
Abstractions on Test Design Techniques

Marc-Florian Wendland

Systems Quality Center

Fraunhofer Institute FOKUS

Berlin, Germany

marc-florian.wendland@fokus.fraunhofer.de

Abstract—Automated test design is an approach to test design

in which automata are utilized for generating test artifacts such

as test cases and test data from a formal test basis, most often

called test model. A test generator operates on such a test

model to meet a certain test coverage goal. In the plethora of

the approaches, tools and standards for model-based test

design, the test design techniques to be applied and test

coverage goals to be met are not part of the test model, which

may easily lead to difficulties regarding comprehensibility and

repeatability of the test design process. This paper analyzes

current approaches to and languages for automated model-

based test design and shows that they are lacking important

information about the applied test design techniques. Based on

this analysis, we propose to introduce another layer of

abstraction for expressing test design techniques in a tool-

independent, yet generic way.

Keywords- Model-based testing (MBT), test generation,

automated test design, test design techniques, UML Testing

Profile (UTP)

I. INTRODUCTION

HE degree of automation in industrial software testing

was consequently raised within the last two decades. In

the 1990s, efforts had been undertaken to increase the degree

of automation for test execution, resulting in today’s accepted
technologies like keyword-driven testing [3]. Standards have

been built upon this principle like TTCN-3
1
 or the newly

developed ISO 29119 [9] standards family. With the wide-

spread acceptance of UML in the late 1990s and the advent

of UML 2 early 2000s, the idea to automate also parts of the

test design activities was pursued in research and industry.

The outcome of these efforts is what is known today as

model-based testing (MBT) and test generation. Both,

automation of test execution and automation of test design

rely on abstraction of irrelevant details. Of course, when it

comes down to actually test execution, the abstracted details

need to be provided, but this is commonly accepted to be

pertinent and indispensable. In keyword-driven testing

approaches, the so called adaptation layer is in charge of

making logical test cases executable [21].

1 http://www.ttcn-3.org

The UML Testing Profile (UTP) [12] is a modeling

language for MBT approaches based on the UML. It is the

first industry-driven, standardized modeling language for

MBT. It was adopted by the Object Management Group

(OMG) as far back as 2003 and is currently under major

revision. In addition, the European Telecommunications

Standardizations Institute (ETSI) has funded efforts to

develop its own modeling language for MBT, called Test

Description Language (TDL). Thus, two important technical

standardization bodies offer languages to build MBT

methodologies upon.

Interestingly, none of the above mentioned standards

provides concepts to specify the test design techniques that

shall be applied for test generation. This seems inconsistent,

since one of the most communicated benefits of MBT is

automated generation of test artifacts and the increased

systematics, comprehensibility and repeatability of the test

design process [20]. Until today, there is no generally

accepted approach found in the literature how test design

techniques for model-based test generation shall be specified

the best. In fact, almost every test generator provides its own

proprietary configuration for specifying the test coverage

goal. This lead to several issues regarding comprehensibility

and repeatability the automated test design activities.

Moreover, the exchangeability of test generators on models,

even of the same modeling language, becomes risky since it

bears a great potential for loss of relevant knowledge.

This paper addresses the abstraction from technical, tool-

dependent representations of test design techniques by

providing an extensible language framework for specifying

tool-independent test design techniques that can be shared

across multiple test generators. This step is a consequent

evolution of the automation through abstraction principle

already applied in keyword-driven testing or test generation.

The contributions of the work are:

- A thorough analysis of current approaches to model-

based test generation.

- The development of a conceptual model of test

design based on the ISO 29110 standard. The

conceptual model builds the foundation on which

the abstractions of test design techniques rely on.

T

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1575–1584

DOI: 10.15439/2014F316

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1575

- The refinement of the conceptual model with an

approach to test generation that is motivated by

means of directives and strategies.

- Provision of an extensible, yet flexible UML

profile-based implementation of the refined

conceptual model as an extension to the UTP

The remainder of this paper is structured as follows:

Section 2 describes the problems of today’s approaches to
automated test design from the viewpoint of

comprehensibility and repeatability. Section 3 elaborates the

conceptual model of test design and the refinement towards

test design directives and test design strategies. Section 4

discusses the extension of the UTP with test design directives

and test design strategies. Section 5 demonstrates the

feasibility of our approach by applying it to two non-

commercial test generators, i.e., the Spec Explorer and

Graphwalker. Section 6 presents the work related to ours.

Finally, section 7 concludes our work and highlights future

work in that context.

II. PROBLEM STATEMENT

Most of the today’s model-based test generators are able

to work on UML or derivatives. In this paper, we employ the

SpecExplorer
2
 and the Graphwalker

3
 generation engine that

do not operate directly on UML, but on closely related

concepts. The SpecExplorer input is actually based on a

textual representation of an Abstract State Machine (ASM)

[7] which is called Spec#. On contrast, the input for

Graphwalker is GraphML, a XML format for describing

graph structures. Both test generators can operate on graph

structures, although the input format is different. These input

formats can be derived from UML behaviors, though. In the

last years, we have in particular integrated these two test

generators with UTP, which allows us to generate the

required input format from the very same UTP model for

both generators ([23], [22]). Our overall vision is to integrate

a wide variety of test generators with UTP to counteract the

broadening of proprietary, yet technically incompatible

modeling languages.

