
Abstract— The paper presents a solution to the problem of
movement tracking in images acquired from video cameras
monitoring outside terrain. The solution is resistant to such
adverse factors as: leaves fluttering, grass waving, smoke or
fog, movement of clouds etc. The presented solution is based on
well known image processing methods, nevertheless the key
was the use of an appropriate conduct procedure. In order to
obtain a real-time system the CUDA technology was involved.

I. INTRODUCTION

HE problem of movement detection in images [4] ap-
peared relatively early [6]. The astronomy world strug-

gled with objects detection in images [8] of the night sky ac-
quired by telescopes long before the era of modern comput-
ers. In first systems images were alternately displayed in
front of an operator who was able to perform detection of a
motion celestial body. In such systems a natural subcon-
scious human ability of movement detection was involved
[9], [10].

T

Excluding cheap and simple movement detectors or sen-
sors (passive infrared, ultrasonic, or microwave) the task of
motion detection with the use of video cameras [11] is based
on digital image processing [5]. Many present-day computer
systems begin the work from the stage of a differential im-
age of two images [14], which next undergoes a series of
processes [16]. The detection of a movement [3] is not the
only result – in modern systems a trajectory of a motion
body can be determined [1] or even identification of the de-
tected object may be performed [2], [22].

In this paper we consider the problem of object movement
tracking [7] in images acquired from video cameras [12]
monitoring outside terrain [13]. The assumption was to elab-
orate a solution resistant to such adverse factors as: leaves
fluttering, grass waving, smoke or fog, movement of clouds
etc. A set of well known image processing methods [19] is
adopted, and the key was the use of an appropriate conduct
procedure. In order to obtain a real-time system the CUDA
technology was involved.

The CUDA (Compute Unified Device Architecture) tech-
nology appeared quite unexpectedly in 2007 as a result of
new Nvidia’s GPUs branded GeForce 8. CUDA gave the
software developers direct access to the virtual instruction
set and memory of the parallel computational elements in
GPUs.

CUDA is a parallel computing platform and programming
model [24] that makes using a GPU for general purpose
computing simple and elegant. At present, there are two
main CUDA architectures available: Fermi (see Fig. 1) and
Kepler. The Maxwell architecture (20 nm technology node)
is just about to be launched onto the market. From the pro-
grammer’s point of view [25] the new architecture brings a
set of features, both hardware and software, that is known as
the compute capability of a device.

The idea of combining image processing methods or com-
puter vision techniques with CUDA technology started rela-
tively early [15] and going on, being very popular.

Fig. 1. CUDA core and Fermi SM (Streaming Multiprocessor) structure

Movement Tracking in Terrain Conditions Accelerated with CUDA

Piotr Skłodowski
Cybernetics Faculty at Military

University of Technology
ul. S. Kaliskiego 2,

00-908 Warsaw, Poland
Email: psklodowski@wat.edu.pl

Witold Żorski
Cybernetics Faculty at Military

University of Technology
ul. S. Kaliskiego 2,

00-908 Warsaw, Poland
Email: wzorski@wat.edu.pl

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 709–717

DOI: 10.15439/2014F282

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 709

This paper presents an announced earlier solution to
movement detection and tracking, first elaborated using the
Matlab environment, and finally independently
implemented as the x86 and CUDA application.

The method was originally prepared for monitoring an
airport’s terrain, but for obvious reasons only neutral shots
will be presented.

II. A BRIEF PRESENTATION OF THE SYSTEM
The used computer vision system consists of a PC

equipped with a CUDA device (GTX 650 Ti, based on the
Nvidia’s Kepler architecture with compute capability 3.0),
and an IP camera. It is supported by the Microsoft Visual
Studio 2012 and CUDA 5.5 framework (the most important
of it is the CUDA Toolkit component). Fig. 2 shows a visual
scheme of the used computer vision system.

Fig. 2. Scheme of the used system

III. MATLAB IMPLEMENTATION
The Matlab environment gives a possibility to elaborate

the required procedure relatively fast. The amount of
engineering tools included in the Matlab is impressive,
nevertheless to obtain required speed the final
implementation must be done with the CUDA technology.

A. Example source scenes
Source scenes have been acquired under various terrain

and weather conditions. In this section two examples are
presented (see Fig. 3). The first scene includes an object
that is well visible, but also includes waving grass and
clouds. The second scene is much more difficult, the object
is comparatively small and there is a big tree with fluttering
leaves. In both scenes a slight tilt effect is present between
shots captured over a distance of a few seconds.

