
Abstract—In this paper we propose to enhance a width-beam
search in order to solve the three-dimensional sphere packing
problem. The goal of the problem is to determine the minimum
length of the container having fixed width and height, that
packs n predefined unequal spheres. The width-beam search
uses a greedy selection phase which determines a subset of eli-
gible positions for packing the predefined items in the target
object and selects a subset of nodes for exploring some promis-
ing paths. We propose to handle lower bounds in the tree and
apply a hill-climbing strategy in order to diversify the search
process. The performance of the proposed method is evaluated
on benchmark instances taken from the literature. The ob-
tained results are compared to those reached by some recent
methods available in the literature. Encouraging results have
been obtained.

Index Terms—Beam; Heuristic; Hill-Climbing; Optimization;

Packing.

I. INTRODUCTION

HIS paper deals with the Three-Dimensional Sphere

Packing Problem (noted 3DSPP), where an instance of
such a problem is defined by a set I of n unequal items and
an object having fixed width W and height H and, unlim-
ited length (another representation for similar problems can
be found in Wascher et al. [20]). In this case, each item i I∈

= {1, . . . , n} is characterized by its radius ri and the goal of
the problem is to minimize the length, denoted L, of the ob-
ject such that all items of I are packed in the target object,
without overlapping. The 3DSPP may be formulated as fol-
lows:

T

where the objective function (1) minimizes the length of the
object containing all the items of I, Eq. (2) ensures the
non-overlap constraint of any pair of distinct items (i, j)
of I ×I; that is, the distance between the centers of both
items which must be greater than or equal to the sum of their
radii and Eqs (3)-(5) ensure that all items of I belong to the

target object of dimensions (L, W, H) and Eq. (7) ensures
that all items are placed in the object . Also, it is easy to
start any approach by a trivial value representing the sum of
the spheres’ area affected to L (Eq. (6)) and a feasible solu-
tion value, that can be obtained by applying a simple greedy
procedure, affected to L.

In this paper, we propose new strategies in order to en-
hance a width-beam search based algorithm already pro-
posed in Hifi and Yousef [8]. First, we introduce a new
greedy strategy in order to generate some eligible nodes.
Second, we propose to curtail the search process by estimat-
ing a global lower bound. Third ans last, a hill-climbing
strategy is used in order to correct the global lower bound
and to select some nodes realizing highest potentials able to
reach better solutions.

The remainder of the paper is organized as follows. Sec-
tion II gives a literature review for the 3DSPP and some of
its variants. The problem representation is discussed in Sec-
tion III-A. The greedy selection phase, which serves to de-
termining a subset of eligible positions for predefined items
to pack, is detailed in Section III-B. A modified version of
the algorithm is described in Section III-D, where a lower
bound is used for exploring better paths that diversify the
search. Moreover, because of the huge number of feasible
positions that a predefined item may generate, both beam
width and hill-climbing strategies cooperate for selecting the
best promising nodes at the same level of the developed tree.
Section IV evaluates the performance of the proposed algo-
rithm and compares its produced results to those reached by
the original width-beam search and recent methods available
in the literature. Finally, Section V concludes by summariz-
ing the contribution of this paper.

II.RELATED WORKS

The 3DSPP belongs to the well-known family of Cutting
and Packing (CP) that represents a natural combinatorial op-
timization problems. Problems of CP family admit numerous
real-world applications in the domain of industrial engineer-
ing, logistics, manufacturing, production process, automated
planning, etc. One of the more recent paper addressing an
optimization with a packing problem is due to Sutou and Dai
[18], where the unequal sphere problem has been used for
tackling an application of the automated radio-surgical treat-
ment planning. Wang [19] has also considered sphere pack-
ing problems as an optimization tool for the radio-surgical

Width Beam and Hill-Climbing Strategies for the
Three-Dimensional Sphere Packing Problem

Mhand Hifi* and Labib Yousef
EPRAOD EA 4669, Université de Picardie Jules Verne

7 rue du Moulin Neuf, 80000 Amiens, France.
Emails: {mhand.hifi, labib.yousef}@u-picardie.fr

*Corresponding author.

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 421–428

DOI: 10.15439/2014F284

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 421

treatment planning. Other problems of the CP family have

been described and redefined in Wascher et al. [20] where an

instance of these problems can be defined by a set of prede-

termined items to be packed in one or many larger containers

(objects) so as to minimize the unused area / space or in

some cases to maximize a utility function. Furthermore, the

items are bounded by their dimensions (rectangular, circular, or

irregular) and the objects can be bounded (rectangular, circular,

. . .) or unbounded (strips / parallelepipeds, . . .).

Among existing papers addressing sphere packing prob-

lems, Lochmann et al. [12] proposed a statistical analysis

for packing random spheres with variable radius distribution.

Li and Ji [11] discussed a dynamics-based collective method

for random sphere packing and they tried to apply it to the

problem of packing sphere into a cylinder container. In this

paper, the stability of the method and its convergence were

tackled. Farr [3] studied the problem of random close packing

fractions of log-normal distributions of hard spheres. The

author tailored a one-directional approach in order to predict a

close packing of spheres of log-normal distributions of sphere

sizes.

Packing spheres into a container has been addressed by

Sutou and Dai [18] who proposed a global optimization

approach. Stoyan et al. [17] designed a mathematical model

in order to pack spheres into an open container, where both

height and widths are fixed whereas the length is unfixed.