Hence, the following problem statement was identified in

the context of MBT with UTP, so is the technical solution

presented in this paper. The conceptual solution, however, is

not bound to any particular modeling language.

A. Test Design Techniques in MBT

If we consider the commonly understood advantages of

MBT – such as efficient solutions for test design, increasing

the degree of automation, prevention of loss of knowledge by

using (semi-)formal models, more systematic and, even most

important, repeatability of test case derivation and self-

explanatory of test specifications ([20],[6]) – MBT comes

2 http://research.microsoft.com/en-us/projects/specexplorer/
3 http://www.graphwalker.org

along with an indispensable change of paradigms for testing

activities. The most central artifact in an MBT approach

should be the model itself, so test processes have to move

from a document-centric to a model-centric paradigm. A

model that describes test-relevant information from a tester’s
point of view is called test model. A test model is a “…
model that specifies various testing aspects, such as test

objectives, test plans, test architecture, test cases, test data

etc.” [12]. The UTP, in combination with UML, provides a

test engineer with numerous possibilities for building test

models, since it offers the expressiveness of UML and

amends it with test-specific artifacts. Thus, UTP is deemed

suitable to support the change to the model-centric paradigm

where test models are single source of truth. Even though not

as a dedicated concept, UTP allows for modeling the inputs

for test generation just by relying on the underlying UML

concepts. Inputs to test generation are referred to as test

model in the ISO 29119 terminology as well. To avoid

confusion with the much broader understanding of a test

model given by the UTP specification, we henceforth refer to

inputs to test generation as test design models. ISO 29119

defines test design as all activities in a test process that

actually derive test cases, test data and test configuration

from test conditions. This derivation may be carried out

automatically or manually. The term automated test design is

commonly known as test generation.

Even though UTP is an expressive language, it does not

offer concepts to specify the test design techniques that shall

be applied for deriving test artifact. If we consider the before

mentioned benefits of MBT, first and foremost test

generation, it is most surprising that one of the most

important information for automating the test design

activities is missing in the test model: The information about

which test design techniques shall be carried out on the test

design model by the test generator. In other words, the

information why a certain test artifact has been generated is

not part of the test model. As a matter of fact, today’s test
generators define their own proprietary presentation of test

design techniques that resides within the tool. It complicates,

however, the application of an entire model-centric approach

to testing, for it does not allow integrating all the required

information into the test model. This can have severe

implications, since it may easily happen that the applied test

generator shall be replaced, for whatever reason, while the

defined test design techniques shall be retained. If this

happened and access to the previous test generator is not

given any longer, the information where a certain test artifact

originated from in the first place is lost.

Figure 1 (a) illustrates this problem in a three-layered-

approach. The domain layer encodes the test model (more

specific, the test design model), which it is completely

decoupled from a certain test generator and simply focus on

the specification of a system under test. The engine layer, in

1576 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

TABLE I.

INVESTIGATION OF TEST GENERATORS

Generator Input Output Configuration Paradigm License

Spec Explorer Spec# (C#) NUnit Test Cases Coord Language
1-way

(not centric)
Free

MBTsuite
UML Activity /

StateMachines
Proprietary Settings in the tool

1-way

(not centric)
Commercial

Conformiq
UML-approximated

StateMachine
Proprietary Settings in the tool

1-way

(not centric)
Commercial

Graphwalker GraphML Sequence of Strings Command line parameter
1-way

(not centric)
Open Source

Tedeso
UML approximated-

Activity
Proprietary Settings in the tool

1-way

(not centric)
Commercial

CertifyIT UML and OCL Proprietary Settings in the tool
1-way

(not centric)
Commercial

contrast, is the most fundamental component of a test

generator. It is, conversely, completely decoupled from the

domain layer and simply operates on its inputs, without

taking into account where that input comes from. Both

capabilities, complexity and underlying principle of the

engine layer vary among test generators from powerful

symbolic execution (like the SpecExplorer) to a simple

traversal engine that simply operates on already explored

graph structures such as finite state machines (like the

Graphwalker). Regardless how powerful or sophisticated the

generation engine actually is, it is necessary to transform the

information encoded in the domain layer into a format

understood by the generation layer. A mediator, an

adaptation layer, is required. An adaptation layer is a tool-

specific component that serves two purposes. First, it

transforms (γ(i)) the input i (i.e., a test design model

contained in the test model) into a format understood by the

test generation engine. Secondly, it offers some kind of

interface to the test analyst in order to configure the

generation engine. We call this the configuration (c) of a test

generator. The configuration contains the information of

which test design technique shall be applied to the input i.

For example, the SpecExplorer is configured with a

proprietary language called coord. If the user wants to ensure

a certain traversal order of events, he/she has to specify a

regular expression over events. This is called a scenario in

coord terminology. The semantics of the coord scenario

matches with the standardized specification-based test design

technique scenario testing in ISO 29119. This information

ought to be part of the test model for it contains important

test-relevant information to comprehend the automated test

design activities. This holds true for other test design

techniques and further test generators as well. TABLE I lists a

few of the commercially relevant or prominent open source

test generators that fit into our view of MBT. Interestingly,

all of the investigated generators do offer proprietary means

to configure the generation engine. Furthermore, none of

these generators really follow the model-centric paradigm,

since they simply employ the test design models for the

purpose of test generation. There is commonly no feedback

of the generated test cases into the test model in order to

abide by the single source of truth principle as proposed and

described by Wendland ([23], [24]). This is a situation we

strive to improve with our work with our work.

