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Abstract—The damage identification problem is one of crucial
problems during operation of machines’ elements made of
polymeric composites. Therefore the appropriate non-destructive
techniques should be developed in order to detect and identify
the damages with the best possible accuracy. Moreover, such
methods should be applicable in various testing conditions. One
of the intensively developed directions in non-destructive damage
assessment is a class of methods based on wavelet analysis of
modal shapes of vibration applied for a tested structure. The
effectiveness of an algorithm is strongly dependent on the type
of applied wavelet and its parameters. The proposed approach
uses a combination of the wavelet-based damage identification
algorithm with multi-objective meta-optimization in order to
select optimal parameters of applied wavelets and determine
a front of optimal non-dominated solutions. Based on these
solutions the operator can choose the desired accuracy of damage
identification with respect to the suitable computation time.

I. INTRODUCTION

S
INCE the polymeric composites are more and more ap-

plicable as constructional materials in various industrial

branches (e.g. automotive, aircraft and aerospace industries)

and the manufactured elements are often subjected to critical

loads during their operation, the development of appropriate

damage identification methods, which will be able to detect

and identify the damages specific for these materials, seems

to be a necessity. From the majority of recently developed

and applied non-destructive methods and techniques one could

select a group of methods, which are based on analysis

of vibration data of a tested structure. These methods have

several advantages with respect to others, e.g. the possibility of

carrying out on-field diagnostics, simplicity of measurements

and concluding about the damage presence, a possibility of

performing the measurements without unmounting the tested

element from the machine, etc. However, for increasing the ac-

curacy of detection and identification of damages the advanced

signal processing methods are usually used.

One of the intensively developed approaches in the damage

assessment problems is a wavelet-based analysis. Since the

most of these problems are referred to the structural diag-

nostics of spatial domains the wavelet-based algorithms were

extended for application on two-dimensional data. Numerous

studies, both theoretical and experimental, were based on
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various wavelet transforms and various wavelets in order to

obtain relevant information about damage state of a tested

structure. A number of researchers developed their algorithms

based on continuous wavelet transform (CWT) [1], [2], [3],

[4] or stationary wavelet transform (SWT) [5]. The analysis

of the applied wavelet-based algorithms was presented in [6].

The previous comparison studies of various wavelet transforms

and various wavelets applied in the damage identification

algorithm [7] show that the most accurate and computationally

efficient algorithm is provided by application of the discrete

wavelet transform (DWT) together with B-spline wavelets.

Following the recent advances in the field of improvement of

wavelet-based damage identification methods one can notice

that they are generally based on hybridization of the men-

tioned algorithm with various soft computing methods. There

are numerous hybridizations of wavelet-based algorithm with

artificial neural networks [8], [9], [10] as well as optimization

algorithms: Krawczuk et al. [11] use genetic algorithms for

improvement of cracks detection in beams, while the authors

of [12] applied particle swarm optimization for improvement

of detectibility of damages.

Further studies [14] of the first author allow developing

a more efficient algorithm, which was based on fractional

discrete wavelet transform (FrDWT) introduced in [15] with

application of fractional B-spline wavelets. Based on the appli-

cation of extended (two-dimensional) version of the fractional

B-spline wavelets proposed in [16] it was possible to select

the wavelet parameters suitable for the investigated problem

in order to achieve the most accurate results of damage

identification, which constitutes an improvement of accuracy

with respect to integer-valued order of B-spline wavelets used

previously [7], [17]. In order to select optimal parameters

of the applied 2D fractional B-spline wavelets the authors

hybridized a wavelet-based damage identification algorithm

with various optimization algorithms (evolutionary algorithm,

direct search algorithm, simulated annealing algorithm and

particle swarm optimization) [18], which allowed for the

further improvement of the damage identification effective-

ness. The method was validated on numerical models and on

experimental data achieved from vibrometric measurements

of artificially damaged composite structures. Moreover, in the

same paper, the authors surveyed the literature regarding the

optimization problem of the wavelets’ parameters mainly for
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the damage identification purposes. It was noted that, the

optimization approaches might be included into two groups:

classic methods and soft computing and heuristic ones. One

of the main conclusions from this review was that there was

the lack of sufficient methods to tune behavioural parameters

of optimization algorithms in order to have a much more

practical algorithm for damage identification, which could be

implemented in the embedded system of the end-user device.

