities.

1654 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

of the survey addressed the course, it’s form and the problems

that the students might have had during the course.

Results

The results we obtained from the first two questions revealed

that most of the students (57%) have never heard of MDSD

and only 5% have used an MDSD approach before the course.

After finishing the course, almost 86% of the students think

they understand MDSD and only one student feels s/he does

not understand MDSD at all.

More than a half of the students (almost 58%) think that

they will use the MDSD techniques in practice. Here we have

to note, that not all of our students are programmers and

many students are focused on computer networks for example.

According to the answers of the 10th question, more than a

half of all students (51%) specified also relevant examples

of using specific techniques in practice. This fact implies that

more than a half of the students sufficiently understood MDSD

principles and techniques, they can distinguish between them

and know how to use them in practice.

The results of the 4th question shows that majority of the

students (93%) liked the iterative approach used in our course.

It was surprising and gratifying for us to learn that although

88% of students thought the course puts an excessive amount

of work on them, however 70% marked the subject as their

favourite or rather favourite.

The problems that our students encountered most frequently

were mainly misunderstanding of several tasks in the course

materials (30%), technological issues (IDE, operating system

compatibility, etc.) or Java (25%). 17% of students had no

problem with the course. Only a little number of students

had problem with the techniques used - YAJCo (3 students),

annotations (2 students) or velocity (7 students).

Although the students had issues, the results of the 9th

question show that more than a half of them (52%) felt that

they would not change the course materials at all.

The results obtained in the open text section showed that

the students liked the iterative approach very much and they

are satisfied with the consultation during exercises. Many

of them marked the exercises as useful and they liked the

implementation. Some of them like the various techniques

used and favour the possibility of using the learned techniques

in practice.

We can conclude that the course is successful and orienta-

tion to the practice had motivating impact on the students.

Problems lied mainly in the formulation of several tasks,

which were hard to interpret for weaker programmers. For this

reason, we introduced discussions and evaluations of concrete

tasks into our course materials, to be able to obtain task-

specific feedback and improve the course materials in the

future.

VI. RELATED WORK

The motivation for teaching MDSD at our university is

based on its promises of narrowing the semantic gap between

problem and solution domains. Selic [9] argues that these

benefits of using models are even greater in software than

in other engineering disciplines (due to less diversity in skills

needed for the complete MDSD implementation). Introduction

of the MDSD course at our university was a response to

the studies and works that on the one hand proclaim the

benefits of MDSD, but on the other hand state that MDSD

is given little attention in education (e.g., an early work by

Cowling [10]). The main problem with MDSD teaching at

our university is that myths discussed in Section I were and

still are strongly rooted among our students. Although there

are numerous articles describing research challenges in MDSD

(e.g., work by France et al. [11]) we faced the problem of

MDSD unpopularity among the students. And our students

considered most of the scientific papers on the topic as just

proofs of those myths (they usually deal with the highly

specific problems). In our teaching approach we tried to extract

the fundamental MDSD principles and show them to the

students on simple pragmatic examples. The principles had to

be directly applicable in practice (considering the small scale

application, application in the agile methodologies, etc.).
Considering taught principles we explain the MDSD topic

from the viewpoint of the language-oriented programming (see

Section II). Although this viewpoint covers basically the same

challenges and benefits as rather "classic" MDSD teaching

approaches such as the one by Clarke et al. [12], our approach

is more language-centric. We decided to extensively cover also

the topic of formal languages, since currently in the industry

there is ubiquitous need for developing and working with little

languages (especially configuration languages [7]). Not only

this course teaches the students useful knowledge, but it also

serves as a motivational factor; the most important attribute of

a course for students is whether they will be able to apply the

learned topics in their future career.
Problem with used tools in MDSD teaching was discussed

in multiple scientific works. There are cases in which teachers

chose complex MDSD tools and they do not report any

significant problems with students using complex solutions.