B. Abstractions of Test Design Techniques

We propose to abstract from a tool-specific representation

to tool-independent representation of test design techniques.

Fig. 1 b) illustrates this abstraction. The configuration

(shaded grey) are extracted from the tool-specific layer and

abstracted (α(i)) to test design techniques that are part of the

test model itself. The adaptation layer is still required to

transform the input i (i.e., the test design model plus tool-

independent test design techniques) into the input format γ(i)

for the generation engine. As such, it is possible to share test

design techniques across multiple test generators that provide

an adapter for the utilized test design technique. With test

design techniques removed from the realm of a specific test

case generator and becoming part of the test model a more

holistic approach to test design is being provided and the

process gains transparency, repeatability and

comprehensibility. Such an approach is in-line with the idea

of abstraction for test generation as it is done for MBT [18],

but for the specification of test design techniques instead of

the test design model. This abstraction of test design

techniques has not yet been discussed in the literature.

III. A CONCEPTUAL MODEL OF TEST DESIGN

The conceptual field of test design techniques is actually

well known. Several academic and industrial literature deals

with the application and formalization of test design

techniques for different test design models. A good overview

is given by Utting [21] and ISO 29119-4 [9]. Based on the

concepts and terminology provided in ISO 29119, a

conceptual model of test design can be deduced (see Fig. 2)

which will be explained in great detail in the subsequent

sections.

MARC-FLORIAN WENDLAND: ABSTRACTIONS ON TEST DESIGN TECHNIQUES 1577

Fig. 1 Abstraction of test design techniques

A. The Principles of Test Design

The derivation of test artifacts is usually done by

applying a test design technique, or ad-hoc if no systematic

approach is applied. A test design technique is a method or a

process, often supported by dedicated tooling that derives a

set of test coverage items from an appropriate test design

model. The test design model is obtained from the identified

test conditions. According to ISO 29119, a test condition is a

“testable aspect of a component or system, such as a
function, transaction, feature, quality attribute, or structural

element identified as a basis for testing.” A test analyst
utilizes the information accompanied with the test conditions

to construct the test design model in whatever

representation. This gave rise to Robert Binder’s famous
quote that testing is always model-based [1]. A test design

model refers to a specification of the expected behavior of

the system under test that is represented either as mental

model, informal model, semi-formal model, or formal

model.

Fig. 2 A conceptual model of test design

As always with models [19] the test design model must

be appropriate for the test design technique to be applied. An

inappropriate model might not be able to produce an optimal

result. The details of a test design model can usually be

derived from the test conditions of the test basis.

There is a correlation between the test design technique

and the test design model, however, since both are

determined or influenced by the test conditions. For example,

if the test condition indicates that the system under test might

assume different states while operating, the test design model

may result in a finite state machine (FSM) or similar.

Consequently, a test design technique (like state-based test

design) is most likely to be applied on this test design model.

A test design technique tries to fulfill a certain test

coverage goal (the term used by ISO 29119 is Suspension

Criteria, which is actually not that commonly understood). A

test coverage goal determines the number and kind of test

coverage items that have to be derived from a test design

model and represented as test cases. The actual derivation

activity might be carried out manually or in an automated

manner.

A test coverage item is an “attribute or combination of
attributes to be exercised by a test case that is derived from

one or more test conditions by using a test design technique”
[9]. The term test coverage item has been newly introduced

by ISO 29119, thus, it is expected not to be fully understood

at first sight. A test coverage item is usually been obtained

from the test condition, and made been explicit (in a sense of

that it can be used for coverage analysis etc.) through a test

design technique. The following example discusses the subtle

differences between test condition, test design model and test

coverage item:

Let us assume there is a functional requirement that says

the following: “If the On-Button is pushed and the system is

off, the system shall be energized.”

The bold words indicate the system under test, the italic

words potential states the system under test shall assume und

the underlined word an action that triggers a state change.

According to ISO 29119, all the identifiable states (and the

transitions and the events) encoded in the functional

requirement represent the test conditions for that system

under test. A state machine according to the test conditions

would represent the test design model. As test design

technique could be decided to be structural coverage criterion

like transition coverage or similar. The test coverage goal

would represent a measurable statement about what shall be

covered after the test design technique has operated on the

test design model. This might be one of Chow’s N-Switch-

Coverage 0 like full 1-Switch-Coverage (or transition-pair

coverage). The test coverage items would eventually be

represented by all transition pairs that have been derived by

the test generator, and which are finally covered by test cases.

However, there are certain inaccuracies in the ISO

29119’s test design concepts which are subsequently
classified into three issues.

1) Test Coverage Calculation

At first, the term test coverage, defined by ISO 29119 as

the “degree, expressed as a percentage, to which specified
coverage items have been exercised by a test case or test

cases”, does not take the actual number of potentially

1578 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

available test coverage items into account. According to the

given definition of test coverage, the coverage would always

be 100% since it is calculated on the actual derived test

coverage items. What is missing is a calculation of all test

coverage items that actually should be derived. Otherwise, it

would be possible to state that 100% test coverage has been

achieved, even though just 10% of all to be covered test

conditions were actually covered. This is in particular

relevant for model-based approaches to test design, for the

test coverage items are usually not explicitly stored for

further test case derivation, but rather automatically

transformed into test cases by the test generator on the fly.