Fig. 3. The input source scenes

B. Compensation of the tilt effect
The initial obstacle is the tilt effect between shots, which

may occur as a result of small vibration under the influence
of wind or some mechanical reasons. To compensate the tilt
one image is narrowed about a “frame” and matched with
the second image in order to find a location with the
smallest difference. Finally images of the scene are
“framed” to guarantee the smallest difference between
them. The source code in Fig. 4 gives details of the
procedure. Fig. 5 shows (only) the cropping effect in the
case of the second considered scene. The result will be
visible in the case of difference images (the next section).

Fig. 4. Compensation of the tilt effect – the source code

Fig. 5. The cropping effect of the tilt compensation – frames are visible

710 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

C. Getting a difference image
The difference image generation [16] is the first

processing stage for a scene. This approach is extremely
popular in astronomy [17] and is commonly referred to as
difference image analysis (DIA). Results (presented in
negative) obtained for the considered scenes (after the tilt
compensation) are visible in Fig. 6 and Fig. 7.

Fig. 6. The difference image for the first scene in Fig. 3

Fig. 7. The difference image for the second scene in Fig. 3

D. Removing unwanted artifacts
The received differenced images include moving objects

as well as include some unwanted artifacts. In the case of
the first scene (Fig. 6) a remnant of the tilt effect is still
visible (e.g. contour of a building), and in the second scene
(Fig. 7) a tree is well exposed. Some of the artifacts are
heavy, what is shown in Fig. 8, which is a 3D visualization
of the content of Fig. 7.

At the first glance the task of removing unwanted
artifacts seems to be difficult. To solve the problem it is

necessary to notice that tracked objects generate
comparatively low frequencies and the unwanted artifacts
rather high frequencies (see Fig. 8). As an outcome of many
trials it turned out that erosion, a fundamental operation of
morphological image processing [18], gives the best results.

Fig. 8. A 3D visualization of the difference image from Fig. 7

The erosion operation is already available in Matlab as

ready to use function (erode, imerode). Nevertheless, it was
implemented “step by step” for gray-level images with the
prospective x86 and CUDA implementations in mind. The
source code in Fig. 9 shows details of the erosion
implementation with a disk as the structuring element.

Fig. 9. Matlab implementation of the erosion for gray-level images

PIOTR SKŁODOWSKI, WITOLD ŻORSKI: MOVEMENT TRACKING IN TERRAIN CONDITIONS 711

The results obtained with the erosion are shown in
Fig. 10 and Fig. 11. The objects are still well visible and the
artifacts are predominantly filtered.

Fig. 10. The result after erosion for the first scene (compare Fig. 6)

Fig. 11. The result after erosion for the second scene (compare Fig. 7)

E. Exposing objects
The use of erosion filtering was beneficial to objects

detection. It turned out that objects can be further exposed
with the use of low-pass filtering. There are two
possibilities: simple spatial filtering (neighborhood
averaging) with a large mask 7x7 or just the standard
transform FFT2. The second tool is faster and already
available in majority of programming environments
(including CUDA). In the case of Matlab we have two-
dimensional convolution conv2 and set of tools for two-
dimensional discrete Fourier transform: fft2, ifft2, fftshift.

The process of FFT2 filtering is shown in Fig. 12, and
a 3D result for the first scene is visible in Fig. 13, and for
the second scene is presented in Fig. 14.

Fig. 12. The use of the FFT2 for the first scene (compare Fig. 10)

Fig. 13. The result of FFT2 for the first scene (see Fig. 12)

Fig. 14. The result of the FFT2 for the second scene (see Fig. 11)

712 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

F. Binarization and the decision
The results visible in Fig. 13 and 14 are rather satisfying.

The last stage before the final decision about movement
detection is binarization. The best results of binarization
were received for threshold from the range of 20-50 of gray
levels. The results of binarization are presented in Fig. 15.

Fig. 15. The result of binarization for the considered scenes

 The final decision about the movement detection is based
on percentage size of objects in frames. In the case of
Fig. 15 the percentage sizes of objects are respectively:
0,15% and 0,32%. The established threshold for the
elaborated method is 0,1%.

