
 

 

 

 

Abstract—In this paper two alternative architectures for 

service management in IoT and sensor networks are discussed. 

The first one is based on Open Service Gateway (OSGi) 

framework and Remote Services for OSGi (R-OSGi) bundle. 

The second architecture extends the notion of REST 

(Representational State Transfer) paradigm. There were few 

purposes of the extension. First, efficient, dynamic searching for 

devices capable of fulfilling certain requests within actual 

context was enabled. Second, both the devices and controlling 

services were distributed.  Next, the devices were orchestrated 

in order to provide complex functionality. Finally, the access to 

the devices’ functionality was standardized. OSGi-based 

solution was found simpler and better suited for homogeneous 

sensor networks, while more complex REST-based framework 

appeared as better suited for heterogeneous and widely 

distributed IoT devices and services. 

I. INTRODUCTION 

he Internet of Things (IoT) is the continuously evolving 

concept, which influences the business processes and 

even society on a global scale. Historically, the IoT was 

perceived as the intelligent network connecting objects, 

information and human beings to enable remote coordination 

of resources by people and machines [1]. First proposals of 

architectures of IoT networks were based on their natural 

predecessor – sensor networks. Nowadays IoT is perceived 

as cutting edge phenomenon, no longer limited to electronic 

identification of objects, but defined as technology 

integrating devices with information network, where these 

devices act as active participants in business processes [2].  

Multiple applications of Internet of Things have been 

identified and implemented in such economy areas, as 

manufacturing, supply chains, energy, healthcare, automotive 

industry, insurance, financial services or research 

laboratories, to mention a few [2][3][4]. In the nearest future, 

the expansion of Internet of Things outside the internal 

infrastructures of companies is not only expected, but 

becomes the reality. The increasing popularity of Internet of 

Things causes the need for proper architecture, which will 

meet the requirements of IoT environment.  

                                                           
 This work was supported by the National Centre for Research and 

Development under grant POLLUX-II-/1/2014 

As IoT is very dynamic and heterogeneous, efficient 

management system for this environment should address 

these features. In this paper we discuss two alternative 

architectures for service management in IoT and sensor 

networks. The remainder of the text is structured as follows. 

Section II presents basic characteristics of IoT and sensor 

networks, which allows an enumeration of basic 

requirements of these environments. The Open Service 

Gateway (OSGi) framework is briefly described in Section 

III. Section IV focuses on the introduction of the 

Representational State Transfer (REST) methodology. 

OSGi-based architecture for IoT management is proposed in 

Section V. Next, similar architecture based on extended 

REST services is described in Section VI. Finally, Section 

VII concludes the paper. 

II. IOT AND SENSOR NETWORKS – BASIC FEATURES 

At the first view sensor networks and Internet of Things 

are similar. Both networks are composed of small hardware 

nodes with limited resources, such as memory and CPU 

capabilities, both are physically distributed over certain area, 

both communicate by means of certain standards related with 

TCP/IP protocol. However, this similarity is seeming. 

Below, a comparison of basic features of these two network 

types , as well generic requirements for data acquisition and 

overall architecture are provided.  

A typical sensor network is composed of many nodes 

having similar purpose, common goal and fixed 

functionality. Usually, one single point of interaction is 

assured, to contact the network as a whole, rather than 

particular nodes directly. As the nodes are usually small 

battery-operated hardware devices, several techniques are 

applied for energy saving and optimization of information 

routing. 

Sensor network acts as single entity, thus it is usually 

controlled in the centralized manner by a single 

owner/administrator. The network is accessed as a “black 
box” of certain functionality, with strict access rights to 
particular global functions. As there is no need for individual 

addressing of devices and their functions, external access 

and control of individual nodes is usually blocked, and the 

T 

Comparison of architectures for service management in IoT and 

sensor networks by means of OSGi and REST services 

Jarogniew Rykowski, Daniel Wilusz 
Poznań University of Economics, Niepodległości 10, 61-875 Poznań, Poland 

e-mail: {rykowski, wilusz}@kti.ue.poznan.pl 

 

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1207–1214

DOI: 10.15439/2014F324

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1207



 

 

 

network is self-manageable. For example, for energy-saving 

reasons, some nodes are temporary deactivated, gathered 

information is pre-processed to minimize network transfer, 

etc. [5] 

On the contrary, a typical IoT network is composed of 

heterogeneous nodes of different purpose and functionality. 

