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Abstract—In the article a 3-dimensional filter method for
solving optimal control problems of differential-algebraic equa-
tions (DAEs) was presented. Direct multiple shooting method,
which is appropriate for the control problems of the multistage
DAE systems, leads to the large-scale nonlinear programming
problems. In the proposed approach the extended Fletcher’s filter
with three inputs was used. The filter method promotes global
convergence without the need to use a penalty function. The
first input of the filter denotes the value of the cost function.
The second and third inputs come from two types of equality
constraints - consistent initial conditions of the DAE system and
continuity constraints on the state trajectories. The new algorithm
was tested on the optimal control problem of a fed-batch
fermentor for penicillin production. The numerical simulations
were executed in MATLAB environment using Wroclaw Center
for Networking and Supercomputing.

Keywords—optimal control, DAE systems, inconsistent initial
conditions, filter algorithm, nonlinear programming.

I. INTRODUCTION

CONTROL and optimization of the complex and multi-
stage differential-algebraic systems (DAEs) play a key

role in a lot of technological systems. The dynamical behavior
of the processes can be described by the differential equations.
But conservation laws, balance equations, boundary conditions
as well as interface with the environmental signals are modeled
using the algebraic equations. Today, the differential-algebraic
equations are one of the most elegant and simple ways to
model a physical system, because they allow the creation of
separate models for subcomponents that can then be pasted
together [3], [4].

After some elimination processes, DAE systems can be
rewritten in the form of ordinary differential equations, which
can not present the nature of the process in the same manner
like DAEs. A few advantages of a DAE formulation are the
following: (1) it may be difficult to reformulate the problem
as an ODE when nonlinearities are present, (2) the alge-
braic equations typically describe conservation laws or explicit
equality constraints and they should be kept invariant, (3) it is
easier to vary design parameters in an implicit model, (4) the
implicit model does not require the modeling simplifications
often necessary to get an ODE, (5) the variable keep their
original physical interpretation, (6) the system structure can

be exploited by problem-specific solvers, (7) less specialized
mathematical expertise is required on the part of the de-
signer [5].

One group of the approaches to the optimal control of
complex dynamical processes are direct methods, which refor-
mulate the original infinite dimensional optimization problem
as a finite dimensional nonlinear programming (NLP) problem.
In direct methods, the control and both differential and alge-
braic states are parametrized. Direct multiple shooting is one of
the most popular direct methods. It enables using the efficient
DAE solvers to calculate the function values and derivatives
accurately. Since the integrations are decoupled on different
multiple shooting intervals, this method is well suited for
parallel computing. In this manner the control and optimization
of the unstable dynamical modes can be considered. The
approach allows an effective treatment of control and state path
constraints [7]. Using the multiple shooting methods results in
a large-scale NLP problem.

In this paper a tri-dimensional filter method based on the
line search technique is considered. The filter method to solve
nonlinear programming problem can be seen as an alternative
to the traditional merit function approach. In this method,
compared to the traditional penalty function methods, in which
adjustment of the penalty parameter can be problematic, may
make the trial steps accepted more easily.

The first idea of the filter method was to interpret the NLP
problem as a bi-objective optimization problem with two con-
flicting purposes. The objective function had to be minimized,
but the constraint violation should be minimized too. In the
method presented in [10], all the constraints violations were
added together and only one constraint violation was defined.

However, each constraint may have its own behavior. Some
constraints can be highly nonlinear, while some others are
linear or nearly linear [17]. There is the other situation, when
the constraints can be grouped depending on the role in the
mathematical model.

In the article the constraints were splited into equality
constraints for consistent initial conditions for DAE model and
equality constraints, which measure the discontinuity of the
differential state trajectories. Thus the filter consists of three
values: value of the objective function, equality constraints,
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which measure inconsistency of the initial conditions of DAE
model, and equality constraints for continuity of the differential
state trajectories.

The article is constructed as follows. In the 2nd section
the multistage optimal control problem of differential-algebraic
systems was presented. Then, in 3rd section, the 3-D filter
algorithm was presented. The results of the numerical simula-
tions were discussed in the 4th section.

In the article was used the same notation as in [7] and [20].