They use a neighboring search based upon extremum points

in order to construct and improve a series of solutions.

M’Hallah et al. [13] proposed a heuristic based on combining

VNS with nonlinear programming solver. The method iterates

some moves of the current configuration and complete the

partial configuration with a solver dedicated for nonlinear

programmes. M’Hallah and Alkandari [14] considered the

principle used in [13] to solve the problem of packing identical

spheres into the smallest containing sphere. Soontrapa and

Chen [16] tackled the problem of packing identical spheres

into a smallest containing sphere by using a random search

according to Monte Carlo’s method. Birgin and Sobral [1] pro-

posed twice-differentiable non-linear programming models for

the problem of packing both circles and spheres into different

containers where the containers may be circular, rectangular,

etc. In order to find a global solution for their proposed models,

ALGENCAN solver was used for generating a multiple starts

solutions. Finally, Hifi and Yousef [8] investigated the use of a

dichotomous search for solving the three-dimensional sphere

packing problem (an extensive efficient models and methods

for packing both circular and sphere problems were reviewed

in Hifi and M’Hallah [4]).

In this paper, we propose to enhance the algorithm proposed

in Hifi and Yousef [8] by considering three modifications: (i)

considering a modified greedy strategy in order to generate

eligible nodes, (ii) an estimation of the global lower bound

for curtailing the search process and, (iii) the hill-climbing

used for correcting the global lower bound and selecting only

some nodes with highest potentials.

III. A WIDTH-BEAM SEARCH FOR 3DSPP

In this part, the problem representation and strategies used

are first described in Secsion III-A. Second, Section III-B de-

scribes the greedy procedure in order to build feasible packings

containing all items of I . Third, Section III-C discusses the

principle of the proposed algorithm and its main steps. Fourth

and last, Section III-D presents the modifications used for

enhancing the algorithm.

A. Representation of the problem

The local strategy is based on the simple Greedy Principle

(called GP) where the minimum distance position is favored

for packing a series of predefined items. GP is then used as

the first evaluation operator for finding a subset of possible

positions of the next item to pack. Such a procedure uses the

following notations:

• The bottom-left-depth corner of P is positioned

at (0, 0, 0) and P is characterized by a

set formed with six labels (namely faces):

F = {left, top, right, bottom, depth, front}. Then,

P is represented in the Euclidean space, as illustrated in

Figure 1.

• The center of the i-th item belonging to I is positioned

at (xi, yi, zi).
• The distance δi,j between two items i and j is computed

as follows: ∀(i, j) ∈ I2,

δi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2−(ri+rj).

Note that assigning an item i ∈ I to a possible position of

P while respecting non-overlapping between this item and

the left-face of P requires to satisfy the following distance:

δi,left = xi − ri. For more general cases, Table I reports the

distance to be satisfied whenever an item i is assigned to a

selected position of P.

TABLE I
THE DISTANCE BETWEEN AN ITEM i AND A FACE f

f δi,f | i ∈ I, f ∈ F

left xi − ri
bottom yi − ri
depth zi − ri
right L− xi − ri
top H − yi − ri
front W − zi − ri

B. Defining eligible positions

It is well-known that tailored heuristics are mainly based

on the strategies which are able to guide well the search

process. These strategies may be use some selection criteria

in order to provide either partial or final solutions for the

problem to solve. Herein, we consider a simple greedy prin-

ciple (GP) which is based on searching the position realizing

the minimum distance position between items and feces. In

fact, GP is used as a selection criterion for defining a set

of eligible positions to assign to the predefined item i (not

422 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Δ(p1
5) !

1

2

3

4
p1

5

p2
5

p3
5

Fig. 1. Illustration of the mechanism used for computing eligible positions
considered by GP.

already positioned) among all eligible positions representing

the set PIi .

In what follows, we assume that the (center of the) first

item i = 1 of I is positioned at the position (r1, r1, r1) and

∀i ∈ I, i ≥ 2, the following notations are considered:

• Ii denotes the set of items of I already positioned in the

current object P .

• Ii contains the items of I which are not yet assigned to

P .

• PIi denotes the set of distinct eligible positions for the

next item i to pack given the set of packed items Ii.
• An eligible position pi+1 ∈ PIi (for the item i) is

determined by using three elements e1, e2 and e3 where

an element is either an item of I already positioned

(representing the set Ii) or one of the six faces belonging

to F.

• Tpi+1
represents the set composed of the three elements

e1, e2 and e3.

Figure 1 illustrates GP’s mechanism on a small example. For

this example, assume that the first four items are already posi-

tioned in the object P; then, there are three eligible positions

that emerge for the next item 5 to pack. Following the above

notations, I4 = {1, 2, 3, 4} and PI4 = {pj5, j = 1, . . . , 3}.

First, the position p15 touches both items 1 and 3 and, the

“bottom” face of P . Second, the position p25 is obtained by

using the item 2 and both faces “left” and “bottom” of P .

Third and last, the position p35 is computed by using the item

1 and both faces “left” and “depth” of P . Finally, it follows

that Tp1
5

= {1, 2, bottom}, Tp2
5

= {2, left, bottom} and

Tp3
5
= {1, left, depth}. Further, item 4 is positioned around

the three items 1, 2 and 3 that means T4 = {1, 2, 3}. For the

next item 5 to pack, its coordinates are computed by using

both items 1 and 3 and one of the faces (the “bottom” in this

case) of P that gives T5 = {1, 3, bottom}. We recall that the

objective of the problem is to minimize the length of the target

object P . It means that the right face of P can be omitted and

only the five faces can be considered when optimizing the

length of the target P . Hence, all eligible positions may be

obtained by using the fifth faces, the positioned items and the

current item to pack.