There is no common goal defined for the network as a whole 

except for very abstract goals such as “user comfort” or 
“energy savings”. Instead, each networked IoT device, via 

continuous environment monitoring and information 

exchange with other devices, tries to act as a “good servant” 
[6] – invisible, however useful to maximum extent. 

IoT networks are composed ad-hoc and as such they have 

no centralized management, single owner/administrator, 

global access rights, etc. The interaction with humans is 

incidental, sometimes even transparent to users – they are 

not necessary conscious about the functions provided, even if 

these functions rise the level of “user comfort” (such as 
automatic heating, air-conditioning, etc.), “energy savings” 
(automatic switching off of some devices once no human is 

detected in the neighborhood), “safety” (face scanning 
allows for transparent control of visitors of an office, rising 

“silent alarm” once an unknown person is detected inside), 
etc. This interaction depends on local and global context, 

based on such parameters as geo-location and environment 

features (temperature, lightness, etc.). 

As the main stress is put on efficient ad-hoc interaction 

among humans and IoT devices, portability is the key. 

Interaction should abstract of such details as local addresses 

of IoT devices, communication means, data format, etc. 

Instead, an efficient searching/filtering mechanism should be 

provided, allowing to choose “the right” device to serve the 
request in given context. More precisely, portable interaction 

should be characterized by: 

• a need for individual addressing of given network 

functions abstracting the implementation of these 

functions, including strict device addressing; 

• a need for filtering “the best” device to be activated to 
realize certain request for function; similar – a need for 

searching for and choosing the “right” device(s); 
• a need to distinguish several searching modes: “exactly 

one device capable of action X”, “at least one”, 
“everyone”, etc.; 

• a need for monitoring overall activity of devices (and 

accessibility of their functions) ; 

• a need for portability due to ad-hoc nature of interactions 

at several places and for different situations: at least 

portability of requests – a need for  common 

semantics/communication language to formulate the 

requests despite devices’ specificity; 
• a need for scalability, both for number of requests as well 

as the devices. 

As may be drawn from the above enumeration of the 

needs, there must be a global (thus centralized) management 

mechanism for controlling the set of IoT devices, similar to a 

typical way of the management of the sensor networks. This 

is somehow contradictory to the requirement for the 

autonomy of the IoT devices and their ad-hoc composition 

and usage. However, without such centralized mechanism it 

is not possible to group the devices into bigger 

conglomerates (to orchestrate and thus multiply their 

functions), to search for the device which is optimal to serve 

given request, to balance the system load/energy 

efforts/network traffic, etc. Having in mind this trade-off, 

one may find that the optimum solution is to provide a local 

catalogue of devices’ possibilities, extended by some 

statistical operations such as current load for each device, 

information about its accessibility and possibly temporal 

unavailability, number of served requests, last activation 

time, etc. The catalogue may also play a role of the request 

broker, mapping syntax and semantics of the incoming 

requests to the syntax and semantics used to contact the 

(heterogeneous by their nature) devices. 

If starting the discussion on choosing the technology to 

implement the above-mentioned catalogue of the devices and 

their functions, we may point out two frameworks for 

centralized management of distributed resources: OSGi  

platform for Java programming language implementing a 

dynamic service registry,  and extended REST services 

capable of centralized management of distributed REST 

resources and servers. In the next chapters we are going to 

present and compare these two frameworks, taking into 

account the following operations: 

• registering the device/function; 

• providing individual proxy for 

interaction/communication mapping – starting, stopping, 

and suspending/resuming the service; 

• monitoring real-device state and providing information 

about device accessibility; 

• searching for the device(s) to serve given request; 

• if a request is to be possibly served by several devices, 

choosing one device based on context and statistical 

information collected during past activations; 

• orchestrating device functions taking into account local 

context; 

• administrating device parameters (individual GUI for 

each device). 