II. PROBLEM STATEMENT

Let us consider the problem of optimal control of the
process with the performance cost function

min
(u(t),x(t),z(t),p)

∫ tf

t0

L
(

x(t), z(t), u(t), p
)

dt+ E
(

x(tf )
)

, (1)

subject to a system of the index-one differential-algebraic
equations (DAE) [6]

B(·)ẋ(t) = f
(

x(t), z(t), u(t), p
)

0 = g
(

x(t), z(t), u(t), p
)

,
(2)

where x and z denote the differential and algebraic state
variables, respectively, u is the vector valued control function,
whereas p is a vector of system parameters, which does not
depend on the time. Matrix B

(

x(t), z(t), u(t), p
)

is assumed
to be invertible. Then the DAE is in a semi-explicit form.

The initial values for the differential and algebraic states
and values for the system parameters are prescribed

x(t0) = x0, (3)

p(t0) = p0. (4)

In addition, the terminal constraints

r1
(

x(tf ), p
)

= 0, r2
(

x(tf ), p
)

≥ 0, (5)

as well as the state and control inequality constraints

h(x(t), z(t), u(t), p) ≥ 0 (6)

have to be satisfied.

There is a quite other situation, when the multistage DAE
system is considered, because each stage can be described by
other set of the differential-algebraic equations.

Let us assume, that there are N stages in the complex
industrial process and there is an independent variable t, for
example time or length of the chemical reactor.

For a suitable partition of the time horizon [t0, tf ] into N
subintervals [ti, ti+1] with

t0 < t1 < · · · < tN = tf , (7)

the control function u(t) is discretized. It could be represented
by a piecewise constant, piecewise linear or a polynomial
approximation [19]. If the control function is parametrized as
a piecewise constant vector function, then

u(t) = ul (8)

for t ∈ [tl−1, tl], l = 1, · · · , N .

By the multiple shooting method, the DAE is parametrized
in some sense too. The solution of the DAE system is decou-
pled on the N intervals [tl, tl+1]. In this manner it introduces
the initial values slx and slz of the differential and algebraic
states at times ti as the additional optimization variables.

The trajectories x(t) and z(t) are obtained as a sum of
trajectories xl(t) and zl(t) on each interval [tl−1, tl]. The
trajectories xl(t) and zl(t) are the solutions of an initial value
problem

Bl(·)ẋ(t) = f l
(

xl(t), zl(t), ul(t), p
)

0 = gl
(

xl(t), zl(t), ul(t), p
)

+ αl(tl)g
l
(

slx, s
l
z, u

l, p
)

t ∈ [tl−1, tl], l = 1, · · · , N .
(9)

The relaxation parameter αl(tl) was introduced to allow
an efficient DAE solution for the initial values and controls
slx, s

l
z, u

l, that may temporarily violate the consistency condi-
tions. In this manner, the trajectories xl(t) and zl(t) on the
interval [tl−1, tl] are functions of the initial values, controls
and parameters slx, s

l
z, u

l, p.

The integral part of the cost function is evaluated on each
interval independently

min
slx, s

l
z, u

l, p
l = 1, · · · , N

∫ t1

t0
L1
(

x1(t), z1(t), u1(t), p)dt+ · · ·+

+
∫ tN

tN−1

LN
(

xN (t), zN (t), uN (t), p)dt+ E
(

x(tN )
)

=

= min
slx, s

l
z, u

l, p
l = 1, · · · , N

∑N
l=1

∫ tl

tl−1

Ll
(

xl(t), zl(t), ul(t), p)dt+

+E
(

x(tN )
)

.
(10)

The parametrization of the optimal control problem of the
multistage DAE systems using the multiple shooting approach
and a piecewise constant control representation leads to the
following nonlinear programming problem

min
slx, s

l
z, u

l, p
l = 1, · · · , N

∑N
l=1

∫ tl

tl−1

Ll
(

xl(t), zl(t), ul(t), p)dt+

+E
(

x(tN )
)

= minχ Φ(χ),
(11)

subject to the continuity conditions

slx = xl−1(tl−1), l = 2, · · · , N, (12)

the consistency conditions

0 = gl(slx, s
l
z, u

l, p), l = 1, · · · , N, (13)

control and path constraints imposed pointwise at the multiple
shooting nodes

hl(slx, s
l
z, u

l, p) ≥ 0, l = 1, · · · , N, (14)

the terminal constraints

r1(s
l
x, s

l
z, p) = 0, r2(s

l
x, s

l
z, p) ≥ 0, (15)
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lower and upper bounds on the decision variables