This means that in today’s model-based test generators the

test cases always cover 100% of the derived test coverage

items. This is just consequent, since the test coverage items

were derived according to a specific test coverage goal, thus,

the test design technique only selected those test coverage

items (out of all potentially reachable test coverage items)

that are required to fulfill the test coverage goal. Ending up

in a situation where the eventually derived test cases would

not cover 100% of the produced test coverage items would

violate the whole idea of specifying test coverage goals.

2) Output of Test Design Techniques

Test design techniques do not only derive test cases, but

also test data or test configurations. The test design process

deals with the derivation of all aspects that are relevant for

finally executing test cases. The test configuration or test

interface (i.e., the identification of the system under tests, its

interfaces and the communication channels among the test

environment and the system under test) is a crucial part of

each test case, when it comes down to execution. Same, of

course, holds true for test data. In this paper we deal not with

the generation of test configuration, however, test data

generation is covered.

3) Test Design Techniques Are Not Monolithic

The concept of a test design technique, as defined and

described by ISO 29119, needs to be further differentiated. In

relevant, yet established standards for industrial software

testing (such as ISO 29119, IEEE:829 and ISTQB) a test

design technique is described as a monolithic concept. This is

not the case, because the actual test derivation process

consists of a number of techniques that represent

distinguished course of actions to achieve test coverage.

These courses of actions operate in combination with each

other to derive the desired test coverage items. Those

techniques contribute their semantics to the overall test

design activity for a given test design model. Examples for

well-known strategies are structural coverage criteria or

equivalence partitioning, but also less obvious and rather

implicit strategies like the naming of test cases or the

physical structure or representation format of test cases. For

example, the so called State-Transition test design technique

might be based on an extended Finite State Machine (EFSM).

Hence, the sole application of structural coverage criteria

(like all-transition-coverage etc.) might not suffice to produce

executable test cases, for EFSM may also deal with data

inputs, guard conditions etc. By adding also data-related

techniques (such as equivalence partitioning) to structural

coverage criteria, it is possible to explore and unfold the

EFSM into an FSM that ultimately represents the available

test coverage items for finally deriving test cases. So, the

discussion gives rise to the fact that the conceptual model of

ISO 29119 regarding test design techniques shall be further

differentiated to allow combining several test design

techniques with each other in a systematic manner.

B. Towards Strategies and Directives

When further differentiating the concept of test design

technique, a wider search beyond the field of testing of

software systems seems to be appropriate. Based on what

was discussed earlier, test design techniques are required to

be grouped by different test design process, thus, they are

reusable. Test design techniques are consequently

decomposed into a thing that groups different techniques and

the techniques themselves. This conceptual structure is

similar to the Business Motivation Model (BMM) [14]

concepts for directives and strategies (see Fig. 3). We adapt

the terms directives and strategies for the scope test design.

The BMM provides a fine-grained conceptual model to

analyze the visions, reasons and influencers of a business (or

endeavor) in order to deduce its overall motivation. The

BMM is enunciated in the Semantics of Business Vocabulary

and Business Rules (SBVR) [15], a standard which is by the

OMG, a standard which is adopted by the OMG to formalize

a vocabulary for semantically documentation of an

organization’s business facts, plans and rules.

Fig. 3 Relations of Strategy, Directive and Goal

Notwithstanding the motivation for BMM to apply

directives is outside of MBT in the first place, the BMM

contains concepts and notations that can be beneficial to the

realization of test design directives and test design strategies.

According to BMM a directive is a means to achieve a

certain goal. A goal is a statement about a state or condition

of the endeavor to be brought about or sustained through

appropriate means. Therefore, a directive (as specialized

MARC-FLORIAN WENDLAND: ABSTRACTIONS ON TEST DESIGN TECHNIQUES 1579

means) utilizes (a set of) strategies that are governed by the

directive to achieve the goal. A strategy channels efforts

towards the achievement of that goal. This means that the

same strategy can be utilized by different directives in order

to achieve different goals, hence, strategies are reusable

across directives. The notions of strategy, directive and goal

can be mapped to the business test design. The BMM goal

would map almost inherently to the ISO 29119 concept test

coverage goal. As with a goal, a test coverage goal imposes a

condition on the test design activity that need to be achieved

in order to deem the test design activity completed. Since

BMM strategies are the actual actions that need to be carried

out in a controlled manner, the notation of BMM strategy

stands for a single test design technique, such as equivalence

partitioning, all-transition-coverage or similar. The directive,

however, does not have a direct counterpart in the ISO 29119

conceptual model on test design. From a logical point of

view, it is part of the test design technique concept even

though not explicitly enunciated. We are going to leverage

the notion of strategies and directives for the area of model-

based test generation in order to refine the ISO 29119

conceptual model with test design strategies and directives

that replaces the monolithic test design technique.

C. Refined Conceptual Model of Test Design

This section mitigates the conceptual imprecisions of the

ISO 29119 conceptual model of test design by further

differentiating the test design technique into test design

directives and test design strategies. These notions are

adopted from the BMM. Fig. 4 shows the redefined test

design conceptual model in which the monolithic test design

technique is split up into test design strategy and test design

directive.