In order to improve application abilities of the wavelet-based

damage identification algorithm and evaluate the effectiveness

of optimized wavelet parameters (and thus the effectiveness

of damage detection and identification) with respect to the

computational time the problem could be formulated as multi-

objective meta-optimization one.

The meta-optimization is a quite novel approach, which

found numerous applications in the engineering problems. One

of the earliest attempts to meta-optimization can be found

in [19], where the genetic algorithm was used in order to

find best mutation and crossover rates for another lower-level

genetic algorithm. In the next years, there were similar trials

to this problem by many authors, e.g. see [20], [21], [22].

Also in this subject, the authors of the paper [23] discussed

the most important issues related to tuning evolutionary al-

gorithm parameters by means of various meta-optimization

methods. Their main conclusion was that it was no matter

what kind of tuner algorithms to be used in this task, because

for each case, it was possible to get a much better result

from evolutionary computations with meta-optimization than

relying on own intuition and the usual parameter setting

conventions. The similar strategy as in the case of evolutionary

algorithms can be observed for other soft computing method.

For example in [24], the authors proposed the concept in

which a superordinate swarm (’superswarm’) can be used to

optimize the parameters of subordinate swarms (’subswarms’).

Subordinate swarms were used for neural network training.

Another point of the view is given in [25]. Branke and Elomari

in their work proposed the method that could be used, in

a single run, to identify the best parameter settings for all

possible computational budgets. Their approach allows to save

a lot of time. In the best of authors’ knowledge the only

application of meta-optimization in non-destructive testing

with use of wavelet-based algorithm was presented in [26],

where the authors performed electromagnetic measurements

with appropriate post-processing in order to detect and identify

cracks in walls of nuclear fission reactors.

In this study the authors developed an existing hybridized

algorithm based on the results of the previous study [18].

The application of meta-optimization to the wavelet-based

damage identification algorithm has several goals. In spite of

the computational procedure implemented in [18] the authors

determined common wavelets’ parameters for all types of

investigated damages. The parent optimization sub-algorithm

in the meta-optimization algorithm was based on a double

criterion problem, which allows to obtain a front of optimal

non-dominated solutions dependent on the accuracy of damage

identification vs. the computation time. Thus, one may decide

which strategy should be applied, for instance, the worse

solution with quick data processing or the best solution with

long-time data processing.

II. DAMAGE IDENTIFICATION

A. Wavelet-based algorithm

The algorithm of damage detection and identification was

based on spatial FrDWT, which uses the two-dimensional

Mallat’s multi-resolution analysis, where B-spline scaling

functions of fractional order βα
τ (x) constitute a space of the

square-integrable subspaces L2
(

R
2
)

and form a sequence of

functional spaces Vi in the form:

{0} ⊂ . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2
(

R
2
)

.
(1)

The form of a scaling function of fractional order βα
τ (x) is

defined by two parameters [15]: α ∈ R, which is an order of

scaling function, and τ ∈ R, which is a shift parameter, and

is as follows:

βα
τ (x) =

∞
∑

k=0

(−1)k
∣

∣

∣

∣

α+ 1
k − τ

∣

∣

∣

∣

ρατ (x− k), (2)

where

ρατ (x) = − cosπτ

2Γ (α+ 1) sin (πα/2)
|x|α

− sinπτ

2Γ (α+ 1) cos (πα/2)
|x|α sgn(x), (3)

Γ (α+ 1) is the Euler γ-function, which allows for fractional

factorization. The scaling βα
τ (x) and wavelet ψα

τ (x) functions

hold two-scale relations [15], [16]. For the cases when α /∈ Z

and τ = (α+ 1) /2 the integer-valued B-spline wavelets can

be obtained.

