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Abstract—Grids provide secure, utility-like access to a wide
variety of large-scale, distributed computational and storage
resources. In particular, the European Grid Infrastructure (EGI)
and Open Science Grid (OSG) have excelled in processing vast
workloads of independent jobs for the research community.

Researchers demand increasingly faster processing speeds to
solve increasingly larger and more complex problems. To meet
this need, attention has shifted over the past decade away from
single-core processing models towards the use of multi-core,
many-core and massively parallel computational accelerators.
The increasing availability and use of General Purpose Graphic
Processing Units (GPGPUs) are an example of this.

This paper addresses many of the challenges that exist in the
integration of resources such as GPGPUs into Grid infrastruc-
tures. Specifically, solutions are proposed for discovering and
describing GPGPU Grid resources, specifying multi-GPGPU job
requirements, performing multi-GPGPU allocation to jobs, dy-
namically updating publicly-readable GPGPU usage information
and enforcing GPGPU access control to prevent distinct jobs from
inadvertently accessing the same device. The proposed solution
is fully compatible with widely-used and accepted standards and
middleware including the GLUE 2.0 schema and EGI Unified
Middleware Distribution. A prototype implementation is also
described.

I. INTRODUCTION

G
RID Computing [1] developed out of the need for

geographically distributed scientific communities to co-

operate in order to investigate scientific problems with in-

creasing computational complexity. The most famous example

of such a community is the Particle Physics community

investigating the existence of the Higgs Boson using the

Large Hadron Collider (LHC). Not only do such large-scale

problems require a given scientific community to share vast

amounts of data among its (distributed) users, it may also be

unfeasible to to process this data at a single location (known

as a “Site” or “Resource Centre”) – hence distributing the

data processing tasks and storage to multiple locations is often

required. Such grid-systems draw upon distributed computing,

resource discovery and sharing, distributed data-management,

authentication and authorisation, role-based access control and

process accounting.

Grids developed around a “single program/single CPU”

execution model. However, since 2005 the exponential growth

of CPU speed and processing power has plateaued [2],

and this has generated some questions about the future

of computational-based scientific research using this “single

program/single CPU” approach. Parallel Processing taking

advantage of emerging multi-CPU cores (multicore) or many

processing cores (many-core) on General Purpose Graphic

Processing Units (GPGPUs) or Intel’s Xeon Phi Computa-

tional Accelerator is regarded as a “white-knight” like solution

to this problem. Indeed, the trend towards the extensive

usage of GPGPUs and Intel’s Xeon Phi, commonly known as

“Computational Accelerators” (CAs) [3], in High Performance

Computing environments can be seen in the twice-yearly “Top

500 Supercomputer” lists [4].

Support for grid-based parallel applications using Message

Passing Interface (MPI) [5] has been available for a number

of years [6]. No such support currently exists for the emerging

CA-based parallel-processing architectures despite indications

that many grid resource-centres and users were planning to

incorporate CAs into their future work-plans [7] [8].

The core objective of the work presented in this paper is to

address the challanges of integrating GPGPU resources into

grid infrastructure in such a way that there are no changes (or

minimal changes) to how the user works. In addition, there

should there be no significant changes to the grid infrastructure

itself. The approach taken to solve this integration problem is

to first consider the more general problem of integrating any

new resource. A set of Grid Resource Integration Principles

is developed (Section III) that take these constraints into

account.

In this paper: Section II reviews some of the key concepts in

Grid Computing, including service-discovery (the Grid Infor-

mation System) and the job submission lifecycle. Section III

introduces the multi-layer abstract achitecture that seperates

GPGPU job resource requests from the GPGPU allocation and

access protection layers. Section IV presents a realisation of

this model in the form of a prototype execution-model that

extends the architecture and capabilities of a grid based on

the popular Unified Middleware Distribution (UMD). This

extension provides new services that address four key grid

components, namely: (i) GPGPU service discovery; (ii) multi-

GPGPU resource allocation through a grid job description

language and batch system integration; (iii) dynamic updating

of publicly-readable status information describing the GPGPU

resource usage that complies with current standards; and

finally, (iv) per-job access controls that prevent distinct jobs

from inadvertently accessing the same GPGPUs. Section V

looks at related work, and when applicable, discusses how

and why the approach taken here differs. Finally, Section VI
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reviews the current implementation and the scope for future

work in this area.