For example, Tekinerdogan [13] and Clarke et al. [12] used

Eclipse Modeling Project (EMP) tools, Pareto [14] used Mi-

crosoft DSL toolkit. However, there are reports of students

having problems with working with such complex tools. For

example, Batory et al. [15] tried to use the Eclipse Modeling

Framework (EMF), but their students were overwhelmed by

the technology. The failure to successfully understand and

work with the EMF resulted in, using words of Batory et al.,

"a bitter taste" for them, and worse, even their students. We

did not use a single complex tool to defy the myths about the

solely large scale MDSD application and the need of massive

tool support.
Schmidt et al. [16] identified three approaches to MDSD

teaching:

• Purely theoretical approach that focuses on theoretical

knowledge and neglects the practical exercise of the

MDSD principles by students themselves.

• Tool-supported approach is a teaching approach that uses

a single complex MDSD tool (e.g., EMF in [12]).

JAROSLAV PORUBÄN ET AL.: PRAGMATIC MODEL-DRIVEN SOFTWARE DEVELOPMENT 1655

• Practical approach that focuses on underlying concepts

rather than the use of a concrete tool.

Schmidt et al. use the practical approach in which they ask

students to implement the generator tool themselves. They

favoured this approach to the tool-supported approach since

with the practical approach students have to directly apply the

MDSD elementary principles themselves. Using a complex

MDSD framework risks that some of the basic principles might

be encapsulated by the framework and thus hidden from the

students. Although this motivation differs from ours (we did

not use a complex tool to show that MDSD can be applied

without a massive tooling support) we ended with the very

similar approach focused rather on principles than on tools.

Considering the domain of the course project, the used

domain usually differs from work to work. For example,

Mosterman [17] uses the domain of embedded systems, Clarke

et al. [12] use the domain of communication services, or

Batory et al. [15] let the students choose a domain of their

interest. For the case study in our course we selected the

domain of CRUD applications for two reasons, (1) it is a

well-known domain for our students, and (2) it is widespread

in practice (considering frameworks such as Spring Roo or

Ruby on Rails). While the usage of a well-known domain

does not bother the students with unnecessary learning load,

the fact that the domain is widespread in the industry serves

as a motivational factor.

From the viewpoint of the teaching approach, most of the

articles report using classic development with a single iteration

(e.g., Clarke et al. [12]). We use iterative approach to show

the options in using MDSD for incremental, agile development

and also to reduce the focus on a complex MDSD tool and to

rather move it to MDSD principles. Iterative teaching approach

is also used by Schmidt et al. [16]. They use the iterative

approach for the same reason as we do; they want to focus on

MDSD principles rather than on tools. In the first iteration their

students implement their own generator tool, in the second

iteration they extend the tool, and only in the last iteration

they implement a language using a complex MDSD tool.

VII. CONCLUSION

In this paper we have presented our approach to teaching

model-driven software development. The goal of our course is

to explain the basic principles and concepts of model-driven

and generative development. These concepts are illustrated

using several different practical tools and techniques that can

be used in different combinations and in projects of different

scale. The presented approach could be also inspirative when

adapting the model-driven approach in a software project.

Thanks to the case study students can acquire practical ex-

perience with each of presented techniques during the course.

Iterative character of development also provides insight into

the use of MDSD as a part of the development process.

ACKNOWLEDGMENT

This work was supported by project KEGA No. 019TUKE-

4/2014 Integration of the Basic Theories of Software Engineer-

ing into Courses for Informatics Master Study Programmes at

Technical Universities - Proposal and Implementation.

REFERENCES

[1] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-

opment: Technology, Engineering, Management. John Wiley & Sons,
2006. ISBN 0470025700

[2] A. Demir, “Comparison of Model-Driven Architecture and Software
Factories in the Context of Model-Driven Development,” in Proceedings

of the Fourth Workshop on Model-Based Development of Computer-

Based Systems and Third International Workshop on Model-Based

Methodologies for Pervasive and Embedded Software, ser. MBD-
MOMPES ’06. Washington, DC, USA: IEEE Computer Society, 2006.
doi: 10.1109/MBD-MOMPES.2006.5. ISBN 0-7695-2538-5 pp. 75–83.

