
The WZ factorization in MATLAB

Beata Bylina, Jarosław Bylina
Marie Curie-Skłodowska University,

Institute of Mathematics,

Pl. M. Curie-Skłodowskiej 5,

20-031 Lublin, Poland

Email: {beata.bylina,jaroslaw.bylina}@umcs.pl

Abstract—In the paper the authors present the WZ factor-
ization in MATLAB. MATLAB is an environment for matrix
computations, therefore in the paper there are presented both
the sequential WZ factorization and a block-wise version of
the WZ factorization (called here VWZ). Both the algorithms
were implemented and their performance was investigated. For
random dense square matrices with the dominant diagonal we
report the execution time of the WZ factorization in MATLAB
and we investigate the accuracy of such solutions. Additionally,
the results (time and accuracy) for our WZ implementations were
compared to the similar ones based on the LU factorization.

Keywords: linear system, WZ factorization, LU factoriza-

tion, matrix factorization, matrix computations

I. INTRODUCTION

I
N THE international academic circles MATLAB is ac-

cepted as a reliable and convinient software for numerical

computations. Particularly, it is used for linear algebra compu-

tations. Nowadays, there are a lot of papers devoted to the use

of MATLAB in mathematics (linear systems [7], least-squares

problems [9]; function approximation [12]; eigenvalues [2],

[11] — and many others). In this paper we use MATLAB to

solve linear systems.

Solution of linear systems of the form:

Ax = b, where A ∈ R
n×n, b ∈ R

n, (1)

is an important and common problem in engineering and

scientific computations. One of the direct methods of solving

a dense linear system (1) is to factorize the matrix A into

some simpler matrices — it is its decomposition into factor

matrices (that is, factorization) of a simpler structure —

and then solving simpler linear systems. The most known

factorization is the LU factorization. MATLAB provides many

ways to solve linear systems, one of them is based on the LU

factorization: [L,U]=lu(A). This method is powerful and

simple to use.

In [7] an object-oriented method is presented, which is is a

meta-algorithm that selects the best factorization method for

a particular matrix, whether sparse or dense — allowing the

reuse of its factorization for subsequent systems.

In this work we study another form of the factorization,

namely the WZ factorization and investigate both the accuracy

This work was partially supported within the project N N516 479640 of the
Ministry of Science and Higher Education of the Polish Republic (MNiSW)
“Modele dynamiki transmisji, sterowania, zatłoczeniem i jakością usług w
Internecie”.

of the computations and their time. In [4], [5] we showed

that there are matrices for which applying the incomplete WZ

preconditioning gives better results than the incomplete LU

factorization.

The aim of the paper is to analyze the potential of imple-

mentations of the WZ factorization in a high-level language

(as it is the case of MATLAB). We implement the WZ factor-

ization and compare its performance to a MATLAB function

implementing the LU factorization, namely: [L,U]=lu(A)

— and to the authors’ own MATLAB implementation of the

LU factorization.

The content of the paper is following. In Section II we

describe the idea of the WZ factorization [8], [13] and the

way the matrix A is factorized to a product of matrices W

and Z — such a factorization exists for every nonsingular

matrix (with pivoting) what was shown in [8]. Section III

provides information about some modifications of the original

WZ algorithm — in a way to decrease the number of loops

and to make as much as possible computations in blocks —

and this will allow us to use MATLAB efficiently. In Section

IV we present the results of our experiments. We analyzed the

time of WZ factorization. We study the influence of the size of

the matrix on the achieved numerical accuracy. We compare

the WZ factorization to the LU factorization. Section V is a

summary of our experiments.

II. WZ FACTORIZATION (WZ)

Here we describe shortly the WZ factorization usage to

solve (1). The WZ factorization is described in [8], [10]. Let

us assume that the A is a square nonsingular matrix of an

even size (it is somewhat easier to obtain formulas for even

sizes than for odd ones). We are to find matrices W and Z

that fulfill WZ = A and the matrices W and Z consist of

the rows wT
i and zTi shown in Figure 1, respectively.