II. GRID COMPUTING

The terminology “Grid” and “Grid Computing” has a wide

and varied interpretation [9]. With this in mind, there is a

need to clarify these terms in the context of this work and

thus define the scope of the work. This section introduces key

concepts in Grid Computing – specifically Grids such as the

European Grid Infrastructure (EGI) and Open Science Grid

(OSG) that primarily provide computing and storage resources

to researchers. A high-level overview of the lifecycle of a

user’s job, from job submission through to execution using

a Grid resource, will be presented. Grids are, by nature, large-

scale, distributed infrastructures and accessing Grid resources

relies on maintaining a uniform, structured, global view of

the Grid. An overview of the systems that maintain this

information will also be presented.

Key Concepts

A Grid is a distributed collection of computational and

storage resources where (i) each resource is controlled and

managed solely and independently by its owner or resource-

provider (for example a University, research centre, company

or private individual) and (ii) each resource-provider has some

level of control over how the resource is accessed and used.

This definition is sufficiently general to include both large-

scale Grids, such as EGI or OSG, and also “compute-cycle”

volunteer donation systems such as BOINC [10].

The work described in this paper is concerned with large-

scale Grids, such as EGI or OSG, that are composed of multi-

ple resource-centres, each operated by their owner or resource-

provider. Each resource-centre provides one or more Compute

Elements (CEs). These are services that provide access to

computational resources such as a cluster of worker nodes

accessed through a batch system. A Grid Information System

is used to publish the capability of each resource-centre, in

the form of a description of the resources that it provides,

the current utilisation and availability of those resources and

a description of the mechanisms for accessing them. To make

use of the computational resources provided by a Grid, users

submit jobs that are described using a formal job description

language (JDL) (or resource-specification language (RSL)).

In simple terms, a job consists of an executable program,

a specification of the software environment in which the

program must run, any input parameters and data required by

the program and the files that will contain the outputs from

the job. Users are grouped into Virtual Organisations based,

for example, on their research area and these groupings are

used to control access to – and account for the usage of –

grid resources.

Grid users can request that their jobs be executed on a spe-

cific resource, based on a priori knowledge of the capabilities

of a resource-centre. However, ideally Grids such as EGI and

OSG will allow users to submit a job and let the Grid “decide”

where that job should execute. To facilitate this, as well as

capturing basic information about the job (e.g. executable

program, input parameters and data), a JDL description of

the job can also describe the job’s resource requirements (e.g.

number of CPU cores, minimum CPU specification, minimum

memory requirement, software environment). In this scenario,

instead of submitting a job directly to a resource-centre, the

job is submitted to a Grid Workload Management System

(WMS). The WMS acts as a broker, using the information

published about each resource-centre through the Grid Infor-

mation System, together with the description of the job, to find

all resources that match the job’s requirements. Furthermore,

the broker can select one of the matched resources (e.g. using

pre-defined policies or heuristics) and orchestrate the execution

of the job on the chosen resource.

The Grid Job Life-cycle

The usual starting point when submitting a job to the grid is

the User Interface (UI). This is a service node that contains the

necessary command tools to interact with other grid services.

The UI is configured to interact with one or more Workload

Management Systems (WMS).
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Fig. 1: The Job Submission Chain

Figure 1 illustrates the life-cycle of a single grid job,

from the submission of the job in JDL on the UI, through

its orchestration by a WMS, to its eventual execution at a

resource-centre. A high-level outline of the flow of a grid job

through the WMS includes the following stages:

1) When the job is submitted to the WMS, a copy of the

JDL file and any input files specified in it are copied to

the Workload Management System (WMS).

2) The WMS will determine all locations where the job can

possibly run. This is the “match-making” process. The

potential locations are then ranked in preference. The

user can also influence the rank ordering by specifying

a RANK expression in the JDL.

3) Once a target CE at a resource-centre is chosen, the

WMS will engage with the CE.

4) The CE builds a JobWrapper. This executable is built

taking into account the local batch system, also known
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as a Local Resource Management System (LRMS), on

the CE. Some of the roles of the JobWrapper are to build

a job submission script for the batch system, transfer all

input files from the WMS, and then submit the job to

the batch system.

5) The batch system is responsible for scheduling the

execution of the user’s job on one or more CPU-Cores

on a worker node (WN).

6) After execution, the output files specified by the JDL

description are transferred back to the WMS and can be

retrieved by the user.

The match-making process requires knowledge of the over-

all state of the distributed set of resources. This state informa-

tion is managed by a “Grid Information System”.

Grid Information System

The Grid Information System is a critical component re-

quired for discovering services, determining the status of

resources and selecting resources for submitted jobs. This

system is composed of an information model (a schema)

for describing entities (such as computational resources and

available software) and the relationship between those entities,

as well as a “presentation layer” that publishes this information

as a frequently-updated queryable service (a realisation).