A test design strategy describes a single, yet combinable

(thus, not isolated) technique to derive test coverage items

from a certain test design model either in an automated

manner (i.e., by using a test generator) or manually (i.e.,

performed by a test analyst). A test design strategy represents

the logic of a certain test design technique (such as structural

coverage criteria or equivalence partitioning) in a tool- and

methodology-independent way and is understood as logical

instructions for the entity that finally carries out the test

derivation activity. Test design strategies are decoupled from

the test design model, since the semantics of a test design

strategy can be applied to various test design models. This

gives rise to the fact that test design strategies can be reused

across different test design models. This fits with the more

general notation of a strategy that can be utilized by several

means. The intrinsic semantics of a test design strategy,

however, needs always be interpreted and applied within the

context of a test design model. According to and slightly

adapted from the BMM, this context is identified by a test

design directive.

Fig. 4 Redefined conceptual model on test design

A test design directive governs an arbitrary number of test

design strategies that a certain test derivation entity has to

obey to within the context of a test design model. A test

design directive is in charge of achieving the test coverage

goal. Therefore, it assembles appropriately deemed test

design strategies to eventual fulfill the test coverage goal.

The assembled test design strategies, however, channel the

efforts of their intrinsic semantics towards the achievement of

the test coverage goal. The test coverage items that are

produced by test design strategies are always fully covered,

thus, they are reduced to a pure transient concept. According

to Fig. 1 b), the test design directive will be passed to the

tool-specific adaptation layer, since it is the test design

directive that has access to all required information. At first,

it specifies the test design models out of which test artifacts

shall be generated. Next, it governs the test design strategies

that shall operate on the test design models. In the next

sections, we show an implementation of the conceptual

model as UML profile.

IV. A LANGUAGE FRAMEWORK FOR TEST DESIGN

The implementation of the refined ISO 29119 conceptual

model on test design was from the very first idea incepted as

an extension of the UTP. This mitigates one of the most

obvious deficiencies of the UTP and allows the creation of

fully comprehensible test models. The extension is kept most

flexible, so that new test design directives and test design

strategies can be easily incorporated.

A. Realization as UML Profile

Since the test design framework has to be kept

minimalistic and left open for multiple modeling and testing

methodologies, it is important to find a means to not being

too intrusive while defining the framework. Fortunately, a

UML profile grants all capabilities of MOF-based

metamodels, so it is possible to utilize the concepts of

derived unions and subsetting properties. Fig. 5 shows the

elements of the language framework.

1580 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 5 A UML profile of test design

Both stereotypes test design strategy and test design

directive extend the UML metaclass Comment. Comment is a

semantic-free element of UML, usually used to add notes or

documentations to other elements. Applying a test design

strategy stereotype onto a Comment turns the Comment into

a test design strategy. Same, of course, holds true for test

design directive. According to the BMM and the refined ISO

29119 conceptual model of test design, a test design

directives establishes associations to one or multiple test

design strategies. This means that a test design directive

might be composed of several test design strategies. Both test

design strategy and test design directive are abstract concepts

which means they need to be further specialized in order to

be applicable. This is, of course, on purpose, since it is

infeasible to foresee each and every test design directive or

test design strategy of every existing or new methodology in

the future. Thus, the language framework must under all

circumstances not restrict a test analyst if he/she wants to

define new test design strategies or directives.

A test design directive establishes two further

associations to the most fundamental metaclass in the UML

metamodel, i.e., Element. One association captures the

semantics of identifying the allowed test design models for a

specialized test design directive, the other represents a trace

link to the actually derived elements. The language is again

left open as much as possible, because there is no reason why

a certain elements of UML should be spared out as test

design model or generated element. As with the associations

to test design strategies, the specializations of test design

directives are responsible to fill these derived unions with

reasonable information.

The main benefit and most powerful characteristics of the

language framework is the fact that an appropriate tooling

can access all available information of any existing

specialized test design strategy or test design directive by

using the MOF reflection capability at runtime (i.e., modeling

time). This enables tool vendors to build a complete and

sophisticated tooling on basis of this minimalistic framework

without taking care of future extensions. As soon as new

specializations of test design strategies and directives are

made accessible to the modeling tool, they can be utilized at

once.

B. Libraries of Test Design Strategies

As already stated in section Towards Strategies and

Directives, test design strategies bear the potential to be

leveraged by different test design directives. It is not possible

to navigate from a test design strategy to a test design library

explicitly (it has to be said that the MOF capabilities allows

the navigation of so called non-navigable association ends –

this is an essential precondition for the language frameworks

adaptability). A test design strategy actually does not have to

be aware with which test design directives it is associated

with, since the evaluation and realization of the semantics of

a test design strategy in the context of a test design model is

done by the adaptation layer of a test generator. On domain

level, it is sufficient to limit the combination of test design

strategies in the context of test design directives. Since test

design strategies are more or less autarkic concepts, it is

possible to develop libraries of well-known and accepted test

design strategies and to make them accessible to the

developer of a new test design directive.

Predefined libraries for test design strategies make in

particular sense when it is prescribed (by a standard or

company-wide test strategy or policy) which test design

strategies are permitted within the test process. By building

libraries (and appropriate tool support), test managers or test

analyst are able to define a canonical list of test design

strategies that shall be exclusively used. This counteracts, for

example, violations of such test strategies and fosters, at the

same time, consistency among different test design activities

of the same test process.