After the factorization we can solve two linear systems:

Wy = b,

Zx = y

(where c is an auxiliary intermediate vector) instead of one

(1).

Figure 2 shows an example of a matrix nad its WZ factors.

In this paper we are interested only in obtaining the matrices

Z and W. The first part of the algorithm consists in setting

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 561–568

DOI: 10.15439/2014F315

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 561

wT
1 = (1, 0, . . . , 0︸ ︷︷ ︸

n−1

)

wT
i = (wi1, . . . , wi,i−1, 1, 0, . . . , 0︸ ︷︷ ︸

n−2i+1

, wi,n−i+2, . . . , win) for i = 2, . . . , n
2 ,

wT
i = (wi1, . . . , wi,n−i, 0, . . . , 0︸ ︷︷ ︸

2i−n−1

, 1, wi,i+1, . . . , win) for i = n
2 + 1, . . . , n− 1,

wT
n = (0, . . . , 0︸ ︷︷ ︸

n−1

, 1)

zTi = (0, . . . , 0︸ ︷︷ ︸
i−1

, zii, . . . , zi,n−i+1, 0, . . . , 0) for i = 1, . . . , n
2 ,

zTi = (0, . . . , 0︸ ︷︷ ︸
n−i

, zi,n−i+1, . . . , zii, 0, . . . , 0) for i = n
2 + 1, . . . , n.

Fig. 1. Rows of the matrices W and Z

A =




2 1 3 −6 3 3
10 6 9 −13 10 14
12 13 12 −13 19 17
8 10 11 −4 12 11

12 8 13 −20 14 17
3 1 1 −1 1 4




W =




1 0 0 0 0 0
2 1 0 0 0 2
3 1 1 0 2 2
1 2 0 1 1 2
3 0 0 0 1 2
0 0 0 0 0 1




Z =




2 1 3 −6 3 3
0 2 1 1 2 0
0 0 −4 6 0 0
0 0 2 2 0 0
0 3 2 0 3 0
3 1 1 −1 1 4




Fig. 2. A matrix A and its factors W and Z

succesive parts of columns of the matrix A to zeros. In the

first step we do that with the elements in columns 1st and nth

— from the 2nd row to the n− 1st row. Next we update the

matrix A.

More formally we can describe the first step of the algoritm

the following way.

1) For every i = 2, . . . , n − 1 we compute wi1 and win

from the system:
{

a11wi1 + an1win = −ai1
a1nwi1 + annwin = −ain

and we put them in a matrix of the form:

W(1) =




1 0 · · · 0 0

w21 1
. . .

... w2n

... 0
. . . 0

...

wn−1,1

...
. . . 1 wn−1,n

0 0 · · · 0 1



.

2) We compute:

A(1) = W(1)A.

After the first step we get a matrix of the form:

A(1) =




a11 a12 · · · a1,n−1 a1n

0 a
(1)
22 · · · a

(1)
2,n−1 0

...
...

...
...

0 a
(1)
n−1,2 · · · a

(1)
n−1,n−1 0

an1 an2 · · · an,n−1 ann



,

where (for i, j = 2, . . . , n− 1):

a
(1)
ij = aij + wi1a1j + winanj .

Then, we proceed analogously — but for the inner square

matrices — A(1) of size n− 2 and so on.

So, the whole algorithm is following.

For k = 1, 2, . . . , n
2 − 1:

562 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

1) For every i = k + 1, . . . , n − k we compute wik and

wi,n−k+1 from the system:




a
(k−1)
kk wik + a

(k−1)
n−k+1,kwi,n−k+1

= −a
(k−1)
ik

a
(k−1)
k,n−k+1wik + a

(k−1)
n−k+1,n−k+1wi,n−k+1

= −a
(k−1)
i,n−k+1

and we put them in a matrix of the form shown in Figure

3.

2) We compute:

A(k) = W(k)A(k−1)

(where obviously A(0) = A).

After n
2 − 1 such steps we get the matrix

Z = A(n

2
−1)

.

Moreover, we know that:

W(n

2
−1) · . . . ·W(1) ·A = Z

so we get:

A =
(
W(1)

)
−1

· . . . ·
(
W(n

2
−1)

)
−1

· Z = WZ

Figure 4 shows the same algorithm implemented in MAT-

LAB.