III. OSGI FRAMEWORK 

Open Service Gateway (OSGi) is a popular framework, 

which provides specification for dynamic module system for 

Java [10]. The core function of OSGi implementation is 

related with efficient management of modules (bundles) 

lifecycle, which may be dynamically installed, started, 

stopped, uninstalled, etc. Bundles are building block of 

OSGi-based modular systems, which are able to mutually 

interact. Following interactions among bundles may be 

distinguished:  

• sharing Java packages with classes and interfaces; 

1208 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



 

 

 

• registering and calling services; 

• managing the lifecycle of other bundles; 

• sending and handling events to trigger specified actions. 

OSGi implementations provides service registry to control 

functions provided by the bundles. There is no reference 

needed to invoke the service, as OSGi environment provides 

services based on their interface and additional metadata 

describing the service. The OSGi service registry may return 

zero, exactly one or multiple services compliant with the 

request. If there is no service of specified interface or 

meeting the additional constraints, null value is returned and 

must be properly handled. If the caller tends to invoke only 

one service, but in the registry there are few possible services 

meeting the requirements, OSGi environment returns the 

service of the highest rank (specified during service 

registration) and the lowest identifier (i.e., the oldest one) 

[11] [12]. 

Event based communication is a useful feature of the 

OSGi framework. Primarily it allowed handling data changes 

caused by dynamic behavior of the bundles or framework 

itself. Each bundle may be programmed to individually react 

to specified events, e.g., to stop if a dependent bundle is 

stopped or uninstalled. Since OSGi v.4, the mechanism of 

sending and handling the events defined by software 

developers has been introduced. The event-based 

communication allows the definition of events’ topics and 

accompanied metadata, which are handled by dedicated  

EventHandler services [11][13][14].  

Dynamic modularity, service registry and event-based 

communication seem to be out of the box solution for IoT 

systems. However, OSGi does not meet all the requirements 

listed in Section II that is the reason why some adaptations 

are needed. We propose such extensions further in 

Section V.   

IV. REST 

The Representational State Transfer (REST) style is an 

abstraction of the architectural elements within a distributed 

hypermedia system. REST ignores the details of component 

implementation and protocol syntax in order to focus on the 

roles of components, the constraints upon their interaction 

with other components, and their interpretation of significant 

data elements. It encompasses the fundamental constraints 

upon components, connectors, and data that define the basis 

of the Web architecture, and thus the essence of its behavior 

as a network-based application [7].  

Key addressable entity of REST environment is a 

resource. Resources are any named pieces of information, 

being a target of hypertext links. Uniform Resource Locator 

(URL address) is used to get the value of a resource from the 

server: either static (if the resource is a file, piece of text, an 

image, etc.), or dynamic, being a result of an invocation of a 

piece of program code. In the latter case, the resource is 

treated as a “black box” from the point of view of its caller. 

REST resources are frequently used to access the 

functionality of IoT devices, as this lightweight technology is 

well suited to limited hardware and software resources of the 

devices. Also, REST servers are used to proxy such access 

for very limited and non-standard devices [8]. Once the 

efficiency and simplicity of implementation rather than 

security is of primary concern, REST resources seem to be 

much better base than classical SOAP-based SOA services 

[8]. 

Although REST is a very useful proposition for the 

implementation of IoT-based framework, this technology 

must be substantially extended to meet the requirements 

presented in Section II. Thus, in Section VI we propose such 

extensions as a generic REST-based architecture for the 

Internet-of-Things environment. 

V.  OSGI-BASED MANAGEMENT 

The IoT systems are characterized by their dynamic 

nature, as new devices appear, change their status including 

the availability, disappear or even suddenly break down. The 

OSGi framework with its support for dynamic modules 

seems to be the framework of the first choice to build on the 

IoT management system. Additionally, the OSGi service 

registry enables discovery of IoT specific features. 

Moreover, event-based communication allows ignoring the 

implementation details of services and substantially reducing 

the need for the standardization of interfaces. However, the 

IoT relies on network communication, which is not 

supported by pure OSGi specification. Another trait of IoT, 

which is difficult to be realized in OSGi framework, is a 

support for distributed vendors of IoT services. The next 

specific of IoT system is temporal unavailability of physical 

devices, which may be busy, broke down or temporary 

unplugged.  