Then, the value corresponding to the (i+1)-th item to pack,

when positioned at the eligible position pki+1 ∈ PIi by GP, is

computed as follows

∆(pki+1) = min
j ∈ Ii ∪ F′′

δ(i+1,j) (1)

where F
′ = F \ {right} and F

′′ = F
′ \ Tpk

i+1
.

Finally, when GP is used, it starts by positioning the first

item i = 1 at the bottom-left-depth position, i.e., at the

position (r1, r1, r1), while the remaining n − 1 items are

successively positioned according to the minimum distance

rule (cf., Eq. (1)). As illustrated in Figure 1, the item 5 will

be placed at position p15 because its corresponding distance

realizes the minimum value.

C. A width-beam search heuristic for the 3DSPP

Beam Search (BS) has been first proposed in [15] for tack-

ling the scheduling problem and it has since been successfully

applied to many other combinatorial optimization problems

(some adaptations can be found in Della Croce et al. [2],

Hifi et al. [5], [6], [7] and, Yavuza [21]). Such an approach

can be viewed as a truncated tree search procedure where its

objective is to avoid exhaustive search by performing a partial

enumeration of the solution space.

1) Packing all items on the target object: At each level of

the developed tree, only a subset of nodes (called the set of

elite nodes) are selected for further branching and the other

nodes are discarded, where no backtracking is performed. For

each level, the cardinality of the elite nodes to be investigated

is fixed to ω that is called the beam width. Generally, these

selected ω nodes represent those having a high potential to

lead the best solutions for the treated problem. Furthermore,

each node is assessed via an evaluation function whose role

is to provide a promising separation mechanism of the nodes

of each level of the developed tree.

As observed in Hifi and Yousef [8], applying BS to 3DSPP

required to define the nodes of the tree and the branching

mechanism out of the nodes of B. Herein, a node ηi is

represented by the pair of subsets:

1) The first subset Ii containing all items assigned to the

target object P and,

2) The complementary subset Ii containing the unassigned

items.

Moreover, branching out of a node ηi is equivalent to create

at most |PIi | branches emanating out of the current node

(related to the eligible positions as described in Section III-B).

Each resulting node corresponds to packing the subset of items

Ii and assigning to the current item i a favorite eligible posi-

tion. Moreover, each of these created nodes will be represented

by a pair of two complementary subsets of items of I . Further,

in order to explore a reasonable number of nodes, a width-

beam search almost of the standard beam search has been

MHAND HIFI, LABIB YOUSEF: WIDTH BEAM AND HILL-CLIMBING STRATEGIES 423

used in Hifi and Yousef [8]. Therefore, all nodes emanating

from the same level are simultaneously evaluated following an

estimator operator and only the best ones are selected for the

rest of the search.

Such a process is described by the main steps of Algo-

rithm 1, where it works according to a given node, namely

ηℓ. This node is the one taken at the level ℓ of the developed

tree. Thereafter, the initialization step is applied for starting

the set B containing the best provided nodes regarding the

starting node ηℓ (lines 1 to 3), the initialization of the variable

feasible to false (line 4) and, fixing the runtime limit

tmax (line 5) for which the algorithm stops when that time

is performed (in this case, the control parameter titer, for

the limit tmax, is initialized to zero). Note that the variable

feasible is used for controlling the (un)feasibility of the

series of the solutions builded. The main loop (line 7) starts

by choosing the best eligible positions for each node belonging

to B. These positions are computed by using GP’s selection

(cf., Section III-B). Second, all created nodes are stored in

a provisional set Bω where the potential of each of these

nodes are evaluated according to the final solution provided

by iteratively applying GP as a heuristic (cf. as discussed in

the last paragraph of Section III-B). Thereafter, for each final

solution (either feasible or unfeasible for the target object P),

the potential of a node η ∈ Bω is represented by the density of

the positioned items in P . Whenever one of these constructed

solutions provides a feasible solution (line 11), i.e., all items

are positioned in the target object P , then the algorithm stops

with a feasible solution (i.e., setting the variable feasible

to true). Otherwise, the set B of the best nodes is updated

(line 12) by the ω nodes which realizing the highest densities

and the current level of the developed tree is incremented. The

internal runtime titer is then incremented and the process is

iterated until either B is reduced to an empty set or when

Algorithm 1 . Beam Search for the 3DSPP: BS

Input. A node ηℓ.
Output.feasible // setting equal to true whenever a feasible packing

is reached, false otherwise

1: Initialization Step.

2: Let ω be a predefined beam width.
3: Set B = {ηℓ}, where ηℓ denotes the input node associated to the ℓ-th

level.
4: Set the variable feasible to false /* no feasible solution at hand */
5: Let tmax be a maximum fixed runtime and titer (initialized to 0) be a

counter which serves to control the time spent for exploration the space
search.

6: Iterative Step.