C. Integration of Test Generator Capabilities

In order to integrate on the language framework, it is

required that each integrated test generator need to propagate

its meta-information into the language framework. The most

important meta-information [5], of course, is the information

about which test design strategies the test generator can

realize via its adaptation layer. The language framework

provides all required information to enunciate these meta-

information. Fig. 6 illustrates the integration of the

SpecExplorer and Graphwalker with the language

framework.

D. Provision of Test Generation Services

As a proof-of-concept, we have combined the language

framework with the existing UTP and integrated it into our

academic test modeling environment Fokus!MBT [24]. As

test generators we employed the previously mentioned

Graphwalker and SpecExplorer. As part of the tool

integration, we created two test design directives (one for

each test generator) with appropriate test design strategies.

The result can be seen in Fig. 6.

MARC-FLORIAN WENDLAND: ABSTRACTIONS ON TEST DESIGN TECHNIQUES 1581

Fig. 6 Definition of test design directives

In Fokus!MBT, a test design directive is considered to

identify an accessible test generation service. A test

generation service is in its simplest essence a single test

generator that is integrated with the language framework.

However, a test generation service might also consist of a set

of test generators realizing the associated test design

strategies. The term test generation service abstracts from the

physical representation of the test generation approach.

A test design directive is tightly bound to a test

generation service, which in turn comes along with an

appropriate adaptation layer. Since Fokus!MBT is based on

Eclipse, we utilize the extension point mechanism of Eclipse

to identify a test generation service by means of the test

design directive. The input validation process is crucial, since

only test design models the adapter can map into the input

format of its respective engine are allowed to be passed to the

engine. In Fokus!MBT, a specialized test design directive can

be associated with a set of validation constraints. What is not

shown in this picture is the case, if the input validation

detects constraint violations. If this happens, the tester is

notified about the details of the input validation process.

V. EVALUATION

Let us assume we have an EFSM as test design model

that consists of five states and five transitions and a global

state variable x of type Integer. The according state machine

is defined by the following state-transition-table (TABLE II):

TABLE II.

EXAMPLE EFSM

Source Input (i) Action Output (o) Target

initial - x := 0 - s1

s1 i ≥ 0 and
i ≤ 5

x:= x+i x s2

s1 i = 1000 x:= x+i x s3

s2 i = 3 x:= x-i x accepting

s3 - x:= x-5 x accepting

This implies that there are two paths available, which are

sc1 = {initial→s1, s1→s2, s2→accepting} and sc2 =

{initial→s1, s1→s3, s3→accepting}, where → denote the
transition. There are no further guard conditions defined on

the transitions for the sake of simplicity. Let us further

assume that we want to apply the scenario test design

strategy with both the Graphwalker and SpecExplorer engine,

where the desired scenario is sc1. In addition, we want to

apply boundary value analysis, if data generation is possible.

So, we define the following two test design directives:

SpecExTestDirective ‘specex’ :=

testDesignModel = EFSM

testDesignStrategies :={

scenario {events = sc1} and

boundary value analysis {values = 1}

}

GraphwalkerTestDirective ‘gw’ :=
testDesignModel := EFSM

testDesignStrategies :={

scenario{events=sc1}

}

The SpecExplorer is capable of generating inputs based

on given constraints. The transition S1→S2 has a constraint

defined that the input value must be in a range [0..5]. In

Fokus!MBT, range constraints are modeled as

UML::Interval. As said before, the configuration of the

SpecExplorer engine I s done via coord. The respective

adaptation layer transforms the test design directive and the

referenced test design model into the coord representation.

The scenario test design directive is transformed into a

SpecExplorer scenario, which is then further used for the

exploration. The transformation of the EFSM into the ASM

is not part of the paper. Please refer to the DOME case study

of the REMICS case study.

In contrast, the GraphwalkerTestDirective does not have

a test design strategy for boundary value analysis defined,

since the generation engine is not capable of generating

input values.

After executing bot test generation services, the

following test coverage items have been derived:

 SpecExplorer – 2 Test Cases

#1: initial→s1(-/-),s1→s2(0/0), s2→s3(3/-2)

#2: initial→s1(-/-),s1→s2(5/5), s2→s3(3/2)

 Graphwalker – 1 Test Case

#1:initial→s1,s1→s2, s2→s3

This result is not surprising since the Graphwalker is not

able to generate any data at all. Depending on the applied

methodology to test generation, this might be not a problem.

As a matter of fact, the resulting test cases are mostly of

abstract nature, i.e., they are lacking concrete data. These

1582 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

data information need to be applied later on in order to make

the test cases executable.

VI. RELATED WORK

The term test directive was firstly introduced and defined

by [2] in her PhD as “… a collection of test-specific

information which, when combined with the system model,

derives a test model.” The PhD of Dai, however, dealt solely
with the derivation of test configurations from existing

system models. Therefore, she treated test directives as

specifications of single model-to-model transformation rules

in a platform-independent manner. The set of combined test

directives yielded a complete transformation which generated

a test configuration. Our approach, in contrast, deals with the

generation of test cases and test data in addition to test

configuration.