The requirement of choosing “the best” IoT service cannot 

be fully realized in pure OSGi framework because such 

choice is limited to fixed service ranking and age (e.g., a 

moment of first registration of the service). The last but not 

least important feature of OSGi-based IoT management 

system is the possibility to manage the devices manually by 

checking and modifying their status. The above described 

limitations were the main reasons to propose by us some 

extensions for OSGi. The architecture of extended OSGi 

framework for IoT management system is presented in Fig. 1 

First, to deal with network communication among IoT 

services, the OSGi platform is extended by installing Remote 

Services for OSGi (R-OSGi) bundle developed in ETH 

Zürich [15]. R-OSGi provides dynamic proxy generation for 

remote invocation of services and register remote services, 

discovered in distributed registry, in local OSGi service 

registry.  

Next, to handle modules provided by device vendors, the 

universal semantic (device descriptions) must be proposed, 

but this problem is out of the scope of the paper. Here, we 

DANIEL WILUSZ, JAROGNIEW RYKOWSKI: COMPARISON OF ARCHITECTURES FOR SERVICE MANAGEMENT 1209



 

 

 

only point out the fact that OSGi enables specifying service 

metadata during service registration. The semantic 

information may be included in service metadata in the form 

of java.util.Dictionary object, containing OSGi 

event topics or additional properties.  

In order to reflect the status of the IoT device related with 

given OSGi service, the metadata of the service may be 

dynamically changed, e.g., to restrict an access to 

unavailable devices. However, to continuously monitor the 

device status, such a function should be provided by the 

provider of the device module (corresponding OSGi bundle). 

IoT device-state control module, extending basic OSGi 

platform, should be able to send auditing events and get 

responses from related dependent services interested in the 

notifications of the device status. 

The IoT management system should enable the user to 

invoke the most suitable service. As the capabilities of OSGi 

in this aspect are limited, the dedicated module needs to be 

provided. We propose to implement IoT statistics and 

validation module, which enable to validate the properties of 

the service and provide proper statistics on service 

performance. Such module should utilize the aspect oriented 

programming techniques to measure and store service 

properties such as performance time, moment of last 

invocation, number of invocations, number of generated 

exceptions (errors), etc. 

For administration purposes, the OSGi console may be 

extended by the methods allowing manual management of 

available devices. The system administration module is 

responsible for the discovery of devices based on service 

metadata and allowing checking or changing the state of 

these devices. 

We may list both the advantages as well as the 

disadvantages of the OSGi-based architecture, which are 

presented below. 

The main disadvantages of OSGi based architecture are 

the following: 

 Java dependent modules – the OSGi framework was 

developed for Java platform and in conclusion all module 

providers need to implement bundles in Java. As IoT is 

heterogeneous from its nature, the support for many 

programming languages should also be possible; 

 limited built-in support for distributed services – OSGi 

was design to foster development of modular software 

running on one device (host), without taking into account 

distributed environments. The R-OSGi initiative mostly 

solves the problem, however the control over remote 

 

OSGi based IoT remote subsystem 

OSGi based IoT management system 

R-OSGi 

module 

Device 

module 

Event Handler 

R-OSGi 

module 

IoT device state 

control module 

OSGi service registry 

Event admin 

module 

IoT 

application 

module 

OSGi service registry 

Event admin 

module 

IoT device state 

control module 

Device 

module 

Event Handler 

IoT service 

quality 

validator 

System 

administration 

module 

Device 

module 

Event Handler 

 

Fig. 1. OSGi based architecture for IoT environment 

1210 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



 

 

 

services is limited and there is no built-in control over 

distributed bundles; 

 lack of shared semantics – there is a need to propose 

standard semantic to enable unequivocal communication 

among system and the services – especially the ones 

provided by external entities; 

 limited capabilities of service registry – the registry may 

provide additional information on services only in the 

form of java.util.Dictionary metadata. This 

solution is troublesome when extending the registry 

features to provide e.g., service quality information or 

device state control. 