III. VECTOR WZ FACTORIZATION (VWZ)

Now we describe a matrix-vector algorithm for the WZ

factorization of the matrix A which is originally presented

in [6].

This is a sequential algorithm where we grouped and

ordered the scalar operations anew, into matrix-vector op-

erations. We are showing the algorithm without pivoting,

working only for matrices for which such a WZ factorization

is executable (for example, for matrices with a dominant

diagonal.

Let us write the matrices A, W, Z as block matrices. We

can get equations presented in Figure 5.

In Figure 5, Ŵ and Ẑ are square matrices of the same

structure as the matrices W and Z, respectively; Â is a full

square matrix; Ŵ, Ẑ and Â are of the size 2 less than the size

of W, Z and A; vectors aT1∗, aTn∗, zT1∗, zTn∗ are row vectors;

vectors a∗1, a∗n, w∗1, w∗n are column vectors.

From the comparison of the corresponding elements in

Figure 5 we get:

a11 = z11; a1n = z1n;
an1 = zn1; ann = znn

aT1∗ = zT1∗; aTn∗ = zTn∗

{
a∗1 = w∗1z11 + w∗nzn1
a∗n = w∗1z1n + w∗nznn

Â = w∗1z
T
1∗ + ŴẐ+w∗nz

T
n∗

(2)

From (2) we can describe our algorithm for finding W and

Z as following:

1) let the first row of the matrix Z be the first row of the

matrix A;

2) let the last row of the matrix Z be the last row of the

matrix A;

3) compute the vectors w∗1 and w∗n from:

w∗1 = αa∗n − βa∗1,

w∗n = γa∗1 − δa∗n,

where
α =

zn1

z1nzn1 − z11znn
,

β =
znn

z1nzn1 − z11znn
,

γ =
z1n

z1nzn1 − z11znn
,

δ =
z11

z1nzn1 − z11znn
;

4) update the inner part of the matrix A (the matrix without

its first and last row and column):

Ânew = ŴẐ = Â−w∗1z
T
1∗ −w∗nz

T
n∗;

5) if the size of the matrix Ânew is 3 or more, then start

over from 1., but with A = Ânew, W = Ŵ and Z = Ẑ

(so all three matrices become smaller and smaller and

the algorithm comes eventually to the end).

Figure 6 shows this algorithm implemented in MATLAB.

IV. NUMERICAL EXPERIMENTS

In this section we tested the time and the absolute accuracy

of the WZ factorization. Our intention was to investigate

the WZ factorization and compare our implementation (done

in MATLAB, which is a high-level language) of the WZ

factorization with the LU factorization.

The input matrices are generated (by the authors). They are

random matrices with a dominant diagonal of even sizes (500,

1000, 1500 and so on, up to 3000 or 4000).

The MATLAB implementation was compiled and tested

under MS Windows on workstations with an AMD processor

and an Intel processor. Table I shows details of specification

of the hardware used in the experiment. To measure the

performance time standard MATLAB functions were used

— tic and toc. We measured the difference between A

and WZ by absolute error ||A − WZ||2 — to compute the

norm there was used a standard MTLAB function: norm.

The implementations were tested in MATLAB R2008 and

MATLAB R2010.

Figures 8, 9, 10 and 11 show the performance time (in

seconds) of the WZ factorization on the AMD processor

and the Intel processor, implemented in MATLAB R2008

and MATLAB R2010. Additionally, we compared the WZ

BEATA BYLINA, JAROSLAW BYLINA: PERFORMANCE ANALYSIS OF THE WZ FACTORIZATION IN MATLAB 563

W(k) =




1
. . .

1

wk+1,k
. . . wk+1,n−k+1

...
. . .

...

wn−k,k

. . . wn−k,n−k+1

1

. . .