χL ≤ χ ≤ χU , (16)

χ = [s1x, · · · , sNx , s1z, · · · , sNz , u1, · · · , uN , p]T , (17)

χL = [s1x,L, · · · , sNx,L, s1z,L, · · · , sNz,L, u1
L, · · · , uN

L , pL]
T ,
(18)

χU = [s1x,U , · · · , sNx,U , s1z,U , · · · , sNz,U , u1
U , · · · , uN

U , pU ]
T ,
(19)

and with the DAE system in each interval

Bl(·)ẋ(t) = f l
(

xl(t), zl(t), ul(t), p
)

0 = gl
(

xl(t), zl(t), ul(t), p) + αl(tl)g
l(slx, s

l
z, u

l, p),
t ∈ [tl−1, tl], l = 1, · · · , N .

(20)

III. THE FILTER METHOD

About 10 years ago, Fletcher and Leyffer proposed the filter
methods to solve nonlinear programming (NLP) as an alterna-
tive to the traditional merit function approach. The underlying
concept of filter is quite simple, being based on the multi-
objective optimization, that is, the trial point is accepted pro-
vided there is a sufficient decrease of the objective function or
the constraint violation function. In addition, the computational
results presented in [10] were also very encouraging. The trust
region filter sequential quadratic programming (SQP) methods
have been studied in [9], [11]. On the other hand, the filters
approach has been used also in conjunction with the line search
strategy [20], [21], with interior point methods [18] and with
the pattern search method [1]. Finally, the multidimensional
filters have been employed to solve least squares problems,
nonlinear equations and unconstrained optimization problems
[12], [13].

In this paper, a tri-dimensional filter method based on the
line search strategy, was proposed. The main idea of a filter
is to interpret the NLP problem as a bi-objective optimiza-
tion problem with two conflicting purposes: minimizing the
objective function and the constraints violation. So, the formal
filter in [10] consisted of two parts: the value of the objective
function and the constraint violation. It means, that all the
constraints are considered together and only one constraint
violation is defined. However, each constraint may have its
own behavior. For example, some constraints may be highly
nonlinear, while some others are linear or nearly linear. In
this work only equality constraints are considered. But they
are two kinds of constraints, which have definitely a different
meaning and applications. Thus, the new filter consists of three
inputs: objective function value, inconsistency of the initial
conditions for differential-algebraic equations and continuity
of the differential state trajectories.

A. A line search filter approach

As it was assumed, the considered problem is stated as

min
χ∈Rn

f(χ) (21)

subject to
c(χ) = 0, (22)

where the objective function f : Rn → R and the equality
constraints c : Rn → Rm with m < n are sufficiently smooth.

The Karush-Kuhn-Tucker (KKT) for the nonlinear pro-
gramming problem (21)-(22) are

g(χ) +A(χ)λ = 0, (23)

c(χ) = 0, (24)

where A(χ) = ∇cT (χ) denotes the transpose of the Jacobian
of the constraints c(χ) and g(χ) = ∇f(χ) denotes the
gradient of the objective function. The vector λ corresponds
to the Lagrange multipliers for the equality constraints. Under
constraint qualifications assumption, the KKT conditions are
the first order optimality conditions for (21)-(22) [15].

Given an initial estimate χ0, the line search algorithm
generates a sequence of improved estimates χk of the solution
for the NLP. For this purposes in each iteration k a search
direction dk is computed from the linearization at χk of the
KKT conditions

[

Hk Ak

AT
k 0

](

dk
δλk

)

= −
(

gk
ck

)

, (25)

where Ak = A(χk), gk = g(χk) and ck = c(χk).

The symmetric matrix Hk denotes the Hessian
∇2

χχL(χk, λk) of the Lagrangian

L(χ, λ) = f(χ) + cT (χ)λ (26)

of the nonlinear programming problem or an approximation of
the Hessian.

The vector λk is some estimate of the optimal multipliers
corresponding to the equality constraints, and δλk in (25) can
be used to determine a new estimate λk+1 for the next iteration.