Despite of noticeable disadvantages, the OSGi framework 

is still prospective for building IoT management systems, as 

it has numerous advantages, which are listed below:  

 support for dynamic modules – the bundle management 

allows to change the system capabilities in runtime. This 

feature is very useful, as in IoT system devices may be 

dynamically (dis)connected with the system at any time; 

 event based communication – this trait of OSGi 

framework enables to separate the service invocation 

from its implementation. The OSGi events may carry 

orders in natural language, which are interpreted by event 

handlers, instead of directly invoking methods. What is 

more, requester does not need to know the location of a  

service, as event administrator sends events to all event 

handling services; 

 code sharing and encapsulation – the OSGi bundles may 

share their code with one another, which prevents 

memory overhead. Additionally, each bundle directly 

specifies the code to share, thus enabling additional 

encapsulation by separating service interfaces from their 

implementations; 

 compound services – the OSGi framework allows to 

compose compound services based on simple ones. The 

orchestration may be done just for calling specific 

feature, and the OSGi framework will provide the proper 

service and, after careful event handling implementation,  

even the most suitable for given request; 

 providing interface for manual administration – OSGi 

framework provide possibilities to extend the console 

commands by a set of user-defined ones. This capability 

forms an easy way to implement IoT device 

administration interface. 

VI. REST-BASED MANAGEMENT 

The key requirement for the IoT system is an efficient 

method for the selection of device(s) for the incoming 

request in a given context. To this goal, the system must (1) 

know the devices’ possibilities and characteristics, including 

their geo-locations (range of impact), (2) be able to search 

for the optimum device(s) to fulfill given request, and (3) 

activate the just-searched device in order to provide certain 

functionality. As already mentioned, these are basic tasks for 

a centralized catalogue. However, such catalogue is not a 

part of REST technology. Thus, we propose a uniform 

REST-based architecture with a dedicated catalogue (also 

REST-based) as the base for IoT system (Fig. 2). The 

architecture is based on using administrational extensions of 

REST servers to be observed as REST resources by the 

catalogue. 

 

Fig. 2.  REST-based architecture for IoT environment 

The architecture is based on two principles: extending 

REST servers by some management resources, and 

providing mapping of semantically-expressed requests to 

URLs of REST resources. 

To implement the first goal, we assume that each REST 

server is equipped with certain (predefined) resources to 

control and supervise the server, including: 

 “management” resource to provide an access to some 
basic commands such as quit/suspend/resume/restart, 

 “statistics” resource to provide some information about 
server usage (both divided to particular resources related 

with this server, as well as the server as the whole), for 

example: average service timings, number of requests 

served, number and description of invocation errors, etc.; 

this resource also provides an information about the real 

device (if any), connected to the resource and using this 

resource as its own proxy; in such way, the catalogue 

may be informed weather the device is accessible or 

temporary unavailable, 

 “functionality” resource to provide some knowledge for 
the functions possibly served by this server (namely, by 

its resources); such function descriptions are defined 

according to common semantics for the whole system 

(c.f., interpretation of the request below). 

Each REST server registers itself in the catalogue, 

providing its own URL locator. The locator (more precisely 

DANIEL WILUSZ, JAROGNIEW RYKOWSKI: COMPARISON OF ARCHITECTURES FOR SERVICE MANAGEMENT 1211



 

 

 

– the resources mentioned above) may be periodically 

inspected by the catalogue to collect up-to-date information 

about server state. This information is used to search for 

ready-to-use devices (c.f., a description of request serving 

later on).  

Once the internal state of the REST resource is changed, 

e.g., according to respective change of the state of real 

device connected to this resource, the server re-registers to 

the catalogue with the updated information. 

Imagine one wants to activate certain function of the 

system. To this goal, he/she must address the catalogue with 

the semantic description of the desired action. This 

description is compared with the possibilities of the devices 

(however, only those declaring their state as currently 

accessible), and a device is chosen to meet the criteria. The 

caller obtains the locator of the resource linked with desired 

activity/device, to directly address respective REST service 

and, indirectly, the device. Note that the called URL was not 

known by the caller in advance, as it was (possibly 

dynamically) generated and sent by the catalogue. Once the 

situation is changed, some other resource/device may be 

activated according to the same request. Note also that the 

semantics of the URL locator of the resource to activate is 

not known to the caller, thus the details of the activation may 

be hidden towards the users of devices’ functionality. This 
approach greatly improves portability of the system usage, 

on condition the semantics of the requests is common for all 

the callers and catalogues. 

If given request is to be possibly served by several 

devices, the catalogue may choose one device based on 

context and statistical information collected from the 

management/statistical resources of the corresponding REST 

service. For example, one may address the less-overload 

resource, last-activated or most-unused device, the one with 

the shortest response time, etc. 