1




Fig. 3. The form of the matrix W(k)

% steps of elimination — from A to Z

for k = 0 : n/2-2

k2 = n-k-1;

det = A(k,k)*A(k2,k2)-A(k2,k)*A(k,k2);

% finding elements of W

for i = k+1 : k2-1

w(i,k) = (A(k2,k)*A(i,k2)-A(k2,k2)*A(i,k))/det;

w(i,k2) = (A(k,k2)*A(i,k)-A(k,k)*A(i,k2))/det;

% updating A

for j = k+1 : k2-1

A(i,j) = A(i,j)+wk1*A(k,j)+wk2*A(k2,j);

Fig. 4. The sequential implementation of the WZ factorization for solving linear systems

.

A =




a11 aT1∗ a1n

a∗1 Â a∗n
an1 aTn∗ ann


 = WZ =




1 0 0

w∗1 Ŵ w∗n

0 0 1






z11 zT1∗ z1n

0 Ẑ 0
zn1 zTn∗ znn


 =

=




z11 zT1∗ z1n

w∗1z11 +w∗nzn1 w∗1z
T
1∗ + ŴẐ+w∗nz

T
n∗ w∗1z1n +w∗nznn

zn1 zTn∗ znn




Fig. 5. The WZ factorization written as blocks of vector

% steps of elimination — from A to Z

for k = 0 : n/2-2

k2 = n-k-1;

det =A(k,k)*A(k2,k2)-A(k2,k)*A(k,k2);

% finding elements of W

W(k+1:k2-1,k) = (A(k2,k)*A(k+1:k2-1,k2)-A(k2,k2)*A(k+1:k2-1,k))/det;

W(k+1:k2-1,k2) = (A(k,k2)*A(k+1:k2-1,k)-A(k,k)*A(k+1:k2-1,k2))/det;

% updating A

A(k+1:k2-1,k+1:k2-1) = A(k+1:k2-1,k+1:k2-1)+ W(k+1:k2-1,k)*A(k,k+1:k2-1)

+W(k+1:k2-1,k2)*A(k2,k+1:k2-1);

Fig. 6. The vector implementation of the WZ factorization for solving linear systems

564 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

% steps of elimination — from A to U

for k = 0 : n-2

% finding elements of L

for i = k+1 : n-1

l(i,k) =-a(i,k)/a(k,k);

% updating A

for j = k+1 : n

A(i,j) = A(i,j) + l(i,k)*A(k,j);

Fig. 7. The sequential implementation of the LU factorization for solving linear systems

TABLE I
HARDWARE USED IN EXPERIMENTS

CPU Memory

1 AMD FX-8120 3.1 GHz 16 GB
2 Intel Core 2 Duo 2.53 GHz 4 GB

factorization (both in its sequential — Figure 4 — and vector

— Figure 6 — versions) with a standard MATLAB LU

factorization function, namely lu, which uses the subroutine

DGETRF from LAPACK [1], and also with the simple LU

implementation (shown in Figure 7).
Results show that the vector WZ factorization (VWZ) is

much faster than the sequential WZ factorization in both tested

MATLAB versions and on both architectures.
However, on the older processor (Intel Core is here the case)

the sequentials algorithms perform better than on the newer

(AMD) — and the block algorithms (VWA and the standard

MATLAB function lu) perform better on the newer one. It is

caused by the differences in architectues — newer ones prefer

block algorithms because of their stronger inner parallelism.
Tables II, III, IV and V illustrate the accuracy (given as

the norms ||A − WZ||2 and ||A − LU||2) of the WZ and

LU factorizations in MATLAB. The first column shows the

norm for the sequential WZ factorization (from Figure 4); the

second — the vector WZ factorization (VWZ, from Figure 6);

the third presents the norm for the sequential LU factorization

(from Figure 7); the fourth — the norm for the standard

MATLAB function lu.
Based on the results, we can state that different implemen-

tations give quite similar accuracies. However, the sizes of

the matrix influences the accuracy (it worsens when the size

grows).
Tables VI, VII, VIII, IX, illustrate the speedup for the VWZ

and LU factorizations in MATLAB (both R2008 and R2010)

relative to the sequential WZ factorization. The first column

shows the speedup of VWZ, the second — the speedup of the

LU factorization and the third — the speed of the standard

MATLAB function lu — all relative to the sequential WZ

factorization.
Based on these results, we can conclude that various imple-

mentations of the WZ factorization give different performance.