Friske [5] presented an early idea to specify test coverage

goals in generator-independent manner. He leveraged OCL in

the context of UML State Machines to define structural

coverage criteria like transition coverage or 1-Switch

coverage 0. They specified two requirements for the

integration of arbitrary test generators into their OCL

framework. Firstly, the test generator to be integrated had to

follow a two-step generation process. The first step has to

generate the test goals (or test coverage items as defined by

ISO 29119, the second step to derive test cases from these

test goals. The second requirement requests that each

generator publishes its metadata regarding its generation

capabilities. The idea is quite similar to what we proposed in

our work, however, there is no proof-of-concept described

that actually realizes the pure theoretically OCL-based

approach. Furthermore, it is not clear how strategies for

automated test design can be integrated that are not pertinent

to the generation of test coverage items (or test goals) but to

the derivation of test cases from these test coverage items.

For example, the strategies how generated test cases shall be

named or finally realized in a compositional sense

(decompose test case behavior into several separated pieces

of behavior or build monolithic test case behaviors) are

essential decision in each test design activity. In our

approach, such adjacent strategies can be integrated in the

same way as any other strategy. Finally, our experiences with

the application of model-based testing techniques in the

industry have shown that most testers are not familiar with

formal languages like OCL.

Fourneret et al. [4] have presented an approach to model-

based security verification and testing of smart-cards based

on a dedicated language for security properties. The language

is integrated with the UMLsec approach [10] and allows test

engineers specifying what a security test generation shall

generate. Thus, it enables domain experts to express the

strategies for the test generation approach in a non-technical

way. A proof-of-concept was done with the commercial

CertifyIt
4

 test generation tool. The specific test design

strategies of that language could be integrated with the test

design directives framework in order to make them

applicable outside of UMLsec.

Wendland has used of test directives in the context of

MBT based on a proprietary metamodel for testing purposes

[22]. This work can be seen as the very first approach for an

abstracted view on test design techniques based on test

directives. Back in those days, the notion of test strategies

was not used, though. In contrast, to the work presented in

this paper, the former approach tried to develop a modeling

framework that was intended to condense the indivisible

parts of test design techniques in order to construct a concrete

test design technique dynamically. This was much too

complex, and yet not applicable.

VII. CONCLUSION AND FUTURE WORK

In this paper we had dealt with abstractions of test design

techniques in the realm of automated test design based in the

context of MBT. We had clearly identified the problem

statement that today’s approaches to MBT are not that

comprehensible, repeatable and flexible as the existing

academic and industrial literature in the last decade promised

to be. In fact, a full understanding of the automated test

design activities within an MBT approach requires access to

the applied test generator(s), since they keep the knowledge

of the applied test design techniques. This is the main

challenge we addressed in this paper. The overall aim is to

finally capture all test-relevant information independent of

any implementation within the test model itself. This is the

only way to ensure a seamless change of paradigms from

document-centric to model-centric testing activities.

Therefore, we analyzed the conceptual domain of test design

compliant with the ISO 29119 standard. We described three

issues of the ISO 29119 conceptual model on test design and

mitigated them by introducing the notions of test design

strategies and test design directives. These pure conceptual

notions were subsequently mapped onto a concrete language

framework realized as a UML profile. This profile is a most

minimalistic realization of the conceptual model and

integrates well with the UTP. The reason to go for a UML

profile was a natural decision in our work in order to fill the

conceptual gap of UTP regarding the specification of test

design techniques. Finally, as a proof-of-concept we have

described and illustrated how the language framework can be

integrated into modeling environments. We therefore used

our academic test modeling environment Fokus!MBT
5
. The

illustrated proof-of-concept was kept minimal since it was

not the scope of the paper to describe a full case study.

The experiences we made and results we obtained from

the integration of SpecExplorer and Graphwalker on UTP

4 http://www.smartesting.com
5 http://www.fokusmbt.com

MARC-FLORIAN WENDLAND: ABSTRACTIONS ON TEST DESIGN TECHNIQUES 1583

and the suggested language framework gave confidence that

every of the listed test generators in this paper can be

integrated with this approach. Another side-effect of the

language framework is that the concatenation of different test

generations engines can be achieved rather easily [11].

Future work in the realm of standardization will in

particular be channeled towards the new major revision of the

UML Testing Profile, which is currently undergoing. As said

before, the absence of a facility to specify test design

techniques on model level was already complained about.

The requirements document of the new UTP version [16]

requests precisely such a facility. Our contribution in this

area will be minimal language framework presented in

section A Language Framework for Test Design.

While writing this paper, we are already working on the

integration of a usage-based test generator [8] and behavioral

and data fuzzing generator [18] with the proposed language

framework in the context of the EU project MIDAS
6
 w

To conclude the achievements of our work, we have

shown that different test generators are able to be integrated

on an abstracted representation of commonly accepted (or

proprietary) test design techniques. In addition, we think this

language framework is flexible to allow for a fine-grained

adjustment of applied test design techniques. Our work fills

the conceptual gap of MBT approaches in this regards and,

thus, allows for a more holistic and comprehensible approach

for automated test design based on (semi-)formal models.

ACKNOWLEDGMENT

Most parts of the work presented in this paper were

funded by the EU projects REMICS (no. 257793) and

MIDAS (no. 318786).

REFERENCES

[1] Binder, R., Testing Object-Oriented Systems: Models, Patterns, and

Tools. Addison Wesley, 1999.