We may also propose, instead of accessing a single 

resource for a single request, activating a set of resources –
i.e., an orchestration of resources. To this goal, a mechanism 

is needed to map the request semantics to some program 

code, in turn responsible for the pipelining of the resources. 

The final result is provided as if all the activated resources 

are a single resource, thus the whole orchestration 

mechanism is transparent to the caller. 

In most of the applications, connecting all the devices to a 

single host is not possible, due to (1) limited number of 

external connectors (such as USB), and (2) natural need for 

the distribution of the devices across a wider area. Thus, it is 

desirable to distribute not only the devices and hosts 

(proxies), but also the parts of the controlling framework. So 

far we assumed that there is only one central point for the 

control of the whole network. However, due to unrestricted 

distribution of REST resources it is possible to part this 

centralized point to a hierarchy of interconnected sub-parts, 

each one providing the control over certain network part 

(Fig. 3). To keep the control on the network as the whole, we 

propose to connect the sub-controllers as a graph and to span 

the controlling in the same manner as it is used to 

synchronize the resources of any peer-to-peer (P2P) network, 

with arbitrary restricted nesting level. 

 

 

Fig. 3. Hierarchy of REST-based distributed management services 

A device may choose any of the sub-controllers to register 

with. Then, this device is manageable locally by this 

sub-controlled in the direct way described above. Similar, all 

the local requests served by this sub-controller towards all its 

devices are processed locally. However, if there is a need to 

access remote (from the point of view of this controller) 

devices, then the sub-controller forwards the request to all its 

neighborhoods. In turn, if a neighbor is not able to process 

the request, forwards it to all its neighbors except the one 

which initiate the request, and so on. For each forwarding 

step, nesting level of the request (a range) is increased. 

While this level reaches certain value, the forwarding is 

stopped. Returning to Fig. 3, the request marked as 

“level=2” is forwarded only to three sub-controllers, while 

two “far” ones remain untouched. The stopping value is 

declared for each sub-controller by its administrator, and for 

the request by the initiator of this request – each time smaller 

of these two values is taken into consideration. 

All the responses are collected by the forwarder of the 

request, and, if the request level is still greater than one, send 

as a common response to the caller. Finally, the originating 

node collects all the responses of all its neighbors, acting as 

a “global” response to the initial request.   
To limit the possible cycles in the forwarding of the 

request, each request is identified, and the past-request 

identifiers are collected for some time in each of the sub-

controllers. Once a request is coming already served in the 

past, this call is disregarded and no more forwarded. Thus, 

1212 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



 

 

 

even if the graph of interconnected sub-controllers contains 

cycles, these cycles are detected and never block the system. 

In the same way we may obtain some global information 

about the network (statistics, information for certain-device 

of function availability, etc.), more precisely – about the 

local neighborhood (“no longer than N connections from the 
selected node”). More global is the request, more we must 
wait for the response, similar to typical P2P behavior.  

As a typical IoT environment usually covers rather small 

geographical area (such as a room, a building or a public 

place – a market, a shop, a museum, etc.) – by restricting the 

level of spreading the requests to reasonable value one also 

limits the overall network traffic to the reasonable level, and 

the response delay is counting in parts of the second. We 

may also imagine restricting the bigger levels to those with 

special access rights, such as system administrators – for 

most of the requests, these will be addressed to local devices 

(level equal to 1). Then, both the possible delays and 

increased network traffic are not a sharp problem. 

We may enumerate both the advantages and disadvantages 

of the proposed architecture, these are presented below. 

The disadvantages are mainly related with two global 

observations – independence of the program code for the 

REST servers, and the need for shared semantics:  

 there is no shared code even if identical parts of the 

program code (i.e., the libraries) are used by several 

REST servers. This feature results in large memory usage 

and may be relaxed by some shared-code techniques such 

as Dynamic Library Linking DLL; 

 all the resources must know in advance the address of the 

catalogue, to register with. This restriction may be 

relaxed with non-standard usage of DHCP broadcasting; 

 additional network traffic is observed to monitor device 

availability at real-time. However, with reasonable 

polling interval (for most of the system such timing as 

5-10 seconds is completely enough) this restriction may 

be bypassed; 

 one must provide strict definition of the semantics of 

requests and device activities (functions), shared for the 

whole system. This restriction is related with a need for 

the strict format of URL locators for additional REST 

resources (management/statistics). However, as this 

traffic is not observed by the end-users, this is a problem 

only for system designers; 

 the activations of devices’ functions are based on URL 
locators of the corresponding REST resources. Thus, 

only limited parameterization of such calls is possible – 

all the details must be coded and thus somehow hidden as 

URL locator parts. However, this is also mainly the 

problem of system designers, as end-users have no 

knowledge about the semantics of the device activations. 