Following the method of complexification of B-spline

wavelets of fractional order based on generation of Hilbert

transform pairs of them proposed in [16] it is possible to

obtained direction-oriented 2D complex wavelets. The com-

plexification is based on a combination of wavelets with the

same order α, but different shift parameters τ in the form:

ψα
τ (x) = ψα

τ (x) + jψα
τ+1/2(x), j

2 = −1. (4)

Considering that the analytic wavelet has a form [16]:

ψα(x) = ψ + jH{ψ} , (5)

where H denotes a Hilbert transform, the 2D complex wavelets

have the following form [16]:

ψ1 (X) = ψ(x)φ(y) + jHψ(x)φ(y),
ψ2 (X) = ψ(x)Hφ(y) + jHψ(x)Hφ(y),

ψ3 (X) = φ(x)ψ(y) + jφ(x)Hψ(y),
ψ4 (X) = Hφ(x)ψ(y) + jHφ(x)Hψ(y),

ψ5 (X) = 2−1/2 (ψ(x)ψ(y)−Hψ(x)Hψ(y))
+2−1/2j (ψ(x)Hψ(y) +Hψ(x)ψ(y)) ,

ψ6 (X) = 2−1/2 (ψ(x)ψ(y) +Hψ(x)Hψ(y))
+2−1/2j (ψ(x)Hψ(y)−Hψ(x)ψ(y)) , (6)
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where X = (x, y) denotes 2D signal and 2−1/2 is used for

scaling the wavelets. The wavelets (6) are oriented along the

primal direcrions: θ1 = θ2 = 0, θ3 = θ4 = π/2, θ5 = π/4
and θ6 = 3π/4, which allows for increasing detectability

of damages located in these directions. The decomposition

graphical example can be found in [18].

Considering that discrete-type wavelet transforms could be

expressed as a set of high-pass and low-pass filters, the

decomposition procedure could be presented in the form of

pairs of filters along the specific directions of a signal X.

Considering (4) and (6) one can obtain six complex subbands

wP , P = 1, . . . , 6, after the decomposition (see [16], [18] for

details).

In order to ensure sensitivity of an algorithm to all pos-

sible orientations of spatial damages the real parts of wP

are normalized according to the Euclidean metric. Moreover,

considering the strong dependence between magnitudes of

displacements of modal shapes and obtained coefficients after

decomposition it is suitable to consider multiple modal shapes

during the analysis. The resulted post-processing expression

with respect to M considered modes takes a form:

W =
∑

M

∣

∣

∣

∣

∣

∑

P

ℜ
(

wP
M

)2

∣

∣

∣

∣

∣

. (7)

Based on the above-presented algorithm the damage identi-

fication procedure was performed. As was mentioned earlier,

the wavelets were defined by α and τ , thus these parameters

were selected for the optimization procedure. The goal of

optimization is to find suitable values for α and τ , which allow

for obtaining of best results in detection and localization of

damages.

B. Optimization procedure for searching values of α and τ

The main goal of the optimization procedure is to adjust

the fractional order α and the shift factor τ in order to obtain

the best properties of the damage identification algorithm. In

the previous paper [18], the authors proved that the single

optimization method could be successfully applied in this kind

of tasks. Hence, the optimization problem can be written as

follows:

Minimize U (α, τ)
subject to α(L) ≤ α ≤ α(U), τ (L) ≤ τ ≤ τ (U) (8)

where α(L), α(U), τ (L), τ (U) are the lower and upper values

of the boundary constraints that should be chosen taking into

account the properties of the wavelet. The global criterion

method [27] is used to create a single objective function

U (α, τ). In this way, an indirect utility function can be

expressed in its simplest form as the weighted exponential

sum:

U (α, τ) = c1



1 +

T (p)
∑

i=1

max (Wi)





−λ

+ c2

[

n
∑

i=1

n
∑

j=1

w
∗

i,j

]λ

(9)

where ci are weights indicating the relative significance of

elements in the sum, the exponent λ determines the extent to

which a method is able to capture all of the Pareto-optimal

points for either convex or non-convex criterion spaces, de-

tail coefficients in the matrix Wi are computed using the

recurrence relation proposed in [18], w∗

i,j is an element of

the matrix WT (p). The function T (p) can be defined using

the following expression:

T (p) = card {wi,j : ∀i, j ∈ {1, 2, . . . , n} wi,j ≥ pmax (W)}
(10)

where n is the size of the matrix W, whereas p is the

ratio between the greatest magnitudes and the other detail

coefficients in the matrix W. The value of this parameter

should be chosen arbitrarily from the range [0, 1].
It is very important to have the physical interpretation of

the formulated objectives. The first component of the weighted

exponential sum (9) describes the values of detail coefficients

that have the greatest magnitudes. This criterion can be in-

terpreted as follows. If the damage occurred somewhere in

the composite plate then the result of this would be locally

affected on the values of displacements of modal shapes. The

second component of the sum is correlated with the blurring

of the regular form or forms which indicate the damage. It

can be stated that the values of w∗

i,j in the matrix represent

the blurring of the regular form.