The Grid Laboratory Uniform Environment schema (GLUE

schema) was developed as an Open Grid Forum (OGF)

“reference standard” for multi-disciplinary Grids. There are

currently two major (incompatible) versions of the GLUE

schema in common use – GLUE 1.3 [11] and GLUE 2.0 [12].

Grids such as EGI are currently transitioning from GLUE

1.3 to GLUE 2.0 by running services that can utilize both

standards. GLUE 2.0 offers many improvements over GLUE

1.3, including a richer description of grid entities and their

state and the ability to easily publish extra details about grid-

entities (using “OtherInfo” attributes). Moreover, GLUE 2.0

was developed to improve inter-grid interoperability [13].

Information in a Grid Information System originates from

Information Providers. The services that are used to access

and manage grid resources (e.g. a batch system for a set

of worker nodes) should provide an interface that allows

the Information Provider for that resource to determine the

properties and current state of the resource, transform this

information into an appropriate GLUE entity and publish the

information (Figure 2).

Propagating GLUE entities so that they are visible “glob-

ally” in a Grid Information System follows a natural hierar-

chical structure (Figure 3): GLUE entities are generated by

Information Providers; the set of Information Providers (info-

providers) on a particular node publish their state as a local

resource; the set of local resources form a domain; and the

combined set of entities from each domain yield a global view.

The GLUE information “presentation layer” is typically

managed by the BDII([14], Sec. 3.3.5). This is an implemen-

tation of a the hierarchical Grid Information System model

with three BDII “types” and a set of “information providers”

that generate information about the Grid entities. As per

Resource State Query
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Resource AN

Resource A
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Resource  A 
Information
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Generated
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Fig. 2: Abstract Information Provider Model. An Information

Provider queries a service that manages a set of Resources

of type “A” at a resource centre. The Information Provider

transforms the response into one or more GLUE entities.

Figure 3 the Resource-BDII (lowest BDII level) aggregates

the state of a grid service node by executing a set of Generic

Information Providers (GIP) plugins; the Site-BDII aggregates

all the Resource-BDIIs belonging to the given site; and the

Top-level BDII aggregates all the Site-BDIIs. Information is

“pulled” from the lower to higher levels. In general, all queries

about the state of the Grid are made through the Top-Level

BDII.

III. INTEGRATING GPGPU RESOURCES INTO EXISTING

GRID INFRASTRUCTURES

Many grid resource centres have already deployed GPGPU

resources [7]. There is, however, no support in place for

users to discover these GPGPU resources or submit jobs that

specify a dependency on GPGPUs. Currently, users wishing

to use these resources rely on a priori knowledge of the

location and properties of available GPGPUs and the job

submission mechanisms required to use them. Furthermore,

after inspecting GLUE data published by the Top-Level BDII

lcg-bdii.cern.ch, it was determined that from a sample of 2887

unique GlueCEUniqueID entities (i.e. interfaces to queues

on the grid-connected batch systems), over 58% of these

GlueCEUniqueID reported that the Torque/PBS (excluding

PBSPro) batch system was used (Table I (a)). In particular,

779 GlueCEUniqueIDs (27%) used Torque/PBS 2.5.7 (Table I

(b)). This is indicative of the default UMD Torque/MAUI

installation that does not correctly handle generic consumable

resources. From this data, it is reasonable to conclude that a

significant percentage of grid systems on the EGI grid infras-

tructure do not support GPGPUs as consumable resources.

This paper addresses the challenge of integrating GPGPUs

as first-class grid resources. From a user’s perspective, these

resources should be easy to discover without relying on a
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Fig. 3: The Grid Information System. GLUE data is prop-

agated from the lowest level (generated by Information

Providers) up to Global level.

TABLE I: Reported LRMS Types

(a)

LRMS Type Count

Torque 930
PBS 740
LSF 704
Condor 296
GE/SGE 141
SLURM 63
PBSPro 12
Fork 1

Total 2887

(b)

Torque/PBS Count

2.5.7 779
2.5.X (ex 2.5.7) 706
undefined 84
4.X 45
3.X. 24
2.4.X 8
2.3 24

Total 1670

priori knowledge (discovery); the specification, requirements

and ranking of these resources should be independent of how

the resources are locally managed (independence); and the user

should have some assurance of exclusive access to the resource

(exclusivity). Rather than considering GPGPUs specifically, the

challenge is viewed as a generic consumable resource access

problem. The approach proposed for addressing this challenge

is summarised by the following Grid Resource Integration

Principles:

• Discovery: The resource should be published as one or

more GLUE entities. The act of publishing the resource

into the Grid Information System makes the resource dis-

coverable by users and services. An entity should, where

possible, contain attributes that reflect the resources prop-

erties, and also where possible, these attributes should be

quantitative. This allows resources of the same type to be

compared and ranked against each other. (For example,

the vendor, model and performance characteristics of a

GPGPU may be of importance when selecting appropriate

resources for a job.)