Moreover, sometimes such information should be 

intentionally hidden for the end-users to limit the direct 

access to the devices (i.e., the access not controlled by 

the catalogue). 

 

The advantages outweigh the above-presented restrictions 

and problems: 

 it is a uniform approach – the whole traffic is realized as 

REST-compliant calls, which strongly facilitates the 

implementation of the system; 

 small resources and servers dominate across the system, 

thus the consumption of computer resources such as CPU 

time is reasonably small. Our experiments showed that 

even hundreds of such servers on a single PC is not a 

problem, as a single resource typically consumes less 

than1% of computer resources; 

 there is no problem with the synchronization of some 

resources “shared” among many REST servers, for 

example real devices, communication ports, etc. Such 

synchronization is needed only for a single REST server, 

however, as this server is programmed as a single entity 

and probably by a single programmer or small group of 

designers, such synchronization is easy to achieve; 

 all the system parts (resources, devices) may be arbitrary 

distributed even in a local- or even wide-area network – 

on condition the distributed servers know and may access 

the catalogue host; 

 REST servers may operate even with very limited 

hardware, also built-in to the networked devices, 

 there is theoretically unlimited possibility of the 

orchestration of devices – providing “virtual devices” 
acting as real ones, however, possibly much more 

complex and powerful; 

 the catalogue represents up-to-date information for 

device availability – continuous monitoring is undertaken 

not only for device state, but also some statistics for its 

usage; 

 single- and group-based management for devices and 

their corresponding resources is possibly achieved, 

including server start, quit, restart, suspending/resuming, 

also GUI-based individual administration. 

VII. CONCLUSIONS 

As may be drawn from comparison of OSGi and REST 

based systems presented in Table I and discussed above, 

both approaches – OSGi-based and REST catalogue provide 

similar functionality and may be applied to implement an 

Internet-of-Things middleware. The amount of work for both 

approaches is similar – substantial extensions are needed to 

adapt the environment to the specific requirements of IoT 

applications. However, OSGi-based approach is better suited 

for sensor networks, i.e., the applications covering 

homogeneous devices and fixed, predefined system 

functionality, while the REST-based framework is more 

useful in ad-hoc, dynamic environment achieving 

heterogeneous devices and services. For the first, if we deal 

with shared device functionality and program code, we 

substantially limit memory usage. For the latter, we may 

DANIEL WILUSZ, JAROGNIEW RYKOWSKI: COMPARISON OF ARCHITECTURES FOR SERVICE MANAGEMENT 1213



 

 

 

more easily provide distribution of proxies and devices as 

well as device/service orchestration, also in ad-hoc mode and 

based on some statistical information about past activations. 

If the amount of the shared code is low, due to the 

heterogeneity of devices/proxies, we do not observe the 

possible savings resulting from shared code, while still 

having the possibility of centralized management of the 

system as the whole as well as particular devices/resources. 

REFERENCES 

[1] D. L. Brock: The Electronic Product Code (EPC) A Naming Scheme 

for Physical Objects, Auto-ID Center, 

http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-

002.pdf,  

[2] S. Haller, S. Karnouskos ,Ch. Schroth,  “The Internet of Things in an 

Enterprise Context”, in: Future Internet – FIS 2008 LNCS, vol. 5468,  

J. Domingue, D. Fensel, P. Traverso, Eds. Berlin Heidelberg:  

Springer-Verlag, 2009, pp. 14-28, doi: 10.1007/978-3-642-00985-3_2 

[3] D. Wilusz, J. Rykowski, “The Architecture of Coupon-based, 

Semi-off-line, Anonymous Micropayment System for Internet of 

Things”, in: Technological Innovation for the Internet of Things IFIP 

AICT, vol 394, L. M. Camarinha-Matos, S. Tomic, P. Graça, Eds. 