Namely, VWZ is even about 4 times faster then the sequential

WZ (on the AMD processor; on the Intel processor the

speedup is only about 2). The LU factorization implemented

by the authors is the slowest of all the tested implementations.

However, the standard MATLAB function lu is the fastest

— this function implements a block LU factorization, which

makes the processor architecture is better utilized.

V. CONCLUSION

In this paper we did some performance analysis of a MAT-

LAB implementations of the WZ factorization. We examined

a sequential implementation of the WZ factorization. We

also implemented in MATLAB a vector version of the WZ

factorization (VWZ) — to avoid loops. We compared these

implementations with two versions of the LU factorization

— our MATLAB implementation and a standard MATLAB

function [L,U]=lu(A).

From the results we can conclude that the reduction of

the number of nested loops in the original WZ factorization

increased the speed even four times. The sequential WZ

factorization is faster than the sequential LU factorization.

Of course, the fastest of the implementation is the built-

in MATLAB function lu — which utilizes LAPACK block

factorization [1].

The implementation and the architecture had no impact on

the accuracy of the factorization — the accuracy depended

only on the size of the matrix what is quite self-evident.

The version of MATLAB has no significant influence on

neither the performance time nor the speedup — only the

architecture and the size of the matrix count.

VI. FUTURE WORK

To accelerate the WZ factorization, it would be desirable

to build a block algorithm for the WZ factorization and to

utilize parallelism — especially for the machines with many

processing units.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide (Third ed.), SIAM, Philadelphia 1999.

[2] T. Betcke, N. J. Higham, V. Mehrmann,Ch. Schröder, F. Tisseur,
NLEVP: A Collection of Nonlinear Eigenvalue Problems, ACM Trans.

Math. Softw., Volume 39 Issue 2, February 2013, Article No. 7.

BEATA BYLINA, JAROSLAW BYLINA: PERFORMANCE ANALYSIS OF THE WZ FACTORIZATION IN MATLAB 565

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 [

s
]

size of the matrix

MATLAB2008, AMD

WZ
VWZ

LU
LU MATLAB

Fig. 8. The WZ factorization performance time (in seconds) on the AMD processor, in MATLAB R2008

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 [

s
]

size of the matrix

MATLAB2010, AMD

WZ
VWZ

LU
LU MATLAB

Fig. 9. The WZ factorization performance time (in seconds) on the AMD processor, in MATLAB R2010

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
 [

s
]

size of the matrix

MATLAB2008, Intel

WZ
VWZ

LU
LU MATLAB

Fig. 10. The WZ factorization performance time (in seconds) on the Intel processor, in MATLAB R2008

566 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
 [

s
]

size of the matrix

MATLAB2010, Intel

WZ
VWZ

LU
LU MATLAB

Fig. 11. The WZ factorization performance time (in seconds) on the Intel processor, in MATLAB R2010