The authors showed in their previous paper [18] that the

problem, which has been formulated in the form of (9)

could be solved using heuristic optimization algorithms. As

it was presented in their work, an evolutionary algorithm, a

direct search algorithm, a simulated annealing algorithm and

a particle swarm optimization algorithm could be adopted.

The main problem in this kind of approaches is to find the

compromise between the time computational complexity of

an algorithm and the accuracy of a solution. These factors are

strongly dependent on properties and values of the relevant

parameters (behavioural parameters) of these algorithms.

III. META-OPTIMIZATION METHOD

The idea of meta-optimization which is also known in

the literature as super-optimization or hyper-heuristic is to

apply one optimization technique to adjust another optimiza-

tion technique. In this paper, the meta-optimization strategy

corresponding to the data flow diagram presented in Fig. 1 is

used in order to search the space of behavioural parameters. As

it can be seen, the meta-optimization algorithm (MAC) evalu-

ates a meta-objective function whereas the main optimization

algorithm (OAE) computes the cost function in order to find

an optimal solution with the minimum time complexity and

maximum accuracy.

Meta-optimization concept can be realized in different ways,

however one of the most promising approaches employs

the multi-objective optimization algorithm. Consequently, the

main purpose of the meta-optimization process is to tune

values of behavioural parameters of the main optimization
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Fig. 1: A data flow diagram of the meta-optimization method

algorithm in order to minimize a multiple objective function

U. This function can be formulated taking into account two

fundamental criteria. The first criterion (MBF) corresponds

to the estimation of the accuracy of a solution, whereas the

second one (FES) represents the time computational complex-

ity of the main optimization algorithm. When one assumes

that both objectives are not conflicted then the multi-objective

meta-optimization problem can be stated as follows:

Minimize U (ξ) = [MBF (ξ) FES (ξ)]
subject to Ω (ξ)

(11)

where ξ is the set of properties of the main algorithm, Ω
represents boundaries and constraints in the meta-optimization

process. The accuracy of the solution that is found by the main

optimization algorithm, can be computed as the mean value of

best scores of the cost function evaluations. On the other hand,

the time complexity is approximated using the total number

of cost function evaluations in the same algorithm.

Generally, multi-objective optimization problems do not

have single global solution, and therefore there is the need

to investigate a set of points, each of which satisfies the

objectives. Due to this, in the present study, predominant

Pareto optimality concept is mainly used. A solution is Pareto

optimal if there is no other solution that improves at least one

objective function without detriment another function [27]. It

is often viewed the same as a non-dominated solution.

It is reasonable to expect that each of multi-objective

versions of soft computing methods indicated in the previous

section to be applicable in the task of meta-optimization.

Nevertheless, the authors propose to use a much less com-

plicated algorithm in the main optimization engine, while

a more advanced approach in the meta-optimization core.

In such manner, it is possible to obtain general values of

relevant parameters of the main algorithm that can easily be

implemented in the embedded system of the end-user device.

IV. RESEARCH RESULTS

The advantages and limitations of the proposed meta-

optimization method were attempted in two separate exper-

iments. The aim of the first case study was to validate the

performance of the meta-optimization approach over a set of

well-practised test functions. The second experiment dealt with

the useful application of the elaborated method for wavelet-

based damage identification in composite structures. It was

decided that, the engine of the main optimization algorithm

was prepared using the particle swarm optimization algorithm

(PSO-OAE), while the core of the meta-optimization process

was implemented by means of the multi-objective evolutionary

algorithm (MOEA-MAC). MOEAs are known in the literature

as the heuristic methods for solving optimization problems,

which are based on the natural selection process that mimics

biological evolution. The MOEA recommended in [28] is

utilized herein to solve the meta-optimization problem defined

as (11). Well-known and often practised genetic operators for

multi-objective optimization are applied to obtain the conver-

gence of a solution. In such manner, the problem of finding

values of behavioural parameters is solved by computing

the Pareto front, hence the set of evenly distributed non-

dominated optimal solutions are determined. PSO is also clas-

sified into heuristic approaches, however this is a population-

based stochastic optimization technique, which is inspired by

simulation of social behaviour. In this paper, PSO proposed by

[29] is adopted and applied to search for the optimal values of

α and τ . The both optimization algorithms were implemented

in the MATLABr environment using Genetic Algorithm and

Particle Swarm Optimization Toolboxes.