IV. X86 IMPLEMENTATION
The x86 implementation of the elaborated method has

been made in C++ with the use of Visual Studio 2012. To
speed up the implementation process the well known and
free library called OpenCV was used. The library contains a
set of ready to use computer vision algorithms (e.g.: linear
filtering, cosine transform) as well as basic image
processing functions (read/write images, conversion).
Custom implementation has been made only for elements
that are not included in the OpenCV or those which are
poor optimized for the considered application.

C++ language has been chosen for both: x86 and CUDA
implementation. Thanks to that it was possible to use
exactly the same template project and therefore the
execution is not overwhelmed by any language runtime.

A. Example source scenes
Source scenes were captured from an IP camera, flipped

horizontally and then converted to 8 bits gray-scale images.

B. Compensation of the tilt effect
The tilt reduction function has been implemented

independently in accordance with proposed algorithm and
shown in following listing (Fig. 16). This function requires
two images which we call “previous” and “current” frame.
The previous frame is the frame captured first.

The only parameter required is nop. The nop stands for
number of pixels. In our implementation we used constant
value 5 which means that the previous frame is cropped by
5 pixels from all sides and the current frame is centered this

way that the tilt effect (the images deference) to the
previous frame is the smallest.

Fig. 16. Compensation of the tilt effect in C++

C. Getting a difference image
The pixels from previous frame are subtracted from

current frame then provided as an argument of abs function.
The difference image is getting very easy using a ready
function abs from OpenCV library and is coded as one line
in movement detection function (see Fig. 17).

Fig. 17. Movement detection in C++

PIOTR SKŁODOWSKI, WITOLD ŻORSKI: MOVEMENT TRACKING IN TERRAIN CONDITIONS 713

D. Removing unwanted artifacts
To remove unwanted artifacts that might still persist in

the processed image the erosion operator is applied. This
has been made using our own implementation because we
found it much faster than the option provided by OpenCV.
The structuring element used in our implementation is disk
inscribed in 5x5 matrix (see Fig. 18).

Fig. 18. Erosion function in C++

E. Exposing objects
The last operation applied to the image before movement

detection is convolution with 7x7 kernel of all ones.

Fig. 19. Low-pass filtering in C++

F. Binarization and the decision

Fig. 20. Binarization in C++

The result of all previous steps is still an grayscale image.

Applying the threshold we got the final binarized image
ready for the final step. This has been also achieved using
one line ready to use function (see Fig. 20).

V. CUDA IMPLEMENTATION
Most of operations in proposed algorithm are available in

Nvidia Performance Primitives [26]. The NPP is a
collection of GPU-accelerated functions for image, video
and signal processing. The library is freely available as a
part of the CUDA Toolkit.

A. Use of the CUDA device structure
The only function that needed to be implemented

independently was the tilt reduction. We couldn't match any
function from NPP that would help us to achieve desired
results therefore an own kernel has been implemented.

Although CUDA device allows to organize threads in 3D
structure, 2D structure was enough. The X and Y axes
responds to the position of pixels in the image. Block Index
address pixels from “the previous” frame. Pixels from “the
current” frame are further offset by the Grid Index. That
makes two regions of interest (ROI) for each kernel
iteration as shown in Fig. 21.

Fig. 21. Tilt reduction with regions of interest (ROI) in CUDA

Grid Size corresponds to nop parameter from the x86

implementation. Block Size is a parameter chosen
empirically and have to be power of 2 for further reduction
process. The source code of the CUDA kernel is presented
in Fig. 22.

714 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 22. The source code for the CUDA kernel

B. CUDA implementation supported by the NPP library
The use of NPP library is relatively simply. The major

difficulty is a preparation of the image data accordingly to
NPP requirements. The NPP supports variety of data. Pixels
may be provided as 8, 16 or 32 bits signed or unsigned
integers or 32 bits floating point numbers. Unfortunately
some functions don’t support all data types. The choose
should be made base on a function availability that need to
be used.

What one need to remember is that the NPP is mainly C
library. It is a reason that some features like function
overloading are not available. One need to use functions
that exactly match parameters types. To help to recognize
functions a special function name convention has been
introduced. Each NPP function begins with nppi. The data
type that the function is dedicated for might be distinguish
by its suffix. For example suffix R indicates the primitive
operates only on a rectangular. Suffix I indicates that the

primitive works “in-place”. This is well described in the
NPP documentation [26].

The image that is passed to the NPP is always described
by three parameters: pointer to the image, image size (as
ROI), and line step. Pointer to the image has to be the
CUDA device pointer. Line step is the number of bytes
between successive rows in the image. Fig. 23 shows the use
of the NPP library.