TABLE II
THE NORMS FOR THE WZ AND LU FACTORIZATIONS IN MATLAB R2008 ON THE AMD PROCESSOR

matrix size WZ VWZ LU lu

500 1.08 · 10
−12

4.00 · 10
−13

8.53 · 10
−13

5.68 · 10
−13

1000 2.84 · 10
−12

1.02 · 10
−12

2.61 · 10
−12

7.96 · 10
−13

1500 8.18 · 10
−12

3.86 · 10
−12

7.50 · 10
−12

5.00 · 10
−12

2000 7.96 · 10
−12

2.73 · 10
−12

7.73 · 10
−12

2.95 · 10
−12

2500 2.50 · 10
−11

5.91 · 10
−12

2.09 · 10
−11

3.18 · 10
−12

3000 2.51 · 10
−11

7.28 · 10
−12

2.09 · 10
−11

2.09 · 10
−11

3500 2.13 · 10
−11

7.73 · 10
−12

2.50 · 10
−11

5.91 · 10
−12

4000 2.54 · 10
−11

9.09 · 10
−12

2.64 · 10
−11

4.55 · 10
−12

TABLE III
THE NORMS FOR THE WZ AND LU FACTORIZATIONS IN MATLAB R2010 ON THE AMD PROCESSOR

matrix size WZ VWZ LU lu

500 9.08 · 10
−13

4.00 · 10
−13

8.53 · 10
−13

5.68 · 10
−13

1000 2.84 · 10
−12

1.02 · 10
−12

2.61 · 10
−12

7.96 · 10
−13

1500 7.27 · 10
−12

3.86 · 10
−12

7.50 · 10
−12

5.00 · 10
−12

2000 7.96 · 10
−12

2.73 · 10
−12

7.73 · 10
−12

2.95 · 10
−12

2500 2.09 · 10
−11

5.91 · 10
−12

2.09 · 10
−11

3.18 · 10
−12

3000 2.32 · 10
−11

7.28 · 10
−12

2.09 · 10
−11

2.09 · 10
−11

3500 2.58 · 10
−11

7.30 · 10
−12

2.50 · 10
−11

5.91 · 10
−12

4000 2.45 · 10
−11

9.09 · 10
−12

2.64 · 10
−11

4.55 · 10
−12

TABLE IV
THE NORMS FOR THE WZ AND LU FACTORIZATIONS IN MATLAB R2008 ON THE INTEL PROCESSOR

matrix size WZ VWZ LU lu

500 9.09 · 10
−13

9.09 · 10
−13

8.52 · 10
−13

5.68 · 10
−13

1000 2.84 · 10
−12

2.84 · 10
−12

2.61 · 10
−12

6.82 · 10
−13

1500 7.27 · 10
−12

7.27 · 10
−12

7.73 · 10
−12

5.00 · 10
−12

2000 8.40 · 10
−12

8.40 · 10
−12

7.95 · 10
−12

1.82 · 10
−12

2500 2.09 · 10
−11

2.09 · 10
−12

2.09 · 10
−11

1.36 · 10
−12

3000 2.27 · 10
−11

2.27 · 10
−12

2.09 · 10
−11

3.63 · 10
−11

TABLE V
THE NORMS FOR THE WZ AND LU FACTORIZATIONS IN MATLAB R2010 ON THE INTEL PROCESSOR

matrix size WZ VWZ LU lu

500 6.83 · 10
−13

6.83 · 10
−13

1.19 · 10
−12

3.98 · 10
−13

1000 2.39 · 10
−12

2.39 · 10
−12

2.50 · 10
−12

7.96 · 10
−13

1500 7.96 · 10
−12

7.96 · 10
−12

8.18 · 10
−12

1.59 · 10
−12

2000 9.78 · 10
−12

9.78 · 10
−12

1.00 · 10
−11

1.82 · 10
−12

2500 2.18 · 10
−11

2.18 · 10
−11

2.36 · 10
−11

3.64 · 10
−12

3000 2.36 · 10
−11

2.36 · 10
−11

2.41 · 10
−11

4.55 · 10
−12

BEATA BYLINA, JAROSLAW BYLINA: PERFORMANCE ANALYSIS OF THE WZ FACTORIZATION IN MATLAB 567

TABLE VI
THE SPEEDUP OF VWZ, OF THE LU FACTORIZATION AND OF THE STANDARD MATLAB FUNCTION LU — RELATIVE TO THE SEQUENTIAL WZ

FACTORIZATION (MATLAB R2008 ON THE AMD PROCESSOR)

matrix size VWZ LU lu

500 3.63 0.73 225.00

1000 3.73 0.72 288.57

1500 3.78 0.68 426.41

2000 3.68 0.68 486.44

2500 3.47 0.51 628.85

3000 3.47 0.64 646.47

3500 3.63 0.64 601.82

4000 4.07 0.72 870.95

TABLE VII
THE SPEEDUP OF VWZ, OF THE LU FACTORIZATION AND OF THE STANDARD MATLAB FUNCTION LU — RELATIVE TO THE SEQUENTIAL WZ