A. Benchmark tests

In the first step, the proposed method was verified using

selected benchmark functions proposed in the CEC’2008 Spe-

cial Session and Competition on Large Scale Global Optimiza-

tion [30]. Due to the nature of the main problem formulated

in this study, the authors decided to select the following test

functions:

• F3 : Shifted Rosenbrock’s function

F3 (x) =

D−1
∑

i=1

(

100
(

z2i − zi+1

)2
)

(12)

where z = x − o + 1 , x = [x1, x2, . . . , xD], x ∈
[−100, 100]

D
, o = [o1, o2, . . . , oD] is the shifted global

optimum x∗ = o , F3 (x
∗) = 0.
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• F4 : Shifted Rastrigin’s function

F4 (x) =
D
∑

i=1

(

z2i − 10 cos (2πzi) + 10
)

(13)

where x ∈ [−5, 5]
D

, z is the same as in the previous

function, the shifted global optimum x∗ = o , F4 (x
∗) =

0.

• F5 : Shifted Griewank’s function

F5 (x) =
D
∑

i=1

z2i
4000

−
D
∏

i=1

cos

(

zi√
i

)

+ 1 (14)

where z = (x − o), x ∈ [−600, 600]
D

, the shifted global

optimum x∗ = o , F4 (x
∗) = 0.

• F6 : Shifted Ackley’s function

F6 (x) = −20 exp



−0.2

√

√

√

√

1

D

D
∑

i=1

z2i



−

− exp

(

1

D

D
∑

i=1

cos (2πzi)

)

+ 20 + e (15)

where x ∈ [−32, 32]
D

, z is the same as in F5 function,

the shifted global optimum x∗ = o , F6 (x
∗) = 0.

• F7 : FastFractal ’DoubleDip’ function

F7 (x) =
D
∑

i=1

λ1
(

xi + λ2
(

x(imodD)+1

))

+ 1720 (16)

where

λ1 (x) ≈
∑3

k=1

∑2k−1

1

∑ô2
1 λ3

(

x, ô1,
1

2k−1(2−ô1)

)

,

λ2 (y) = 4
(

y4 − 2y3 + y2
)

,

λ3 (x, c, s) =















(

−6144 (x− c)
6
+ 3088 (x− c)

4

−392 (x− c)
2
+ 1
)

s , x ∈ (−0.5, 0.5)

0 , otherwise

,

and x ∈ [−1, 1]
D

, the global optimum is unknown,

F7 (x
∗) is also unknown, ô1 is a double precision

variable, pseudo-randomly chosen, with seed o1, with

equal probability from the interval [0,1], ô2 is an integer

variable, pseudo-randomly chosen, with seed o2, with

equal probability from the set {0, 1, 2}.

The task of the main optimization was defined as a con-

tinuous minimization problem. As it was mentioned above,

the extreme was found with the help of the PSO-OAE. The

cost function in the PSO-OAE was computed using one of

the benchmark functions (12-16). In this algorithm only few

parameters of the algorithm are relevant to guarantee, as

far as possible, to find the optimal solution of the problem.

Therefore, behavioural parameters such as the population size,

the total number of generations, the social and cognitive
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attraction coefficients were taken into account during the meta-

optimization process realized by means of MOEA-MAC. For

each function, the lower and upper boundaries of the PSO-

OAE were assumed corresponding to functions’ properties

(12-16), whereas in the case of MOEA-MAC boundaries were

declared in such a way, that the population size was equal

from D to 2D, the total number of generations from 5 to 100,

the cognitive and social attraction from 0 to 4. The heuristic

rules given in the literature were employed to get the best

results from the MOEA. The fitness function was declared

following to (11), where MBF was computed by averaging

the best fitness function (for ten trials) and FES was obtained

as the product of the population size and the total number

of generations of the OAE. It was decided that individuals

in the population of the MOEA were composed of genes

representing real numeric values of behavioural parameters

(the integer parts of the population size and generations

parameters were used during the computations). The total

number of generations of MOEA was set to 30. The population

size of this algorithm was equal 40. The feasible population

method was adapted to create a random well-dispersed initial

population that satisfies all bounds in (11). Fitness scaling

was realized using the rank method, whereas the selection of

the parents to the next generation was achieved by applying

the stochastic uniform method. Additionally, two reproduction

options – the elite count and crossover fraction were chosen.