After a search direction dk has been computed, a step size
αk ∈ (0, 1] is determined in order to obtain the next iterate

χk+1 = χk + αkdk. (27)

It would be ideally to guarantee, that the sequence χk

of iterates converges to a solution of the NLP. So, for this
purposes, a backtracking procedure was proposed.

In the backtracking line search procedure a decreasing
sequence of step size αk,l ∈ (0, 1] (l = 0, 1, 2, · · · ) is tried
until some acceptance criterion is satisfied. Traditionally, a trial
step size αk,l is accepted if the corresponding trial point

χk(αk,l) = χk + αk,ldk (28)

provides sufficient reduction of a merit function, such as the
exact penalty function

φρ(χ) = f(χ) + ρθ(χ), (29)

where the infeasibility measure θ(χ) was defined as

θ(χ) = ‖c(χ)‖. (30)

Under certain regularity assumptions it can be shown that
a feasible strict local minimum of the exact penalty function
coincides with a local solution of the NLP if the value of the
penalty parameter ρ > 0 is chosen sufficiently large.

The overall algorithm for solving the equality constrained
NLP problem is as follows.
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ALGORITHM 1. The filter line search
SQP algorithm [20]

Given: Starting point χ0; constants θmax ∈ (θ(χ0),∞);
γθ, γf ∈ (0, 1); δ > 0; γα ∈ (0, 1]; sθ > 1; sf ≥ 1;
ηf ∈ (0, 1

2 ); 0 < τ1 < τ2 < 1.
1. Initialize.

Initialize the filter F0 = {(θ, f) ∈ R2 : θ ≥ θmax}
and the iteration counter k ← 0.

2. Check convergence.
Stop if χk is a stationary point of the NLP (21)-(22),
i.e. if it satisfies the KKT conditions (23)-(24)
for some λ ∈ Rm.

3. Compute search direction
Compute the search direction dk from the linear
system (25). If this system is detected to be
ill-conditioned, go to the feasibility restoration phase
in step 8.

4. Backtracking line search.
4.1 Initialize line search.

Set αk,0 = 1 and l← 0.
4.2 Compute new trial point.

If the trail step size becomes too small,
i.e., αk,l < αmin

k , go to
the feasibility restoration phase in step 8.
Otherwise, compute the new trail point
χk(αk,l) = χk + αk,ldk.

4.3 Check acceptability to the filter.
If χk(αk,l) ∈ Fk, reject the trial step size
and go to step 4.5.

4.4 Check sufficient decrease with respect to current
iterate.

4.5 Choose new trial step size
Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l← l + 1,
and go back to step 4.2.

5. Accept trial point.
Set αk = αk,l and χk+1 = χk(αk).

6. Augment filter if necessary.
7. Continue with next iteration.

Increase the iteration counter k ← k + 1
and go back to step 2.

8. Feasibility restoration phase.
Compute a new iterate χk+1 by decreasing
the infeasibility measure θ so that χk+1 satisfies
the sufficient decrease conditions (31)-(32) and is
acceptable to the filter, i.e.,
(θ(χk+1), f(χk+1)) /∈ Fk.
Augment the filter and continue with
the regular iteration in step 7.

Line search methods that use a merit function ensure suf-
ficient progress toward the solution. Hence, here it is required
that the next iterate provides at least as much progress in one
of the measures θ or f that corresponds to a small fraction
of the current constraint violation, θ(χk). It means, that for
fixed constants γθ, γf ∈ (0, 1) a trial step size αk,l provides
sufficient reduction with respect to the current iterate χk if

θ(χk(αk,l)) ≤ (1− γθ)θ(χk) (31)

or
f(χk(αk,l)) ≤ f(χk)− γfθ(χk). (32)

In a practical implementation, the constants γθ, γf typically
are chosen to be small.

B. A multidimensional filter

The multidimensional filter algorithm was stated by Gould,
Leyffer and Toint in the article [12]. It was used for solving
nonlinear equations and nonlinear least-squares.

The following system of nonlinear equations is considered

c(χ) = 0, (33)

where c is twice continously differentiable function from Rn

into Rm. In the next step, the equation (33) is partitioned
into p sets {ci(χ)}i∈Ij

for j = 1, · · · , p, with {1, · · · , n} =
I1
⋃ I2

⋃ · · · Ip and

θj(χ) = ‖cIj
‖ (34)

for j = 1, · · · , p, where ‖ · ‖ is the Euclidean norm and cIj
is

the vector whose components are the components of c indexed
by Ij .