7: while
(

(B 6= ∅) and (titer < tmax)
)

do

8: Branch from the current level ℓ by selecting the ω eligible positions
for each node ηℓi ∈ B;

9: Insert all obtained nodes into Bω ;
10: Evaluate the potential of each node belonging to Bω using GP for

completing the path.
11: If a feasible solution is given by GP, then set feasible to true

and exit;
12: Replace B by the best ω nodes of Bω realizing highest densities and,

increment the level ℓ.
13: Update the current runtime titer.
14: end while

tmax, the limited runtime, is performed, i.e., titer ≥ tmax.

Algorithm 2 . A Dichotomous Search Based Heuristic: DSBH

Input. An instance of 3DSPP.
Output.An object P of dimensions (Lbest,W,H) and the coordinates of

all items of I .

1: Initialization step

2: Call an iterative GP on the open strip (∞,W,H) and let L be the starting
length reached.

3: Set L← 4π
3×W×H

∑

i∈N (r3i) and L⋆ = L.
4: Set ω to a predefined minimum value.
5: Iterative step

6: while
(

the runtime limit is not performed
)

do

7: repeat

8: L⋆ = (L+ L)/2
9: Generate the starting node η1 with its three sets Ii, Ii and P 1

I .

10: Set feasible←− BS(η1), where BS is called with (L⋆,W,H)

11: If
(

feasible=true
)

then set L = L⋆; L = L⋆ otherwise

12: until (L− L ≥ α)
13: Set L← 4π

3×W×H

∑

i∈N (r3i) and increment ω.

14: end while

2) Using a dichotomous search: Because Algorithm 1 is

applied on the target container P , then one can repeat the same

principle on a series of target containers P1, . . . ,Pr, where

r ≥ 1. Indeed, one can starts the search with the initial interval

[L,L], where L denotes a lower bound for the 3DSPP and L
its upper bound (in the case of a feasible solution exists, its

objective value is assigned to L). Then, for each fixed interval,

Algorithm 1 tries to construct the best feasible solution by

packing all the items into the current target object; that is,

(L⋆,W,H), where L⋆ ∈ [L,L].
The main steps of the dichotomous search are summarized

in Algorithm 2. First, it starts by defining the initial interval

[L,L] where the upper bound L is obtained by applying GP

as a heuristic on the open object, i.e., (∞,W,H). The main

loop “repeat . . . until” (cf., lines 7 - 12) of the dichotomous

procedure serves to explore a series of neighborhoods depend-

ing on the values of ω. At line 8, a new target upper bound is

computed, namely L⋆ = (L+L)/2. Line 9 generates the initial

node positioned at the bottom-left-depth corner (in the position

(r1, r1, r1)) and creates its corresponding sets Ii, Ii and P 1
I

(as discussed in Section III-B). At line 10, BS is called with

the target value of the object (L⋆,W,H) and the created sets

reached at the next step. Line 11 serves to update the interval

search where its upper bound is updated whenever a feasible

solution is obtained, the lower bound is updated otherwise.

Thereafter, the process is iterated untill the gap between both

lower and upper bounds becomes closest to a certain tolerance,

namely α. Finally, the aforementioned process is iterated a

certain number of times following the values of ω (line 13)

and according to the runtime limit fixed.

D. A modified version of the width-beam search for 3DSPP

We first describe the modified GP that tries to generate some

interesting eligible positions. Second and last, we introduce the

lower bound in order to curtail the search; this upper bound

cooperates with both hill-climbing strategy and beam width

strategies in order to select future nodes for branching.

424 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

1) A modified GP: The Modified GP (MGP) provides

other eligible positions able to homogeneously concentrate a

subset of items on the target object. Return now to Figure 1

and observe the candidate positions of item p5: any eligible

position induces a packing concentrated on the bottom-left-

depth position. By applying this principle to the instance SYS1

(one of the instances tested in Section IV), one can observe

that all packed items are focused on the starting position that

leaves the other parts of the object sufficiently empty.

Herein, we first propose to modify such a placement

by adding three corner positions whenever all eligible po-

sitions for a selected item to pack; that are Tp4
2

=
{top, depth, left}, Tp5

2
= {top, left, front} and Tp6

2
=

{bottom, left, front}.

1

p22

p32

p42

p52

p62

p12

depth

top

le)

bo+om

Fig. 2. Illustration of MGP’s eligible positions.

Figure 2, where we assume that the first item is already

positioned in the object P , shows six eligible positions that

emerge for the next item 2 to pack. According to the repre-

sentation described above, I1 = {1} and PI2 = {pj2, j =
1, . . . , 6}. First, the position p12 touches the item 1 and

both faces “depth” and “bottom” of P . Second, the position

p21 is obtained by using the item 1 and both faces “left”

and “bottom” of P . Third, the position p31 is computed by

using the item 1 and both faces “left” and “depth” of P .

Finally, all other positions touch three faces of P . It follows

that Tp1
2

= {1, depth, bottom}, Tp2
2

= {1, left, bottom},

Tp3
2

= {1, left, depth}, Tp4
2

= {top, left, depth}, Tp5
2

=
{top, left, front} and Tp6

2
= {bottom, left, front}.

(a) (b)

Fig. 3. Illustration of (a) GP’s behavior and (b) its modified version MGP’s
on SYS1 instance.

On the one hand, as illustrated in Figure 2, the item 2 can

be packed at one of the six positions pj2, j = 1, . . . , 6, and

if the smallest distance to the left side of P is favored, then

five positions remains favorable (cf., Figure 3.(a)). In this case

GP provides an object of length equal to 11.51. On the other

hand, If such a principle is applied, from Figure 3.(b) and for

the same instance, one can observe the improvement made on

the packing which at the same time produces a better length

(10.49 in this case) for the target object.