Fig. 23. CUDA implementation using the NPP library

VI. MOVEMENT TRACKING
A basic extension to the issue of movement detection is

the problem of object tracking. The simplest way of tracking
can be performed by drawing a trajectory (a path) for the
detected object as shown in Fig. 24-26.

Fig. 24. An example of movement tracking in terrain conditions

PIOTR SKŁODOWSKI, WITOLD ŻORSKI: MOVEMENT TRACKING IN TERRAIN CONDITIONS 715

Fig. 25. An example of movement tracking inside a room

Fig. 26. An example of movement tracking of a small object (a mouse)

The suggested method allows to track only one object that

is being detected. The object to be detected must occupy
more than 0.1% space of the binarized image. If that
happens the object is surrounded by a rectangle and then
center of its mass is calculated. If movement is detected in
following frames then the track is plotted by joining
calculated centers.

Aside of common template project, both implementations
use the same algorithm for the considered stage, i.e.
movement tracking. This is because of the algorithm
simplicity which cause the CUDA implementation

unnecessary. Thus, the function is common for x86 and
CUDA implementation (see Fig. 27).

Fig. 27. Movement tracking in C++

VII. CONCLUSION
There are two gains of the performed work that are fully

concordant to the title of this paper: the elaboration of the
method of movement tracking and its implementation in
CUDA. The elaborated method can be described as
a sequence of actions, what is shown in Fig. 28.

Fig. 28. A block diagram of processes for the elaborated method

CUDA and x86 implementations of the method were

examined in details and optimized to receive the best
performance. Performed benchmarks concerned only on
selected portion of the source code directly responsible for

Capturing
a scene:
image 1
image 2

. . .

image n

Compensation of
the tilt effect

image 1 & image 2

Getting a
difference

image

Removing
unwanted
artifacts

Exposing
objects

Binarization
and the decision

716 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

movement detection and tracking. Functions common for
both implementations has been omitted in benchmarking.

The presented solution shows a significant performance
difference between the implementation for x86 and the
massively parallel implementation in CUDA. Both
implementations give the same final result – confirmation
that solution is correct. Performed benchmarks demonstrated
substantial acceleration thanks to CUDA implementation
which is suitable for a real-time system. It was possible to
reach the speed of 25+ fps for resolution 640x480, at least
10 times faster then in the case of x86 implementation. The
upper limit velocity of tracked objects for the elaborated
method is 4 m/s. It is the outcome of the distance between
adjacent frames. The lower limit velocity of tracked objects
can be widely adjusted by the distance between analyzed
frames.

In order to enrich the method an extension about identifi-
cation of the detected object may be added using a method
similar to one described in [23]. Another challenge is the
problem of tracking multiple independent objects [20], [21].

REFERENCES

[1] M. Andriluka, S. Roth, B. Schiele, People-tracking-by-detection and
people-detection-by-tracking, Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-
8. http://dx.doi.org/10.1109/CVPR.2008.4587583

[2] A. Bugeau, P. Perez, Detection and segmentation of moving objects in
highly dynamic scenes, IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 2007, pp. 1-8.
http://dx.doi.org/10.1109/CVPR.2007.383244

[3] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V. K. Papastathis, M. G.
Strintzis, Knowledge-assisted semantic video object detection, IEEE
Transactions on Circuits and Systems for Video Technology Vol. 15,
(10) 2005, pp. 1210–1224.
http://dx.doi.org/10.1109/TCSVT.2005.854238

[4] Guofeng Zhang, Jiaya Jia, Wei Xiong, Tien-tsin Wong, Pheng-ann
Heng, Hujun Bao: Moving object extraction with a hand-held camera,
IEEE International Conference on Computer Vision, 2007, pp. 1-8.
http://dx.doi.org/10.1109/ICCV.2007.4408963

[5] M. Heikkila, M. Pietikainen, A texture-based method for modeling the
background and detecting moving objects, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 28, (4) 2006, pp. 657–
662. http://dx.doi.org/10.1109/TPAMI.2006.68

[6] R. Jain, H. Nagel, On the analysis of accumulative difference pictures
from image sequence of real world scenes. IEEE Trans. Pattern Anal.
Machine Intell., Vol. 1 (2) 1979, pp. 206-214.
http://dx.doi.org/10.1109/TPAMI.1979.4766907