The first one specifies the number of individuals that are

guaranteed to survive to the next generation (it was equal

2). The second deals with the fraction of the next generation,

other than elite children, that are produced by crossover. It was

decided to use a heuristic crossover operator where the user-

defined parameter was set to 1.2, and the crossover probability

was equal 0.8. The remaining individuals are mutation children

and they were obtained using the adaptive feasible method.

TABLE I: Optimal values of behavioural parameters for bench-

mark functions

Function D
Cognitive Social

Generations
Population

attraction attraction size

F3

2 2.180 0.706 74 4
100 1.019 1.164 99 196

F4

2 0.789 2.267 69 4
100 1.393 1.319 96 100

F5

2 0.712 1.125 88 4
100 1.362 1.039 99 190

F6

2 0.350 0.826 100 4
100 1.290 1.375 81 188

F7

2 0.988 0.920 67 4
100 1.055 1.474 99 142

The meta-optimization process was carried out for two cases

D = 2 and D = 100. The achieved results are presented in

Tab. I. Besides, in Figs. 2(a,c,e-k) there are given graphs with

the visualisation of selected Pareto fronts (for functions F3, F6

and F7, D = 2 and D = 100, respectively) based on which

the optimal values of behavioural parameters were chosen. In

this case study, the authors selected non-dominated optimal

solutions that were characterized by the highest accuracy of

the cost function (in a statistic sense) with the minimum as

TABLE II: Optimization results for different selection strate-

gies of the behavioural parameter values

Function Case MAX MIN AVG STD

F3

D = 2

◦ 5.167E+01 2.607E-01 2.260E+01 2.018E+01
� 1.470E+02 5.549E-02 6.384E+01 5.887E+01
△ 1.512E+02 3.662E-01 6.182E+01 5.185E+01

F3

D = 100

◦ 3.032E+09 5.057E+08 1.274E+09 7.103E+08
� 5.000E+09 1.382E+09 2.675E+09 1.345E+09
△ 3.734E+09 7.893E+08 1.773E+09 8.167E+08

F4

D = 2

◦ 8.955E+00 1.644E-03 2.451E+00 3.071E+00
� 2.487E+01 1.079E-06 6.369E+00 7.404E+00
△ 2.487E+01 3.473E-07 3.880E+00 7.627E+00

F4

D = 100

◦ 9.684E+02 7.938E+02 8.869E+02 6.705E+01
� 1.078E+03 9.148E+02 1.010E+03 4.789E+01
△ 1.115E+03 8.727E+02 1.005E+03 7.889E+01

F5

D = 2

◦ 2.440E-01 1.972E-02 7.867E-02 7.536E-02
� 3.254E-01 2.932E-02 1.156E-01 1.026E-01
△ 3.428E-01 8.386E-03 9.869E-02 1.232E-01

F5

D = 100

◦ 3.916E+02 1.784E+02 2.490E+02 6.166E+01
� 4.518E+02 1.879E+02 3.076E+02 7.058E+01
△ 4.788E+02 2.579E+02 3.769E+02 7.286E+01

F6

D = 2

◦ 1.890E+01 4.756E-07 1.890E+00 5.977E+00
� 1.993E+01 2.050E-06 3.965E+00 8.359E+00
△ 2.030E+01 7.201E-06 5.799E+00 9.361E+00

F6

D = 100

◦ 2.052E+01 1.569E+01 1.774E+01 1.468E+00
� 2.021E+01 1.898E+01 1.949E+01 4.244E-01
△ 2.004E+01 1.735E+01 1.919E+01 8.287E-01