[3] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman

to master. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999. ISBN 0-201-61622-X

[4] M. Fowler, Domain Specific Languages. Addison-Wesley Professional,
2010. ISBN 0-321-71294-3

[5] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation Based
Parser Generator,” Computer Science and Information Systems, vol. 7,
no. 2, pp. 291–307, Apr. 2010. doi: 10.2298/CSIS1002291P. [Online].
Available: http://www.comsis.org/archive.php?show=ppr230-0911

[6] T. Kosar, P. E. Martínez López, P. A. Barrientos, and M. Mernik, “A
preliminary study on various implementation approaches of domain-
specific language,” Inf. Softw. Technol., vol. 50, no. 5, pp. 390–405,
Apr. 2008. doi: 10.1016/j.infsof.2007.04.002

[7] M. Nosál’ and J. Porubän, “XML to Annotations Mapping Patterns,”
in 2nd Symposium on Languages, Applications and Technologies, ser.
OpenAccess Series in Informatics (OASIcs), J. P. Leal, R. Rocha, and
A. Simões, Eds., vol. 29, 2013. doi: 10.4230/OASIcs.SLATE.2013.97.
ISBN 978-3-939897-52-1. ISSN 2190-6807 pp. 97–113.

[8] R. Lämmel and E. Meijer, “Revealing the X/O impedance mismatch:
changing lead into gold,” in Proceedings of the 2006 international

conference on Datatype-generic programming, ser. SSDGP’06. Berlin,
Heidelberg: Springer-Verlag, 2007. doi: 10.1007/978-3-540-76786-2_6.
ISBN 3-540-76785-1, 978-3-540-76785-5 pp. 285–367.

[9] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003. doi: 10.1109/MS.2003.1231146

[10] A. J. Cowling, “Modelling: a neglected feature in the software engi-
neering curriculum,” in Proceedings of the 16th Conference on Software

Engineering Education and Training 2003, ser. CSEE T 2003, March
2003. doi: 10.1109/CSEE.2003.1191378. ISSN 1093-0175 pp. 206–215.

[11] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” in 2007 Future of Software Engineering,
ser. FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007.
doi: 10.1109/FOSE.2007.14. ISBN 0-7695-2829-5 pp. 37–54.

[12] P. J. Clarke, Y. Wu, A. A. Allen, and T. M. King, “Experiences of
Teaching Model-Driven Engineering in a Software Design Course,” in
ACM/IEEE 12th International Conference on Model Driven Engineering

Languages and Systems, ser. MODELS’09. Denver, Coloardo, USA:
IEEE Computer Society, 2009.

[13] B. Tekinerdogan, “Experiences in teaching a graduate course on model-
driven software development,” Computer Science Education, vol. 21,
no. 4, pp. 363–387, 2011. doi: 10.1080/08993408.2011.630129

[14] L. Pareto, “Teaching Domain Specific Modeling,” Symposium at MOD-

ELS 2007, p. 7, 2007.
[15] D. S. Batory, E. Latimer, and M. Azanza, “Teaching Model Driven

Engineering from a Relational Database Perspective,” in MoDELS, ser.
Lecture Notes in Computer Science, A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, and P. J. Clarke, Eds., vol. 8107. Springer, 2013. doi:
10.1007/978-3-642-41533-3_8. ISBN 978-3-642-41532-6 pp. 121–137.

[16] A. Schmidt, D. Kimmig, K. Bittner, and M. Dickerhof, “Teaching
Model-Driven Software Development: Revealing the "Great Miracle"
of Code Generation to Students,” in Sixteenth Australasian Computing

Education Conference (ACE2014), ser. CRPIT, J. Whalley and
D. D’Souza, Eds., vol. 148. Auckland, New Zealand: ACS,
2014, pp. 97–104. [Online]. Available: http://crpit.com/confpapers/
CRPITV148Schmidt.pdf

[17] P. Mosterman, “Automatic Code Generation: Facilitating New Teaching
Opportunities in Engineering Education,” in 36th Annual Frontiers in

Education Conference, Oct 2006. doi: 10.1109/FIE.2006.322699. ISSN
0190-5848 pp. 1–6.

1656 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