Berlin Heidelberg:  Springer-Verlag, 2013, pp. 125-132, doi: 

10.1007/978-3-642-37291-9_14 

[4] D. Wilusz, J. Flotyński, M. Sielicka, “Supporting experimentation in a 

food research laboratory with the Internet of Things”, in: PhD 

Interdisciplinary Journal no. 3/2013, Gdańsk: Gdańsk University of 
Technology, 2013, pp. 113-119. 

[5] D. Waltenegus, Ch. Poellabauer, Fundamentals of wireless sensor 

networks: theory and practice, John Wiley & Sons, 2010 

[6] M. Weiser, "The computer for the 21st century", in: Scientific 

American vol. 265, 1991, pp. 94-104, doi: 

10.1038/scientificamerican0991-94 

[7] R. T. Fielding, R. N. Taylor, “Principled design of the modern Web 

architecture”, in: ACM Transactions on Internet Technology vol. 2 

issue 2, New York: ACM, 2002, pp. 115-150, doi: 

10.1145/514183.514185 

[8] J. Rykowski , P. Hanicki, M. Stawniak, “Ontology Scripting 

Language to Represent and Interpret Conglomerates of IoT Devices 

Accessed by SOA Services”, in: SOA Infrastructure Tools: Concepts 

and Methods, S. Ambroszkiewicz, J. Brzeziński, W. Cellary, A. 
Grzech, K. Zieliński, Eds. Poznań: Wydawnictwa Uniwersytetu 

Ekonomicznego w Poznaniu 2010, pp. 235-262  

[9] D. Guinard, I. Ion, S. Mayer, “In Search of an Internet of Things 

Service Architecture: REST or WS-*? A Developers' Perspective”, in: 

Mobile and Ubiquitous Systems: Computing, Networking, and 

Services, A. Puiatti, T. Gu, Eds. Berlin Heidelberg:  Springer-Verlag, 

2012, pp. 326-337, doi: 10.1007/978-3-642-30973-1_32 

[10] OSGi Alliance Technology / HomePage 

http://www.osgi.org/Technology/HomePage 

[11] J. Flotyński, K. Krysztofiak, D. Wilusz, “Building Modular 

Middlewares for the Internet of Things with OSGi”, in: The Future 

Internet LNCS, vol. 7858, A. Galis, A. Gavras, Eds. Berlin 

Heidelberg:  Springer-Verlag, 2013, pp. 200-213, doi: 10.1007/978-3-

642-38082-2_17 

[12] R. S. Hall, K. Paulus, S. McCulloch, D. Savade, OSGI in Action: 

Creating Modular Applications in Java , Greenwich: Manning 

Publications, 2011 

[13] OSGi Alliance OSGi™ Service Platform Release 4 Version 4.2 

http://www.osgi.org/javadoc/r4v42/ 

[14] A. de Castro Alves, OSGi in Depth, Greenwich: Manning, 2011 

[15] J. S. Rellermayer, G. Alonso, T. Roscoe, “R-Osgi: Distributed 

Applications through Software Modularization”, in: Middleware 2007 

LNCS, vol. 4834, R. Cerqueira, R. H. Campbell, Eds. Berlin 

Heidelberg:  Springer-Verlag, 2007, pp. 1-20, doi: 10.1007/978-3-

540-76778-7_1

 

TABLE I. 

COMPARING OSGI AND REST-BASED APPROACHES 

IoT requirement 
OSGi-based 

management 

REST-based 

management 

registering the device/function X X 

providing individual proxy for interaction/communication mapping – starting, stopping, and 

suspending/resuming the service 
X X 

monitoring real-device state and providing information about device accessibility - X 

searching for the device(s) to serve given request X X 

if a request is to be possibly served by several devices, choosing one device based on context and 

statistical information collected during past activations 
X X 

orchestrating device functions taking into account local context (complex or virtual devices) - X 

administrating device parameters (individual GUI for each device) - X 

sharing basic libraries (functionality) for similar devices X - 

adjusting scope of search for a device in the distributed access, managing a hierarchy of proxy servers - X 

 

1214 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014