Chow, Tsun S.: Testing Software Design Modeled by Finite-State

Machines. IEEE Transactions on Software Engineering, Vol SE-4,

No. 3, 1978. http://dx.doi.org/ 10.1109/TSE.1978.231496

[2] Dai, Zhen Ru: An Approach to Model-Driven Testing – Functional

and Real-Time Testing with UML 2.0, U2TP and TTCN-3.

Dissertation at the TU Berlin, 2006.

[3] Foster, M. and Graham, D., Software Test Automation. Addison-

Wesley Professionals, 1999. ISBN: 978-0201331400.

[4] Fourneret, E. et al., "Model-Based Security Verification and Testing

for Smart-cards," ares, pp.272-279, 2011 Sixth International

Conference on Availability, Reliability and Security, 2011.

http://dx.doi.org/10.1109/ARES.2011.46

[5] Friske, Mario; Schlingloff, Bernd-Holger; Weißleder, Stephan,

Composition of Model-based Test Coverage Criteria, MBEES, 2008.

87-94.

[6] Grieskamp, W., Model-Based Testing in the Field: Lessons Learned,

Lecture Notes in Informatics, Vol P-94 (2006), Pages 189- 196.

6 http://www.midas-project.eu

[7] Gurevich, Y., Evolving Algebras, 1993: Lipari Guide, Specification

and Validation Methods, pages 9–36. Oxford University Press, 1995.

http://dx.doi.org/10.1007/978-3-540-74284-5

[8] Herbold, S., Grabowski, J., Waack, S. (2011). A Model for Usage-

based Testing of Event-driven Software. 3rd International Workshop

on Model-based Verification & Validation: From Research to Practice

(MVV). http://dx.doi.org/10.1109/TSE.2010.12

[9] International Organisation for Standardisation (ISO): ISO/IEC 29119,

Software Testing Standard, http://www.softwaretestingstandard.org

[10] Jürjens, Jan, Secure Systems Development with UML. Springer-

Verlag, 2005. http://dx.doi.org/10.1007/b137706

[11] Lackner, Hartmut; Schlingloff , Holger, Modeling for automated test

generation - a comparison. MBEES 2012, p 57-70, 2012.

[12] Object Management Group (OMG): UML Testing Profile. URL:

http://www.omg.org/spec/UTP

[13] Object Management Group (OMG): Unified Modeling Language.

URL: http://www.omg.org/spec/UML

[14] Object Management Group (OMG): Business Motivation Model

(BMM). http://www.omg.org/spec/BMM

[15] Object Management Group (OMG): Semantics of Business

Vocabulary and Business Rules (SBVR).

http://www.omg.org/spec/SBVR

[16] Object Management Group (OMG): UML Testing Profile 2, Request

for Proposal (RFP), document number: ad/2013-12-08.

[17] Pretschner, A. and Philipps, J., Methodological Issues in Model-Based

Testing. In: Model-Based Testing of Reactive Systems. Springer, 2004,

Pages 281-29. http://dx.doi.org/10.1007/ 11498490_13

[18] Schneider, M., Großmann, J., Tcholtchev, N., Schieferdecker, I., &

Pietschker, A. (2013). Behavioral fuzzing operators for UML

sequence diagrams. In Ø. Haugen, R. Reed, & R. Gotzhein (Eds.)

System Analysis and Modeling: Theory and Practice, vol. 7744 of

Lecture Notes in Computer Science, (pp. 88–104). Springer Berlin

Heidelberg. http://dx.doi.org/10.1007/978-3-642-36757-1_6

[19] Stachowiak, H.: Allgemeine Modelltheorie, Springer, Wien, 1973,

ISBN-10: 3-211-81106-0. http://dx.doi.org/10.1007/978-3-7091-8327-

4

[20] Utting, M.; Pretschner, A., Legeard, B.: A Taxonomy of Model-Based

Testing. ISSN 1170-487X, 2006.

http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf.

http://dx.doi.org/10.1002/stvr.456

[21] Utting, Mark; Legeard, Bruno, Practical Model-based testing – A

Tools Approach, Elsevier, 2007.

[22] Wendland, M.-F., Großmann, J, and Hoffmann, A., "Establishing a

Service-Oriented Tool Chain for the Development of Domain-

Independent MBT Scenarios," 17th IEEE International Conference

and Workshops on Engineering of Computer-Based Systems ECBS

2010, Oxford, England, IEEE, 2010, pp. 329-334.

http://dx.doi.org/10.1109/ECBS.2010.47

[23] Wendland, Marc-Florian et al., Model-based testing in legacy

software modernization: an experience report, in Proceedings of the

2013 International Workshop on Joining AcadeMiA and Industry

Contributions to testing Automation (JAMAICA 2013).

JAMAICA'13, July 15, 2013, Lugano, Switzerland. ACM 978-1-

4503-2161-7/13/07. http://dx.doi.org/10.1145/2489280.2489291

[24] Wendland, M.-F.; Hoffmann, A., and Schieferdecker, I., Fokus!MBT -

a multi-paradigmatic test modeling environment, in Proceedings of the

workshop on ACadeMics Tooling with Eclipse (ACME 2013),

ACME'13, Montpellier, France, ACM 978-1-4503-2036-8/13/07.

http://dx.doi.org/10.1145/2491279.2491282

1584 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