F7

D = 2

◦ 1.693E+03 1.690E+03 1.691E+03 6.175E-01
� 1.694E+03 1.690E+03 1.691E+03 1.057E+00
△ 1.692E+03 1.690E+03 1.691E+03 8.257E-01

F7

D = 100

◦ 6.319E+02 5.455E+02 5.944E+02 2.676E+01
� 7.220E+02 5.453E+02 6.383E+02 4.941E+01
△ 6.691E+02 5.575E+02 6.163E+02 3.442E+01

possible time complexity of the algorithm. In order to have

much more understandable and comparable results the tuning

of behavioural parameters was also carried out with the use of

expert’s knowledge and trial and error procedure. In the first

case, the suggestions proposed in [31] were applied (cognitive

attraction = 0.5, social attraction = 1.25). In the second

case values of behavioural parameters were changed several

times for obtaining satisfactory solutions. The optimization

process was run ten times for each case and afterwards the

results were averaged. Overall, the comparison results of meta-

optimization (◦) and classic strategies (�, △) for adjusting

behavioural parameter values were included in Tab. II. The

most important statistic measures such as AVG and STD show

that the best option is to find optimal values of behavioural

parameters by means of the meta-optimization method. It

is also confirmed by results presented in Figs. 2b,d,f-l (for

functions F3, F6 and F7, D = 2 and D = 100, respectively).

These plots demonstrate mean values of the best scores of

the cost function (MS) vs. the number of function evaluations

(FES) for investigated cases. Each of these examples illustrates

the effectiveness of the proposed meta-optimization method

when it is compared to classic approaches.

B. Description of the damage identification problem

The testing data was achieved during experimental mea-

surements (modal analysis) of artificially damaged square

composite plates clamped on the edges. The damages with

depth of 0.5 mm (ca. 19% of total thickness) were included

using numerical milling machine. In the first case there was

through-the-length crack, in the second case there was a

spatial square damage and in the last case there were multiple
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(a) Meta-opt. of F3 (D = 2) (b) Opt. of F3 (D = 2)

(c) Meta-opt. of F3 (D = 100) (d) Opt. of F3 (D = 100)

(e) Meta-opt. of F6 (D = 2) (f) Opt. of F6 (D = 2)

(g) Meta-opt. of F6 (D = 100) (h) Opt. of F6 (D = 100)

(i) Meta-opt. of F7 (D = 2) (j) Opt. of F7 (D = 2)

(k) Meta-opt. of F7 (D = 100) (l) Opt. of F7 (D = 100)

Fig. 2: The comparison results of using meta-optimization, ex-

pert, trail and error procedures in selection of the behavioural

parameter values

Fig. 3: Damaged plates considered in the analysis

damages: one small crack and two square spatial damages.

The specific dimensions of damaged plates were presented in

Fig. 3. During the scanning procedure the displacements in the

net of 64×64 equidistant points were collected. The details

of experimental setup and performing measurements can be

found in [18].

First five modal shapes of each investigated case were

considered in further analysis. Then, the collected data was

exported to MATLABr environment.

C. Results of damage identification

In this case study, the meta-optimization process was carried

out on data collected using finite element (FE) analysis. The

numerical models were prepared according to the geometry

specification presented in Fig. 3 using MSC.Marc/Mentatr

FE commercial software. The plates were modelled as 3D

structures with the lay-up of a laminate and respective ma-

terial properties presented in [17] and meshed using 8-node

hexagonal elements. The boundary conditions were the same

as for experimental study, i.e. all of the edges were clamped.

The analyses were defined as normal mode evaluation, where

the displacements in normal direction to the surface of a plate

in 64×64 equidistant points of the first five modal shapes were

considered for further studies. Due to the above-presented

problem definition the numerical data was used as training

data.
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Fig. 4: Pareto front with optimal solutions obtained in the

meta-optimization process

TABLE III: Optimal values of behavioural parameters for the

damage identification purpose

No.
Cognitive Social

Generations
Population

FES MBF
attraction attraction size

1 0.4324 0.8390 34 29 986 8.2307

2 0.1353 1.0078 25 8 200 8.2411

The extreme was found with the help of the PSO-OAE. The

cost function in the PSO-OAE was evaluated using the indirect

utility function (9) for three damaged plates at the same time.