E. Using the hill-climbing strategy

Hill-Climbing (HC) can be used as a curtailing strategy for

avoiding exhaustive search. In this case, the search process

may perform a partial enumeration of the solution space,

where in term of tree, only a subset of paths are taken for

further branchings and the other nodes are discarded. Further,

each selected node is assessed via its evaluation function

whose role is to provide a promising separation mechanism

of the nodes. In our study, we introduce the HC strategy that

is used for avoiding exhaustive search that is equivalent to

an augmented beam search (Hifi et al. [7] and Yavuza [21])),

where a subset of paths are taken for further branchings and

the other nodes are discarded. At each step of the search

procedure, a node η is selected and after evaluating all its

successors, only the best ω nodes are chosen for further

branchings. Each selected node is assessed via its evaluation

function whose role is to provide a promising separation

mechanism of the nodes.

Algorithm 3 describes a modified BS (noted MBS) where

MBS replaces BS in the dichotomous search DSBH (cf.,

Algorithm 2, which also noted MDSBH for the modified

DSBH). We recall that a node corresponds to a partial solution

at level ℓ ≤ n − 1 and the set B of current nodes contains

initially the starting nodes of the root node B0, whereas Bω

containing the offspring nodes is initialized to the empty set.

Algorithm 3 . A Modified BS (MBS)
Input. A set of items I and a predefined length lbest.

Output.feasible..

1: Initialization Step.

2: Let ω and ǫ be two predefined values.

3: Set B = B0, where B0 denotes the starting eligible nodes according to the first

packed item i = 1.

4: Set the level ℓ = 1 and Bℓ = ∅.

5: Set the variable feasible to false /* no feasible solution at hand */

6: Iterative Step.

7: while
(

(B 6= ∅) and (the runtime limit is not performed) and (ℓ < n)
)

do

8: for each η ∈ B do

9: Let Bη = {γ1, . . . , γ|PIη
|} be the successors of η.

10: Evaluate the potential of each node γ belonging to Bη by computing g(γ)
and h′(γ).

11: For each γ ∈ Bη apply ISBH(γ, L⋆) and update L⋆ if necessary with the

incumbent solution.

12: Set Bℓ = Bℓ ∪ Bη ;

13: end for

14: Filter Bℓ by keeping the ω best nodes realizing the smallest values of

L⋆/
(

g(γ) + h′(γ)
)

.

15: Replace all the nodes of B by those of Bℓ, increment ℓ and set Bℓ = ∅.

16: end while

On the one hand, a selected node η taken from B (step 7),

whose evaluation is zη , creates a subset of nodes Bη =

MHAND HIFI, LABIB YOUSEF: WIDTH BEAM AND HILL-CLIMBING STRATEGIES 425

{γ1, . . . , γ|PIη |
}, where each resulting node is evaluated ac-

cording to its cost operator; that is,

zη = g(η) + h(η).

On the other hand, because |PIη | is large, only some nodes

are chosen for further branchings. Indeed (line 9), if a node γ
of Bη packs at most n− 1 items, then it remains in Bη when

z′(γ) < z⋆, such that

z′(γ) = g(η) + h′(η) (2)

where h′(η) = (1 + ǫ)h(η) and ǫ is considered as a small

predefined value that is used for making a correction on the

complementary lower bound h(η). Whenever Eq. (2) is not

satisfied, then γ is removed from Bη .

Further, since we try to diversify the search that allows for

exploring new solutions, we apply BGP on all selected nodes

(line 10). Then, L⋆ is updated whenever BGP produces a better

length; in this case, its corresponding incumbent solution is

also updated. The rest of the nodes belonging to Bη (line 11)

are reordered in nondecreasing order of their estimated lower

bound z′(γ) and only the best ω nodes are selected and

becomes the new nodes of B for further branchings. This

process is iterated until no further branching is possible, i.e.,

until B = ∅, or the last level is equal to n, or when the fixed

runtime limit is performed. Note also that, at lines 9 and 10, if

a node γ of Bη is a leaf (i.e, no further branching is possible

out of γ), then its objective function value zγ is computed and

compared to z⋆. If zγ < z⋆, then the incumbent solution is set

to a leaf node; z⋆ is then updated: z⋆ = zγ ; and γ is removed

from Bη.

IV. COMPUTATIONAL RESULTS

In this section we investigate the effectiveness of the mod-

ified width beam search-based heuristic (noted MDSBH) on

two sets of benchmark instances: Set1 and Set2. The proposed

algorithm was coded in C++ and tested on an Intel Core 2 Duo

(2.53 Ghz and with 4 Gb of RAM) and the runtime limit was

fixed to one hour.

The first set “Set1” contains six instances (SYS1, . . ., SYS6)

extracted from Stoyan et al. [17], where the number of the

predefined items varies from 25 to 60. These instances have

been already tested using Stoyan et al.’s [17], Birgin and

Sobral’s [1] and Kubach et al.’s [10] approaches.

The second set “Set2” contains six instances (KBTG1,

KBTG2, KBTG3, KBTG7, KBTG8, and KBTG9) taken from

Kubach et al. [10]. For each instance, both dimensions W
and H of the object are fixed to 10 whereas the number of

the predefined items is fixed to 30 (resp. 50) for the first (resp.

last) three instances. Moreover, these six instances have been

already tested in Kubach et al. [10] where they represent the

six instances with unequal spheres.