• Independence: There should be a method through which

the required resource can be specified using a job descrip-

tion language. The specification should be independent

of the way in which the resources are locally managed.

(For example, the mechanism used to specify GPGPU

requirements to the Torque/MAUI scheduling system

differs from that used by SLURM.)

• Exclusivity: A resource allocated to a job by a batch

system should be available as if it were exclusively

allocated to the job. (For example, a GPGPU allocated to

a job should not be available or even visible to another

job running on the same worker node.)

Case Study – GPGPU integration

As an example of the application of the above Grid

Resource Integration Principles, the use-case of GPGPUs

as grid resources is considered. This use-case is interesting

not only because of their parallel-processing capabilities,

but because they are also representative of the class of

LRMS Generic Consumable Resources - a class of non-CPU

resources that can be managed by the LRMS.

Discovery: The salient properties that help describe a GPGPU

are similar to those used to describe CPUs: vendor, model,

memory, speed, benchmarked performance, number of

physical GPGPUs per worker node. LRMS properties that

can influence WMS orchestration and ranking include, the

total number of installed GPGPUs and the number that are

currently allocated through the batch system. Users may also

be interested in the software required to access the resource,

and basic installation details. These properties could be

advertised in the Grid Information System as one or more

GLUE entities and optionally used as a filter during resource

selection.

Independence: The user needs an LRMS-independent way

to specify the number of GPGPUs required or the number

of GPGPUs that the job needs per-CPU core (this implies a

minimum number of GPGPUs per worker node).

Exclusivity: The user needs assurances that two or more jobs

concurrently executing on the same worker node cannot use

the same GPGPU. In the absence of batch-system support for

such exclusivity, an additional mechanism must be provided.
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In the next section, a prototype extension of a Grid that

integrates GPGPU resources is presented. This prototype in-

troduces a GLUE 2.0 entity and GPGPU Information Providers

that provides for the discovery of GPGPU resources; a means

to specify GPGPU resource requirements that is independent

of the batch system used; and, finally, a new mechanism to

ensure that GPGPU resources are allocated exclusively to each

job.

IV. PROTOTYPE IMPLEMENTATION

As shown in section II, the mechanism for orchestrating the

execution of a grid job follows a complex chain of events. As

a result, providing access to new grid resources, such as GPG-

PUs, is non-trivial. In particular, if these resources are to be

provided by existing grid infrastructures that are in-production

and in continuous use by an extensive community of users,

the challenge becomes more acute. Adding support for new

resources cannot be dependent, for example, on architectural

changes, the replacement of core services or modifications to

the GLUE schema. Instead, the approach taken must integrate

with existing infrastructure, while adhering to the principles

of discovery, independence and exclusivity (Section III).

The approach taken in this prototype is to provide a set of

modular hooks, that in principle can be applied to many other

resource types, other than GPGPUs. In this section, it will be

shown that this approach requires relatively small changes to

existing grid middleware.

A. Prototype Infrastructure

The focus of this prototype on the integration of Nvidia

GPGPUs using the CUDA runtime and application devel-

opment framework. (Nvidia GPGPUs are the most widely

used GPGPU in High Performance Computing centres.) The

prototype was developed using the UMD gLite grid mid-

dleware, and consists of a User Interface (UI), a Workload

Management System (WMS), a Top-Level BDII (BDII), grid-

security infrastructure services, and a Resource Centre using

the CREAM CE. The CREAM CE uses Torque 2.5.7 as the

batch system server and the MAUI batch scheduler. (MAUI

was modified with a publicly available patch to enable Generic

Consumable Resources.)

B. Discovery: GPGPU Schema and Information Providers

Section III considered what information about GPGPU

resources should be represented through the GLUE-schema.

In this prototype, a simple representation of these details

is realized by using the GLUE 2.0 ApplicationEnvironment

entity [12]. This entity is primarily used to describe the

properties of software installed on worker nodes. However, a

key feature of the ApplicationEnvironment is that it supports

non-mandatory attributes that relate to software capacity and

utilisation. This feature is used to publish installed GPGPU

capacity and utilisation. Furthermore, the definition also allows

for other arbitrary information to be published, such as the

GPU vendor, model and speed and benchmarked performance.