[7] Alper Yilmaz, Omar Javed, Mubarak Shah, Object Tracking: A Survey.
ACM Computing Surveys, Vol. 38, No. 4, Article 13, Publication date:
December 2006. http://doi.acm.org/10.1145/1177352.1177355

[8] K. J. Meech, Astronomical image processing - applications to ultra-
faint imaging of small, moving, solar system bodies: comets and near-

Earth-objects. Intelligent Processing and Manufacturing of Materials,
Vol. 1, 1999. http://dx.doi.org/10.1109/IPMM.1999.792520

[9] G. Jahn, J. Wendt, M. Lotze, F. Papenmeier, M. Huff, Brain activation
during spatial updating and attentive tracking of moving targets.
Brain & Cognition, 78, 2012, pp. 105-113.
http://dx.doi.org/10.1016/j.bandc.2011.12.001

[10] J. Ericson, J. Christensen, Reallocating attention during multiple
object tracking. Attention, Perception & Psychophysics, 74, 2012, pp.
831-840. http://dx.doi.org/10.3758/s13414-012-0294-z

[11] K.A. Patwardhan, G. Sapiro, V. Morellas, Robust foreground detection
in video using pixel layers, IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 30, (4) 2008, pp.746-751.
http://dx.doi.org/10.1109/TPAMI.2007.70843

[12] Y. Wang, J.F. Doherty, R.E. Van Dyck, Moving object tracking in
video. In proceedings of 29th Applied Imagery Pattern Recognition
Workshop, 2000, pp. 95-101.
http://dx.doi.org/10.1109/AIPRW.2000.953609

[13] D. Hurych, K. Zimmermann, T. Svoboda, Fast Learnable Object
Tracking and Detection in High-resolution Omnidirectional Images.
VISAPP, 2011, pp.521-530.

[14] Hironori Sumitomo, Monitoring camera system, monitoring camera
control device and monitoring program recorded in recording
medium. US 20030185419 A1, 2003.

[15] Z. Yang, Y. Zhu, and Y. Pu., Parallel Image Processing Based on
CUDA. International Conference on Computer Science and Software
Engineering 2008, Vol. 3, pp. 198–201.
http://dx.doi.org/10.1109/CSSE.2008.1448

[16] Aisaka, et al., Image processing apparatus and method, and program.
United States Patent 8,577,137, November 5, 2013.

[17] D. M. Bramich, Keith Horne, M. D. Albrow, et al., Difference image
analysis: extension to a spatially varying photometric scale factor and
other considerations. Monthly Notices of the Royal Astronomical
Society, Volume 428, Issue 3, 2013, p.2275-2289.
http://dx.doi.org/10.1093/mnras/sts184

[18] Frank Y. Shih, Image Processing and Mathematical Morphology:
Fundamentals and Applications, CRC Press, 2009.
http://dx.doi.org/10.1201/9781420089448

[19] Frank Y. Shih, Image Processing and Pattern Recognition:
Fundamentals and Techniques, IEEE Press, 2010.
http://dx.doi.org/10.1002/9780470590416

[20] P. Cavanagh, G. A. Alvarez, Tracking multiple targets with multifocal
attention. Trends in Cognitive Sciences, 9, 2005, pp. 349-354.
http://dx.doi.org/10.1016/j.tics.2005.05.009

[21] G. d'Avossa, G. Shulman, A. Snyder, M. Corbetta, Attentional
selection of moving objects by a serial process. Vision Research, 46,
2006, pp. 3403-3412. http://dx.doi.org/10.1016/j.visres.2006.04.018

[22] W. Żorski, Application of the Hough Technique for Irregular Pattern
Recognition to a Robot Monitoring System. Proceedings of the 11th
IEEE International Conference MMAR 2005, pp.725-730.

[23] W. Żorski, K. Murawski, Irregular patterns learning and matching in
an example vision system. Proceedings of the 18th IEEE International
Conference MMAR 2013, pp.645-649.

[24] NVIDIA corporation, CUDA C Programming Guide, July 2013, PG-
02829-001_v5.5:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[25] NVIDIA corporation, CUDA C Best Practices Guide, July 2013, DG-
05603-001_v5.5:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

[26] NVIDIA corporation, NVIDIA Performance Primitives (NPP), Version
4.0, 2014: http://docs.nvidia.com/cuda/pdf/NPP_Library.pdf

PIOTR SKŁODOWSKI, WITOLD ŻORSKI: MOVEMENT TRACKING IN TERRAIN CONDITIONS 717