A. Performance of MDSBH vs five heuristics: Set1

Generally, when using approximate algorithms to solve

optimization problems, it is well-known that different pa-

rameter settings for the approach lead to results of variable

quality. As discussed in Section III-D, MDSBH considers

three parameters: the beam width ω, the value of ǫ used

for correcting the value of the global lower bound and the

maximum runtime limit to fix. Our computational study was

conducted by varying ω in the discrete interval {5, 6, 7, . . .},

the maximum runtime limit was fixed to 3600 seconds (which

can be considered as a standard runtime limit considered by

algorithms of the literature) and ǫ which takes one of the

following values: 0.1, 0.2 and 0.3. Of course, the upper value

of ω depends on the limited runtime and the size of the

instance.

In order to show the effect of these parameters, we first

discuss the quality of the solutions obtained by MDSBH when

varying the value of ǫ. Table II shows MDSBH’s objective

values when varying ǫ from 0.1 to 0.3. From Table II, we

observe that MDSBH with ǫ = 0.2 provides better average

results since it realizes a value of 9.939 compared to both

values 9.957 and 9.961, which corresponds to ǫ = 0.1 and

ǫ = 0.3, respectively.

MDSBSs’ solutions when varying ǫ
Label ǫ = 0.1 ǫ = 0.2 ǫ = 0.3
SYS1 9.1946 9.1796 10.9001

SYS2 8.910122 8.8922 8.8922

SYS3 8.6862 8.6702 8.6862

SYS4 10.2154 10.2012 10.2300

SYS5 10.9237 10.8954 10.9222

SYS6 11.8105 11.7943 11.8105

Av. 9.957 9.939 9.961

TABLE II
BEHAVIOR OF MDSBH, WHEN VARYING ǫ, ON THE INSTANCES OF SET1.

Figure 4 illustrates the configurations realized by MDSBH

for instance SYS1. Hence, for the rest of the paper, ǫ = 0.2
is chosen for evaluating the performance of MDSBH on all

benchmark instances of the literature.

(a) (b) (c)

Fig. 4. SYS1 solutions (with MDSBH) when varying ǫ: (a) ǫ = 0.1 with
length L⋆ = 9.1946, (b) ǫ = 0.2 with length L⋆ = 9.1796, and, (c) ǫ = 0.3
with length L⋆ = 10.9001.

Second, for the instances of Set1, Table III compares the

results of MDSBH to those reached by five algorithms: SYS

(Stoyan et al. [17]), BSA (Birgin and Sobral [1]), KBTGs

(Kubach et al. [10]), its parallel version noted KBTGp (pro-

posed in Kubach et al. [9]), where the known solutions of the

literature are taken from Kubach et al. [9], [10] and HY (Hifi

and Yousef [8]).

Column 1 of Table III shows the instance label, Column 2

displays the objective value L⋆
SYS realized by STS whereas

column 3 displays BSA’s objective value (noted L⋆
BSA).

426 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

#Inst. SYS BSA HY MDSBH

Label L⋆
SYS L⋆

BSA L⋆
KBTGs

L⋆
KBTGp

L⋆
HY L⋆

MDSBH ω∗

SYS1 9.912 9.7942 9.2874 9.2656 9.2431 9.1796⋄ 26

SYS2 9.623 - 9.1280 8.9301 8.9164 8.8922⋄ 29

SYS3 9.473 9.3090 8.9850 8.7178 8.7055 8.6702⋄ 31

SYS4 11.086 11.0962 10.8760 10.4042 10.2357 10.2012⋄ 36

SYS5 11.646 11.6211 11.3494 10.9865 10.9359 10.8954⋄ 34

SYS6 12.842 12.7215 12.3745 11.8399 11.8178 11.7943⋄ 16

Av. 10.764 10.908 10.333 10.024 9.976 9.939

TABLE III
PERFORMANCE OF MDSBH VERSUS THE FIVE HEURISTICS OF THE

LITERATURE ON INSTANCES OF SET1. THE SYMBOLE “− ” (RESP. “ ⋄ ”)
MEANS THAT THE VALUE FOR THIS INSTANCE IS NOT AVAILABLE (RESP.

CORRESPONDS TO THE BEST SOLUTION).

Columns 4 and 5 report the solutions (noted L⋆
KBTG) pro-

vided by the sequential KBTGs algorithm, column 5 reports

the best solutions reached by the parallel version of KBTG

(noted L⋆
KBTGp

) without fixing the runtime limit and column

6 displays the results reached by HY. Column 7 displays

the solution realized by MDSBH (noted L⋆
MDSBH). Finally,

column 8 reports the best value of ω for which its best

solution is performed. All results of Table III are summarized

in Table IV, where it tallies the percentage improvement (when

it happens) yielded by MDSBH when compared to the results

reached by the five other algorithms (noted %SYS, %BSA,

%KBTGs, %KBTGp and %HY according to the heuristics

SYS, BSA, KBTGs, KBTGp and HY, respectively).