(An alternative and perhaps superficially more obvious

approach would have been to use the GLUE 2.0 Execu-

tionEnvironment entity, which provides for attributes such

as CPU vendor, model and speed which may also used to

describe GPGPUs. This approach, however, would describe

an architecture in which the GPGPUs are independent of –

rather than reliant on – the CPUs on the same worker nodes. In

contrast, using the ApplicationEnvironment entity to describe

GPUs allows the relationship between CPUs and their attached

GPUs to be captured by the Grid Information System.)

Start
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Fig. 4: Workflow of Modified ApplicationEnvironment Infor-

mation Provider

The current gLite implementation of the GLUE 2.0 Applica-

tionEnvironment Information Provider already generates Ap-

plicationEnvironment entities by converting GLUE 1.3 Soft-

wareEnvironment entities into their minimal GLUE 2.0 equiv-

alents. In this prototype, this existing Information Provider is

replaced with a new Information Provider that facilitates per-

application hooks. For each application, separate hooks can be

provided to generate static and dynamically changing GLUE

data. This is illustrated in Figure 4.

In particular, the prototype uses new CUDA Applicatio-

nEnvironment hooks that publish static data pertaining to the

GPGPU hardware and CUDA software properties as well as
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dynamically gathering and publishing previously unavailable

GPGPU capacity and utilisation data from MAUI. Listing 1

illustrates an example of some of the output generated by

the execution of a modified Information Provider where both

dynamic and static hooks for the CUDA environment have

been added.

Listing 1: An example of the output from the static and

dynamic GLUE 2.0 CUDA ApplicationEnvironment hooks

...

objectClass: GLUE2ApplicationEnvironment

GLUE2ApplicationEnvironmentMaxJobs: 32

GLUE2ApplicationEnvironmentAppName: CUDA

GLUE2ApplicationEnvironmentFreeJobs: 30

...

GLUE2EntityOtherInfo: ←֓

GPUCUDAComputeCapability=2.1

GLUE2EntityOtherInfo: GPUMainMemorySize=1024

GLUE2EntityOtherInfo: GPUCoresPerMP=48

GLUE2EntityOtherInfo: GPUCores=192

GLUE2EntityOtherInfo: GPUClockSpeed=1660

GLUE2EntityOtherInfo: GPUECCSupport=false

GLUE2EntityOtherInfo: GPUVendor=Nvidia

GLUE2EntityOtherInfo: GPUPerNode=2

Table II indicates where the CUDA ApplicationEnvironment

hooks provide additional Attribute-Value pairs that are part

of the GLUE2 standard (but not generally used), and where

the ApplicationEnvironment schema has been further extended

(as allowed by the standard) by adding GLUE2 OtherInfo

values. Furthermore, Table II lists the data-type of each value,

the source of the data, and whether the data is generated

dynamically or provided statically.

TABLE II: Extended GLUE2 CUDA ApplicationEnvironment

Standard ApplicationEnvironment Source Creation

MaxSlots Integer LRMS Dynamic
MaxJobs Integer LRMS Dynamic
FreeJobs Integer LRMS Dynamic

New EntityOtherInfo Attributues Source Creation

ApplicationArea String System Static
GPUCUDAComputeCapability Float GPGPU Static
GPUMainMemorySize Integer GPGPU Static
GPUMP Integer GPGPU Static
GPUCoresPerMP Integer GPGPU Static
GPUCores Integer GPGPU Static
GPUClockSpeed Integer GPGPU Static
GPUECCSupport Boolean GPGPU Static
GPUVendor String GPGPU Static
GPUModel String GPGPU Static
GPUPerNode Integer LRMS Static

C. Independence: Specifying and Handling GPGPU Job Re-

quirements

Independence implies that the grid user should be able to

specify required GPGPU resources within the existing job

submission framework in a manner that is independent of any

CE batch system implementation. By considering how jobs

are orchestrated through a WMS, the changes required to the

grid infrastructure to achieve this goal are outlined below.

JDL GPGPU requirements specification: The prototype allows

a user to request GPGPUs by adding the following JDL

specification:

GPUPerNode=X;

Here, X is the number of GPGPUs to be allocated per node.

This specification requires no changes to the JDL Language

definition syntax. As well as specifying the number of GPUs

required, the JDL should also specify the ApplicationEnvi-

ronment entity that advertises the availability of the required

GPGPU. An example of the complete JDL for a job requiring

two GPGPUs and using the CUDA framework is shown in

Listing 2.