The lower and upper boundaries for α and τ in the PSO-OAE

were assumed taking into account wavelet’s properties (α(L) =
τ (L) = 0, α(U) = 2.5,τ (U) = 6). Behavioural parameters

were selected during the meta-optimization process realized

by means of MOEA-MAC. The boundaries for these variables

were declared in such a way, that the population size as well

as the total number of generations were equal from 5 to 35,

the cognitive and social attraction were equal from 0 to 4. The

rest of the features of MOEA-MAC were selected in the same

way as in the previous case.

The key results from the meta-optimization were shown in

Fig. 4. This plot presents the Pareto front that means the set

of non-dominated solutions. Due to the form of the plot it was

possible that two optimal solutions were chosen for the further

analysis. The values of behavioural parameters for these cases

were included in Tab. III. It should be easily noted, that almost

the same values of MBF can be achieved with the smaller

number of function evaluations FES.

The damage identification experiments and the main opti-

mization process were also repeated for real-world data. The

values of behavioural parameters in this instance were the

same as for the numerical data. Despite this, it was enough to

obtain the high performance of damage identification for real

measurements. Figs. 5a, 6a, 7a illustrate the main optimization

processes (PSO-OAE) conducted applying the 1st and 2nd set

of optimal values of behavioural parameters. In this way, it was

possible for each case to obtain such values of parameters for

which the total number of function evaluations was not larger

than 200 to be enough to find the final solution.

(a)

(b) for the 1st solution (c) for the 2nd solution

Fig. 5: The comparison of two non-dominated solutions from

meta-optimization in the identification of the first damage

(a)

(b) for the 1st solution (c) for the 2nd solution

Fig. 6: The comparison of two non-dominated solutions from

meta-optimization in the identification of the second damage
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(a)

(b) for the 1st solution (c) for the 2nd solution

Fig. 7: The comparison of two non-dominated solutions from

meta-optimization in the identification of the third damage

From the Pareto fronts presented in Figs. 5a-7a one can

conclude that the compromise between time complexity of

computations and the accuracy of the final solution has been

reached. It is also conducted by the obtained results (see

Figs. 5b,c-7b,c), where the optimized parameters of a wavelet

in solutions obtained by the proposed method have almost

identical values with those obtained using typical optimization

procedure (1st solution), however these values were obtained

much earlier in the 2nd solution than in the 1st one. It could be

also noticed that the obtained values for α and τ cause that the

applied wavelet has a great filtering ability and simultaneously

short effective support, which cause that all of the damages

were detected and located properly. The optimization algo-

rithm solves the problem with selection of wavelet parameters,

which influences much on the ability of damage detection and

localization, i.e. in the case of underestimated value of α the

obtained sets of coefficients are highly biased by the rests of

a filtered signal due to inappropriate filtration, while in the

case of overestimation of α the resulted sets of coefficients

are blurred in the locations of singularities (damages) due to

the power losses of a wavelet with the wide effective support,

which makes the decision process about damage presence and

location difficult and unambiguous.

V. CONCLUSIONS

In this paper, the authors proposed a new method for finding

optimal values of behavioural parameters of the optimization

procedure that is used in order to identify damages in compos-

ite structures. The proposed approach is based on the meta-

optimization concept. The novelty of the proposed method

depends on that the meta-optimization can be realized using

multi-objective cost functions.

The preliminary verification of the elaborated approach in

optimization tasks was carried out for well-known benchmark

functions. The results achieved in this part of investigations

demonstrate the capabilities of the approach for solving differ-

ent kinds of optimization problems. The fundamental verifica-

tion was conducted for the experimental data measured during

tests on the artificially damaged composite plates. The problem

of optimization of wavelet parameters applied for the structural

damage assessment in composites was studied before by the

authors, but the meta-optimization approach allows to obtain

several new advantages. The parameters of optimization algo-

rithm do not require to be known since they are determined by

the meta-optimization procedure. This excludes the difficulties

of determination of these parameters, which are often difficult

to achieve and automates the method. Moreover, different

cases of damages were analyzed together, which allows for

the determination of global parameters of the applied fractional

B-spline wavelets and guarantee the best possible results for

the damage detection and localization problems. Finally, the

compromise between the time complexity of computations and

the accuracy of the final solution could be reached in the

automated manner.
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