#Inst. MDSBH vs all heuristics (% Improvement)

Label %SYS %BSA %KBTGs %KBTGp %HY

SYS1 7.39 6.28 1.16 0.93 0.69

SYS2 7.59 - 2.58 0.42 0.27

SYS3 8.47 6.86 3.50 0.55 0.41

SYS4 7.98 8.07 6.20 1.95 0.34

SYS5 6.45 6.24 4.00 0.83 0.37

SYS6 8.16 7.29 4.69 0.39 0.20

Av. 7.67 6.95 3.69 0.84 0.38

TABLE IV
PERCENTAGE IMPROVEMENTS BETWEEN ALL TESTED HEURISTICS:

MDSBH, HY, SYS, BSA AND BOTH KBTGs AND KBTGp ON

INSTANCES OF SET1.

The analysis of the results of both Tables III and IV follows:

1) First, MDSBH outperforms the five algorithms SYS,

BSA, KBTGs, KBTGp and HY. Indeed, it is able to

reach the best solutions for all instances of Set1.

2) Second, when comparing MDSBHs’ results to those

reached by SYS, one can observe that the percentage

of the improvement varies from 6.45% (instance SYS5)

to 8.47% (instance SYS3). This percentage improvement

remains interesting when comparing MDSBHs’ results

to those reached by BSA: in this case, such improvement

varies from 6.24% (instance SYS5) to 8.07% (instance

SYS4).

3) Third, the improvement remains positive when compar-

ing MDSBH’s results to those provided by the sequential

(resp. parallel) KBTG algorithm. Indeed, the improve-

ment when compared to the sequential version varies

from 1.16% (instance SYS1) to 6.20% (SYS4) whereas

it varies from 0.39 (instance SYS6) to 1.95% (instance

SYS4) when compared to the parallel version.

4) Fourth and last, MDSBH realizes better results than

those reached by HY; in this case, the percentage im-

provement varies from 0.20% (instance SYS6) to 0.69%
(instance SYS1).

Page 1

1 2 3 4 5 6

%

 I
m
p
ro
v
e
m
e
n
t

%BS

%KBp

%KBs

%BSA

%SYS

Fig. 5. Variation of the percentage improvement realized by MDSBH when
compared to the results of the five heuristics (SYS, BSA, KBTGs, KBTGp

and HY) on the instances of Set1.

Figure 5 shows the behavior of MDSBH on the instances of

Set1 where each curve represents the improvement variation

realized according to the algorithm SYS, BSA and both

KBTGs, KBTGp and HY, respectively.

B. Performance of MDSBH versus KBTG and HY heuristics:

Set2

In this section, we compare the results reached by MDSBH

to those reached by KBTGs and HY (note that, for this type

of instances, both KBTGs and HY realize the best objective

values of the literature). This comparison is performed on

the instances of the second group Set2 taken from Kubach et

al. [10]. Herein, instead of determining the minimum length

L⋆ of the target container P , Kubach et al. [10] computed the

density of all packed items in the final object P . Therefore, we

also report the best length L⋆ of the final object P as in Hifi

and Yousef [8], since it corresponds to the dual problem that

maximizes the density of the occupied area (or equivalently

to minimizing the unused area).

#Inst. HY MDSBH

Label d⋆
KBTGs

L⋆ d⋆ %HY

KBTG1 54.096 10.9031 56.0092 10.8076 23 0.884

KBTG2 30.071 1.9900 30.071 1.9900 23 0.000

KBTG3 51.387 18.2415 53.6243 18.1936 24 0.263

KBTG7 55.372 13.0997 57.5662 12.9653 14 1.037

KBTG8 45.060 2.5825 47.004 2.5820 13 0.019

KBTG9 52.732 27.8033 55.3203 27.7152 26 0.318

Av. 48.120 49.932 0.420

TABLE V
PERFORMANCE OF BSBH VERSUS KBTGs ON INSTANCES OF SET2.

The results realized by the three tested methods (MDSBH,

KBTGs and HY, respectively) are reported in Table V. Col-

umn 1 displays the instance label, column 2 reports the

solution value (expressed in term of density) realized by

KBTGs’s algorithm (extracted from Kubach et al. [9], [10]),

columns 3 and 4 display both HY’s length and its density

whereas columns 5 and 6 report the best length realized by

MHAND HIFI, LABIB YOUSEF: WIDTH BEAM AND HILL-CLIMBING STRATEGIES 427

MDSBH and the value of ω for which the best solution is
reached. Finally, the last column displays the percentage of
improvement realized by MDSBH according to the solution
values reached by both KBTGs and HY, respectively. The
analysis of the results of Table V follows.

1) HY outperforms KBTGs since it provides an aver-
age density of 49.932% whereas KBTGs realizes
a percentage value of 48.120%.

2) MDSBH remains competitive since it improves
most solutions reached by both KBTGs and HY.
Indeed, it is able to improve five out of six best
solutions while it matches the other solution (in-
stance KBTG2) when compared to the results
reached by HY.

3) For the improved solutions (except for the in-
stance KBTG2 where all algorithms reach the op-
timal solution), MDSBH realizes an improvement
varying from 0.019% (instance KBTG8) to
1.037% (instance KBTG7).

4) Globally, the average improvement over all in-
stances is equal to 0.420%, as displayed by the
last line of Table V.

V. CONCLUSION

In this paper the three-dimensional sphere packing prob-
lem is solved by using a modified dichotomous search-based
heuristic. The proposed method is based upon three comple-
mentary phases: (i) a modified greedy selection phase which
tries to select more eligible positions to iteratively pack all
predefined items into the target object, (ii) a width beam
search combined with hill-climbing strategies for exploring
promising paths and (iii) a dichotomous search for providing
a best target object, that is able to pack all items without
overlapping. The performance of the modified algorithm
was evaluated on benchmark instances available in the liter-
ature. The provided results were compared to those reached
by the original version of the algorithm, as well as to the re-
sults given by some recently proposed heuristics. The new
version of the method remains competitive and succeeded in
yielding new solutions for many instances.