Listing 2: Example GPGPU Job for gLite based Grids

[

Executable = "myScript.sh";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {

"GPGPU_acquire_prologue.sh",

"GPGPU_job_script.sh",

"GPGPU_release_epilogue.sh"

};

OutputSandbox = { "std.out","std.err"} ;

VirtualOrganisation = "gputestvo";

Requirements = (Member("CUDA",other.←֓

GlueHostApplicationSoftwareRunTimeEnvironment)←֓

);}

GPUPerNode=2;

]

Once the job is submitted to the WMS, the set of potential

resource-centres is filtered to include only those that advertise

that they support the specified ApplicationEnvironment entity

(CUDA in the above example). After applying some further

job requirements, the WMS will select a matching CE,

transfer the job workload, and then orchestrate its execution.

Resource Centre Job Execution: The orchestration of the job

on the chosen resource centre CE can be classified into three

stages: (i) job preparation; (ii) job submission; and (iii) job

execution on the selected worker nodes(Figure 5). The job

preparation stage is used to convert the JDL GPGPU resource

specification into an LRMS specification.

During the Job Preparation phase, job input files and

executable programs are transferred from the WMS to the

CREAM CE. A “JobWrapper” script is created by CREAM.

The JobWrapper is executed on the CE, and is responsible,

among other things, for constructing a job execution envi-

ronment appropriate to the LRMS. The JobWrapper script

created by CREAM already contains a mechanism to pass

or “Forward” job requirements to the LRMS [15]. This proto-

type exploits this mechanism by implementing a JobWrapper

“batch requirements forwarding” script that will parse a copy

of the JDL to determine if the GPUPerNode value is defined

and, if it is, return a suitable resource request, the format of

which will be dependent on the specific batch system.
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D. Exclusivity: Restricting Visibility of GPGPU Resources

Multi-core worker nodes allow many independent jobs to

execute simultaneously. These independent jobs are protected

from each other by executing in their own private disk-area,

and by using file-access and process protection enforced by

the operating system kernel. GPU (and consequently GPGPU)

resources are designed to be accessible by all worker node

users. In the case of GPGPUs exposed through a batch system,

it is desirable to control access to them. Nvidia supports

a number of ways in which access to its GPGPUs can be

controlled:

1) the CUDA VISIBILE DEVICES environment variable

can be used to restrict the visibility of a set of GPGPU

devices in a process,

2) the Nvidia Compute Modes can permit/deny sharing of

a GPGPU between multiple processes.

The handling of GPGPU allocation on common open-source

batch systems, such as Torque/MAUI, is still problematic, in

particular with mid-range GPGPUs where Nvidia-SMI tools

do not report a full complement of utilisation data. A simple

prototype service was developed that allows Torque/MAUI

batch jobs to request a set of free GPGPUs on the worker

node, and to release those GPGPUs back to the service when

no longer required. Furthermore, the allocated GPGPUs are

not visible to other user jobs on the worker node.
The service, which executes on each worker node, im-

plements a lightweight web-server using the Tornado [16]

framework. To improve the security of the service, it runs as

an unprivileged user, GPGPU allocation states are maintained

in a lightweight persistent database, and the service is internal

to the worker node (i.e. it is not available to other nodes).
The server responds to two types of requests: request-

GPUS and releaseGPGUs. These requests are respectively

called from the within the GPGPU acquire prologue.sh and

GPGPU release epilogue.sh Job Hook scripts, specified in

the JDL (Listing 2).
Requests to the prototype tornado server must adhere to

a strict syntax, and all malformed requests are dropped by

the server. In the case the Torque implementation, a request

is generated by sending a copy of the “PBS JOBCOOKIE”

and a list of Universally Unique Identifiers (UUIDs) - one

per requested GPGPU. The PBS JOBCOOKIE was chosen

because, unlike the batch system “jobid”, this value is not

exposed to other users or processes.
The server manages the allocation of GPGPUs to jobs

by using a single database with two tables: UUID JOBID

and GPU UUID. The GPU UUID table associates GPGPU

devices with a job-generated UUID. The UUID JOBID table

associates UUIDs to a suitable unique value, such as the

PBS JOBCOOKIE.
1) Initialisation: The GPU UUID table is initialized at

node start-up. A row is added for each physical GPGPU.

Similarly, the UUID JOBID table is created, but remains

unpopulated until a GPGPU is requested by a job. Table III

shows the initial state of the database tables for a node with

two GPGPUs.