The point is therefore a solution of (33) if and only if

θj(χ) = 0 (35)

for j = 1, · · · , p. The quantity θj(χ) may be interpreted as
the size of the residual of the jth set of equations at the point
χ.

The classical approach for solving (33) is to minimize a
merit function involving some norm of the residual

min
χ∈Rn

f(χ) =
1

2
‖θ(χ)‖2. (36)

The main idea of filter algorithms for constrained optimiza-
tion is that new iterates of the underlying iterative algorithm
can be accepted if they do not perform, compared to past
iterates kept in the filter, worse on both important and typically
conflicting accounts for this type of problem: feasibility and
low objective function value.

In the context of nonlinear equations, one may consider
driving each of the {θi(χ)}pi=1 to zero as an independent task.

A point χ1 dominates a point χ2 whenever

∀j = 1, · · · , p θj(χ1) ≤ θj(χ2). (37)

Thus, if iterate χk1
dominates iterate χk2

, the latter is
of no real interest, since χk1

is at least as good as χk2
for

each of the equation sets. All, what is needed to do now, is
to remember iterates that are not dominated by other iterates
using a structure called a filter.

A filter is a list F of p-tuples of the form (θ1,k, · · · , θp,k)
such that

θj,k < θj,l (38)

for at least one j ∈ {1, · · · , p} and k 6= l.

Filter methods propose to accept a new trial iterate χ+
k if

it is not dominated by any other iterate in the filter and χk.

Additionally, it is inappropriate to accept a new point χ+
k if

θ(χk) is arbitraily close to being dominated by another point
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already in the filter [16]. To avoid this situation, the accept-
ability condition should be more strength. More formally, one
can say that a new trial point χ+

k is acceptable for the filter F
if and only if

∀θl ∈ F ∃j ∈ {1, · · · , p} θj(χ
+
k ) < θj,l−γθδ(‖θl‖, ‖θ+k ‖),

(39)
where γθ ∈ (0, 1/

√
p) is a small positive constant and where

δ(·, ·) is one of the following

δ(‖θl‖, ‖θ+k ‖) = ‖θl‖ (40)

δ(‖θl‖, ‖θ+k ‖) = ‖θ+k ‖ (41)

or
δ(‖θl‖, ‖θ+k ‖) = min(‖θl‖, ‖θ+k ‖). (42)

C. A tri-dimensional filter SQP algorithm

The groups of constraints violations for NLP problem (21)-
(22) are defined as follows

SI =
1

2

p
∑

i=1

c2i (χ) (43)

for continuity of the differential state trajectories and

SII =
1

2

m
∑

i=p+1

c2i (χ), (44)

which represents inconsistency of the initial conditions.

These two groups of constraints are defined similarly, but
they have definitely different meanings and play another role
in the optimization process.

In a filter F , triples of values (SI(χ),SII(χ), f(χ)) are
considered.

Definition 1. The iterate χk dominates the iterate χl if and
only if SI(χk) ≤ SI(χl), SII(χk) ≤ SII(χl) and f(χk) ≤
f(χl). It is denoted by χk � χl.

Thus, if χk � χl, the latter is of no real inter-
est, since χk is at least as good as χl with respect to
three violations. Furthermore, if χk � χl, one can say
that the triple (SI(χk),SII(χk), f(χk)) dominates the triple
(SI(χl),SII(χl), f(χl)).

Definition 2. The kth filter is a list of triples
{SI(χl),SII(χl), f(χl))}l<k, such that no triple dominates
any other.

Let Fk denote the indices in the kth filter

Fk = {l < k : χj � χl ∀j ∈ {0, 1, 2, · · · , k−1}\{l}} (45)

Filter methods accept a trial point χk+1 = χk + αdk if its
corresponding triple (SI(χk+1),SII(χk+1), f(χk+1)) is not
dominated by any other triple in the kth filter, neither the triple
corresponding to χk, i.e. (SI(χk),SII(χk), f(χk))

Definition 3. A new trial point χk+1 is said to be ”ac-
ceptable to the kth filter” if χk+1 is acceptable to χl for all
l ∈ Fk.