FACTORIZATION (MATLAB R2010 ON THE AMD PROCESSOR)

matrix size VWZ LU lu

500 4.09 0.70 237.00

1000 3.69 0.71 519.25

1500 3.63 0.68 574.92

2000 3.72 0.69 536.50

2500 3.75 0.35 641.50

3000 3.76 0.62 703.00

3500 4.02 0.48 856.25

4000 4.12 0.71 920.52

TABLE VIII
THE SPEEDUP OF VWZ, OF THE LU FACTORIZATION AND OF THE STANDARD MATLAB FUNCTION LU — RELATIVE TO THE SEQUENTIAL WZ

FACTORIZATION (MATLAB R2008 ON THE INTEL PROCESSOR)

matrix size VWZ LU lu

500 2.56 0.99 159.00

1000 2.14 1.03 165.44

1500 2.00 0.99 189.30

2000 1.99 1.03 204.50

2500 1.96 0.88 206.35

3000 1.85 0.96 96.11

TABLE IX
THE SPEEDUP OF VWZ, OF THE LU FACTORIZATION AND OF THE STANDARD MATLAB FUNCTION LU — RELATIVE TO THE SEQUENTIAL WZ

FACTORIZATION (MATLAB R2010 ON THE INTEL PROCESSOR)

matrix size VWZ LU lu

500 2.01 0.92 95.01

1000 2.01 0.70 175.04

1500 1.75 0.90 144.39

2000 1.95 0.86 101.59

2500 1.82 0.86 265.22

3000 1.39 0.78 119.58

[3] B. Bylina, J. Bylina: Analysis and Comparison of Reordering for Two
Factorization Methods (LU and WZ) for Sparse Matrices, Lecture Notes

in Computer Science 5101, Springer-Verlag Berlin Heidelberg 2008, pp.
983–992.

[4] B. Bylina, J. Bylina: Incomplete WZ Factorization as an Alternative
Method of Preconditioning for Solving Markov Chains, Lecture Notes in

Computer Science 4967, Springer-Verlag Berlin Heidelberg 2008, 99–
107.

[5] B. Bylina, J. Bylina: Influence of preconditioning and blocking on
accuracy in solving Markovian models, International Journal of Applied

Mathematics and Computer Science 19 (2) (2009), pp. 207–217.
[6] B. Bylina, J. Bylina: The Vectorized and Parallelized Solving of

Markovian Models for Optical Networks, Lecture Notes in Computer

Science 3037, Springer-Verlag Berlin Heidelberg 2004, 578–581.
[7] T. A. Davis, Algorithm 930: FACTORIZE: An Object-oriented Linear

System Solver for MATLAB, ACM Trans. Math. Softw., Volume 39
Issue 4, July 2013, Article No. 28. pages = 28:1–28:18

[8] S. Chandra Sekhara Rao: Existence and uniqueness of WZ factorization,
Parallel Computing 23 (1997), pp. 1129–1139.

[9] Choi, T. Sou-Cheng, M. A. Saunders, Algorithm 937: MINRES-QLP
for Symmetric and Hermitian Linear Equations and Least-squares
Problems, ACM Trans. Math. Softw., Volume 40 Issue 2, February 2014,
Article No. 16. pages = 16:1–16:12,

[10] D. J. Evans, M. Hatzopoulos: The parallel solution of linear system,
Int. J. Comp. Math. 7 (1979), pp. 227–238.

[11] X. Ji, J. Sun, T. Turner, Algorithm 922: A Mixed Finite Element Method
for Helmholtz Transmission Eigenvalues, ACM Trans. Math. Softw.,
Volume 38 Issue 4, August 2012, Article No. 29. pages = 29:1–29:8,

[12] K. Poppe, R. Cools, CHEBINT: A MATLAB/Octave Toolbox for
Fast Multivariate Integration and Interpolation Based on Chebyshev
Approximations over Hypercubes, ACM Trans. Math. Softw., Volume
40 Issue 1, September 2013, Article No. 2. pages = 2:1–2:13,

[13] P. Yalamov, D. J. Evans: The WZ matrix factorization method, Parallel

Computing 21 (1995), pp. 1111–1120.

568 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