TABLE III: Initial State

(a)

GPUID UUID

0
1

(b)

JOBID UUID

2) Allocation Request: A GPGPU allocation request (Fig-

ure 6) should be sent to the server before the job attempts

to execute any GPGPU code. When the server receives an

allocation request message, a “Request Handler” will attempt

to validate it. If the request is valid, then the string is converted

into two component values: a JOBID (PBS JOBCOOKIE)

and a list of UUIDs. The request handler then iterates over

the list of UUIDS and adds (UUID,JOBID) tuples to the

UUID JOBID table. The handler will also iterate over the

list of UUIDs, selecting the first free GPGPU (i.e. rows where

the UUID cell is NULL) from the GPUID UUID table. The

selected row is the updated with a new (GPUID,UUID) tuple.

Changes to the database are committed. Finally, the server

returns a text string to the client in the form of a comma-

separated list of integers. This is the list GPGPU devices that
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the the job has been allocated. This value is assigned to a

read-only CUDA VISIBLE DEVICE environment variable,

thereby ensuring that the user or process can no longer

(inadvertently) update its value.

Start

Validate 

Request

Data

Valid Request?

Evaluate JOBID

Evaluate UUID List

Get next UUID List Item

End of UUID 

List?

Get first free GPUID in GPUID_UUID Table

Set selected row to (GPUID,UUID)

Add tuple (UUID,JOBID) to JOBID_UUID Table

Add GPUID to GPUID_Output_List

Return GPUID_Output_List

Set GPUID_Ouput_List=Empty_List

End

No

NoYes

Yes

Fig. 6: Worker Node GPGPU allocation subsystem

TABLE IV: Example of a single job running on a node with

two GPGPUs

(a) GPGPUs paired to UUIDs

GPUID UUID

0 UUID1

1 UUID2

(b) JOBID1 linked to UUID1,
UUID2

JOBID UUID

JOBID1 UUID1

JOBID1 UUID2

3) Release Request: A GPGPU “Release” request should

be executed during the job’s epilogue. This request is comple-

mentary to the “Allocation” request. As with the allocation

request, the input is validated. If the request is valid, the

server’s “Request Handler” will remove all tuples matching

the UUIDs from the UUID JOBID table, and all the specified

UUIDs from the GPUID UUID table.

E. Results

Job submission was tested using different values for

GPUPerNode. Sample output of a job that requested a single

GPGPU but executed on a worker node with multiple GPGPUs

is listed below (Listing 3 ):

Listing 3: Example GPGPU Job resricted to a single GPGPU

/usr/local/cuda/samples/1_Utilities/deviceQuery/←֓

deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART ←֓

static linking)

......

Detected 1 CUDA Capable device(s)

V. RELATED WORK

CUDA wrapper

CUDA wrapper [17][18] was developed to help facilitate

secure and controlled access to Nvidia-based GPGPU re-

sources on multi-user GPGPU clusters. The wrapper acts by

intercepting normal CUDA API fuction calls and overloading

them with additional methods that transparently provide addi-

tional key-based access-control to the raw GPGPU device.

The approach taken in this paper avoids some drawbacks

with the CUDA wrapper method, namely: (i) Each API inter-

ception imposes a latency to handle each CUDA function call;

(ii) CUDA wrapper must be recompiled for each new version

of CUDA; (iii) CUDA wrapper did not work under testing

with CUDA 5.5; and, (iv) The wrapper is vendor and LRMS

(Torque) specific.

GPU resources on the Grid

There are several examples of current work where GPGPU

resources have been partially integrated into Grids. These take

the form of both non-virtualised GPGPU resources [19] and

virtualised GPGPU resources [20]. In both cases, the grid-

users job is given exclusive access to the GPGPU resource.

However, both of these implementations lacks resource and

service discovery and therefore require a priori knowledge

of the existance of the resources. Moreover the virtualisation

methodology imposes about 5% overhead on GPGPU access

and runtimes.

BOINC and Desktop Grids

BOINC has support for multi-disciplinary computational

sciences using GPGPU. For example, the Einstein@Home

project uses GPGPUs to search for weak astrophysical signals

from spinning neutron stars (also called pulsars) using data

from the LIGO gravitational-wave detectors, the Arecibo radio

telescope, and the Fermi gamma-ray satellite [21]. Further-

more, the EDGI Desktop Grid provides a mechanism [22] to

bridge between EGI and BOINC-enabled resources. However,

such combinations do not address the specific GPGPU service-

discovery requirements.

HTCondor GPGPU Support

HTCondor [23] supports advanced GPGPU resource publi-

cation, service-discovery, per-job GPGPU match-making, and

job-management [24]. Indeed, HTCondor is central to the the

UMD WMS match-making service. However, some of the

major differences between HTCondor and the work presented
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in this paper include: (i) the solution is intended to be

compatible with Grids using the OGF GLUE 2.0 information

model; and (ii) The approach taken treats GPGPUs as an

instance of generic consumable resources.