In this manner defined 3-dimensional line search-SQP filter
was tested on optimal control problem of nonlinear differential-
algebraic system with inconsistent initial conditions.

IV. CASE STUDY: OPTIMAL CONTROL OF A FED-BATCH

FERMENTOR FOR PENICILLIN PRODUCTION

This problem considers a fed-batch reactor for the pro-
duction of penicillin [2]. We consider here the free terminal
time version where the objective is to maximize the amount
of penicillin using the feed rate as the control variable. The
mathematical statement of the free terminal time problem is
as follows.

Find u(t) and tf over t ∈ [t0, tf ] to maximize

J = x2(tf ) · x4(tf ) (46)

subject to differential-algebraic system

dx1

dt
= h1x1 − u

(

x1

500x4

)

, (47)

dx2

dt
= h2x1 − 0.01x2 − u

(

x2

500x4

)

, (48)

dx3

dt
= −h1

x1

0.47
−h2

x1

1.2
−x1

0.029x3

0.0001 + x3
+

u

x4

(

1− x3

500

)

,

(49)
dx4

dt
=

u

500
, (50)

h1 = 0.11

(

x3

0.006x1 + x3

)

, (51)

h2 = 0.0055

(

x3

0.0001 + x3(1 + 10x3)

)

, (52)

where x1, x2 and x3 are the biomass, penicillin and substrate
concentration (g/L), and x4 is the volume (L). The initial
conditions are

x(t0) = [1.5 0 0 7]T . (53)

There are several path constraints for state variables

0 ≤ x1 ≤ 40, (54)

0 ≤ x2 ≤ 25, (55)

0 ≤ x3 ≤ 10. (56)

The upper and lower bounds on the only control variable (feed
rate of substrate) are

0 ≤ u ≤ 50. (57)

The control problem of a fed-batch fermentor for penicillin
production was solved with the proposed 3-D SQP filter
algorithm combined with multiple shooting method.

At first, the overall time domain was divided into 20
equidistant intervals. It results in 20 differential-algebraic
submodels, each of them consists of 4 differential equations
and 2 algebraic equations. Initial conditions only for the first
stage are known. So, there are 76 decision variables connected
with initial values for differential variables and 40 variables,
which represent pointwise values of algebraic states. The last
decision variable was the duration time of the process.
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Fig. 1. The optimal trajectories of the both biomass and penicillin concen-
trations

Backward Differentiation Formula of order 1 was used to
solve DAE systems at each stage.

The initial values for decision variables were as follows

χ1,x1,2
, · · · , χ19,x1,20

= 1.5, (58)

χ20,x2,2
, · · · , χ38,x2,20

= 0.0, (59)

χ39,x3,2
, · · · , χ57,x3,20

= 0.0, (60)

χ58,x4,2
, · · · , χ76,x4,20

= 7.0, (61)

χ77,h1,1
, · · · , χ96,h1,20

= 10.0, (62)

χ97,h2,1
, · · · , χ116,h2,20

= 10.0, (63)

χ117,u1
, · · · , χ136,u20

= 10.0, (64)

χ137,tf = 110.0[h]. (65)

The solution, with the accuracy 10−6 for each input of
the filter, was obtained after 6 hours. The final value of the
objective function is 89.5473[g]. The duration of the whole
process is 150 hours. There are the optimal trajectories of the
both biomass and penicillin concentrations in Fig. 1.

V. CONCLUSION

In the article optimal control problem of complex systems
with differential-algebraic constraints was considered. One of
the most important question in optimization and control of
DAE systems concerns on consistent initial conditions. For
these purposes the 3-dimensional line search-SQP filter was
designed. It enables simultaneous optimization of objective
function and treatment of constraints.

The filter algorithm, which consists of three inputs, was
tested on the optimal control problem of a fed-batch fermentor
for penicillin production. The encouraging results were ob-
tained.

In real-life applications, very often multistage technological
processes are under considerations. The multiple shooting
method, which enables efficient treatment of such processes,

incorporates additional equality constraints and decision vari-
ables to the NLP problem, connected with continuity of the
differential state trajectories.

The most important advantage of the multiple shooting
method is a possibility of control and optimization of highly
nonlinear differential-algebraic systems in an open-loop. Ap-
plication in this field is currently also an important challenge
for the presented 3-dimensional SQP filter algorithm [8], [14].
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