REFERENCES

[1] E. G. Birgin and F.N.C. Sobral. Minimizing the object dimensions in
circle and sphere packing problems. Computers & Operations Research,
35, 2357–2375, 2008 (DOI: 10.1016/j.cor.2006.11.002).

[2] F. Della Croce, M. Ghirardi and R. Tadei. Recovering beam search
approach for combinatorial optimization problems. Journal of
Heuristics, 10, 89–104, 2004 (DOI:
10.1023/B:HEUR.0000019987.10818.e0).

[3] R. S. Farr. Random close packing fractions of log-normal distributions
of hard spheres. Powder Technology, 245, 28–34, 2013 (DOI:
10.1016/j.powtec.2013.04.009).

[4] M. Hifi and R. M’Hallah. A literature review on circle and sphere
packing problems: models and methodologies. Advances in Operations
Research, Article ID 150624, 22 p, 2009
(doi.org/10.1155/2009/150624).

[5] M. Hifi and R. M’Hallah. Beam search and non-linear programming
tools for the circular packing problem, International Journal of
Mathematics in Operational Research, 1, 476–503, 2009 (DOI:
10.1504/IJ-MOR.2009.026278).

[6] M. Hifi, R. M’Hallah and T. Saadi. Algorithms for the constrained
two-staged two-dimensional cutting problem. INFORMS, Journal on
Computing, 20 212–221, 2008.

[7] M. Hifi and T. Saadi. A cooperative algorithm for constrained two-
staged two-dimensional cutting problems. International Journal of
Mathematics in Operational Research, 9, 104–124, 2010 (DOI:
10.1504/IJOR.2010.034363).

[8] M. Hifi and L. Yousef. A dichotomous search-based heuristic for the
three-dimensional sphere packing problem. Working paper, Exposed in
the Seminary of ROAD Team, Laboratory EPROAD, Universi e de
Picardie Jules Verne, october 2013.

[9] T. Kubach, A. Bortfeldt, T. Tilli, and H. Gehring. Parallel greedy
algorithms for packing unequal spheres into a cuboidal strip or a
cuboid. Working Paper, Department of Management Science,
University of Magdeburg, (Diskussionsbeitrag der Fakult at f ur
Wirtschaftswissenschaft der FernUniversit at in Hagen). No 440,
Hagen 2009.

[10] T. Kubach, A. Bortfeldt, T. Tilli, and H. Gehring. Greedy algorithms
for packing unequal sphere into a cuboidal strip or a cuboid. Asia-
Pacific Journal of Operational Research, 28(06), 739–753, 2011 (DOI:
10.1142/S0217595911003326).

[11] Y. Li and W. Ji. Stability and convergence analysis of a dynamics-
based collective method for random sphere packing. Journal of
Computational Physics, 250, 373–387, 2013 (DOI:
10.1016/j.jcp.2013.05.023).

[12] K. Lochmann, L. Oger, and D. Stoyan. Statistical analysis of random
sphere packings with variable radius distribution. Solid State Sciences.
8(12), 1397–1413, 2006 (DOI:
10.1016/j.solidstatesciences.2006.07.01).

[13] R. M’Hallah, A. Alkandari, and N. Mladenovi c. Packing unit spheres
into the smallest sphere using VNS and NLP. Computers & Operations
Research, 40(2), 603–615, 2013 (DOI: 10.1016/j.cor.2012.08.019).

[14] R. M’Hallah and A. Alkandari. Packing unit spheres into a cube using
VNS. Electronic Notes in Discrete Mathematics, 39(1), 201–208, 2012.

[15] P. S. Ow and T.E. Morton. Filtered beam search in scheduling,
International Journal of Production Research, 26, 297–307, 1988
(DOI:10.1080/00207548808947840).

[16] K. Soontrapa and Y. Chen. Mono-sized sphere packing algorithm
development using optimized Monte Carlo technique. Advanced
Powder Technology, 24(6), 955–961, 2013 (DOI:
10.1016/j.apt.2013.01.007).

[17] Y. Stoyan, G. Yaskow, and G. Scheithauer. Packing of various radii
solid spheres into a parallelepiped. Central European Journal of
Operational Research, 11, 389–407, 2003.

[18] A. Sutou and Y. Dai. Global optimization approach to unequal sphere
packing problems in 3D. Journal of Optimization Theory and
Applications, 114, 671–694, 2002 (DOI: 10.1023/A:1016083231326).

[19] J. Wang. Packing of unequal spheres and automated radio-surgical
treatment planning. Journal of Combinatorial Optimization, 3, 453–463,
1999 (DOI: 10.1023/A:1009831621621).

[20] G. Wascher, H. Haussner and H. Schumann. An improved typology of
cutting and packing problems. European Journal of Operational
Research, 183, 1109–1130, 2007 (DOI: 10.1016/j.ejor.2005.12.047).

[21] M. Yavuza. Iterated beam search for the combined car sequencing and
level scheduling problem. International Journal of Production Research,
51, 3698–3718, 2013 (DOI:10.1080/00207543.2013.765068).

428 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