Application Hook Method

The design and implementation of the presented execution

model used in this work follows a pattern similar to that

used by MPI-Start [25]. In particular, this is evident in how

software hooks are used to build an appropriate site-local

application runtime-environment. The major differences in the

implementation are: (i) MPI enabled resource centres currently

publish information about the local MPI environment as a set

of GLUE 1.3 SoftwareEnvironment tags. This information is

inefficiently converted into a set of discrete and seemingly

unrelated GLUE 2.0 ApplicationEnvironment entities; (ii) The

GPGPU implementation attempts to exploit many of the newer

features of the GLUE 2.0 ApplicationEnvironment definition.

This includes the ability to publish GPGPU resource capacity

and utilisation information.

Token based access-control

The use of UUIDs as tokens in the GPGPU allocation and

release process is partially based on the use of time-limited

UUID tokens in the Puppet [26] fabric managent system -

a system used to install, configure an maintain machines on

a network. In Puppet the token is used as a “shared-key”

between the Puppet server and the client machine. The shared-

key is used to authorise the download of the client’s installation

configuration file.

EGI GPGPU Working Group

The European Grid Initiative (EGI) is currently considering

the GPGPU resources into grid infrastructures and one of the

authors is a member of the EGI GPGPU Working Group [27].

The results presented in this paper represent independent work

that may be contributed to this community effort in the future.

EGI Grid Federated Cloud Working Group

The EGI Federated Cloud Working Group uses the GLUE

2.0 ExecutionEnvironment to advertise diverse sets of (virtual)

resources [28]. The authors had considered this appraoch, but

deemed it to be unsuitable as a way to describe Consumable

Resources.

VI. CONCLUSIONS AND FUTURE WORK

This work shows how a GLUE 2.0 based multi-disipline sci-

entific grid can be extended to support new models of parallel

computing using GPGPUs. A methodology was developed that

applied three abstract principles to this resource integration

problem, namely: Discovery, Independence and Exclusivity.

The presented prototype is one of the first examples of

where a GLUE 2.0 ApplicationEnvironment entity has been

extended to include additional attributes that describe the

capacity, utilisation and other properties of hardware used

directly by the application itself. These attributes can be

generated either statically or dynamically. The example use-

case demonstrates a CUDA ApplicationEnvironment that is

extended to include the total number of installed Nvidia

GPGPUs, their current utilisation, and some selected hardware

properties. This conforms to the Discovery principle.

A method was developed that allows a grid user to specify

a GPGPU requirements in the Job Description Language.

In particular, the prototype allows the user to specify the

number of GPGPUs required per allocated Worker Node. The

job requirement is converted into the native LRMS resource

specification once the job enters the choosen Resource Centre.

The method can also be applied to other resources made

available through an LRMS. This is an application of the

Independence principle.

Ensuring that users have guaranteed and isolated access to

GPGPUs in a multi-user system can be difficult. This problem

is compounded in the cases where multiple GPGPUs on the

same machine can be accessed by multiple users - many

batch systems do not indicate what GPGPU has been assigned

to each user job. The worker node GPGPU Access Control

system discusssed in Section IV-D can assuage this problem.

The development of the GPGPU allocation handler for these

systems ensures the Exclusivity principle.

Work is in progress to support enhanced job specifications,

allowing the user to make job placement decisions based on a

wider range of published GLUE 2.0 ApplicationEnvironment

data. This allows for greater control over the resource discov-

ery and selection process. An example based on published

CUDA ApplicationEnvironment (Table II) is illustrated in

Listing 4.

Listing 4: Example JDL using CUDA attributes

Requirements = GPUVendor=="Nvidia" && (←֓

GPUMainMemorySize >= 512);

Although the service demonstrated used Nvidia and CUDA,

other environments such as AMD GPGPU and OpenCL can

also be trivially accomodated - for example, AMD uses

GPU DEVICE ORDINAL environment variable to restrict

user visibility of AMD GPGPU devices [29]. In addition, this

system can work in non-grid Torque/MAUI environments, and

requires minor changes to work with other batch systems.

Finally, although the prototype implentation was tested with

GPGPU resources, the model can be adapted to cater for

wider range of resources, such as Intel’s Xeon Phi, FPGAs

and Licence controlled software. Said resources are difficult

to integrate into grids based on GLUE 1.3. The prototype

shows that: (i) there are cases where hardware resources can

easily be treated like an ApplicationEnvironment; (ii) arbitrary

information can be published about these resources - and

this can be generated statically or dynamically; and (iii) job-

requirements can be specified in a Job Description Langauge

and transformed into batch-system directives without any

major changes to the grid middleware.
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