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Abstract—This work presents a parallel implementation of the
Parareal method using Portable Extensible Toolkit for Scientific
Computation (PETSc). An optimal control problem of a parabolic
partial differential equation with known boundary conditions
and initial state is solved, where the minimized cost function
relates the controller v usage and the approximation of the
solution y to an optimal known function y∗, measured by ‖y‖
and ‖y∗‖, respectively. The equations that model the process are
discretized in space using Finite Elements and in time using Finite
Differences. After the discretizations, the problem is transformed
to a large linear system of algebraic equations, that is solved
by the Conjugate Gradient method. A Parareal preconditioner
is implemented to speed up the convergence of the Conjugate
Gradient.

The main advantage in using the Parareal approach is to
speed up the resolution time, when comparing to implementations
that use only the Conjugate Gradient or GMRES methods. The
implementation developed in this work offers a parallelization
relative efficiency for the strong scaling of approximately 70%

each time the process count doubles. For weak scaling, 75%

each time the process count doubles for a constant solution size
per process and 96% each time the process count doubles for a
constant data size per process.

I. INTRODUCTION

MANY challenges of engineering design, such as heat

dissipation, electromagnetic inversion, diffraction to-

mography among others, can be modeled as a parabolic

optimal control problem [1]. The problem to be solved is

[2, 3]:

{

minimize J(y, v)

s.t. ∇ty = ∆xy + v ,
(1)

with [3]

J(y, v) =
α

2

∫

Ω

∫ tf

t0

‖y − y∗‖
2
2dtdx+

β

2

∫

Ω

‖y(tf )− y∗(tf )‖
2
2dx

+
γ

2

∫

Ω

∫ tf

t0

‖v‖
2
2dtdx ,

(2)

where y∗ is the optimal condition for the function y, α is the

weight for the general approximation of the function y, β is

the weight for the approximation at the final instant of the

function y and γ gives the cost of the controller usage.

The finite elements discretization using the Galerkin method

yields the following state equation [4, 5]:

Mż = Kz +Bu (3)

where z ∈ R
q̂ is the nodal representation of y, u ∈ R

p̂ is

the nodal representation of v, M is the mass matrix, K is

the stiffness matrix and B is the coupling matrix. Using this

discretization, the cost function (2) becomes:

Jh(z, u) =
α

2

∫ tf

t0

(z − z∗)TM(z − z∗) dt

+
β

2

{
[z(tf )− z∗(tf )]

TM [z(tf )− z∗(tf )]
}
+

γ

2

∫ tf

t0

uTRudt

(4)

where z∗ is the nodal representation of y∗ and R is the

controller’s mass matrix.

The finite differences discretization, using a time interval τ
with l̂ time instants, is based on equation [4]:

F1z(i+ 1) = F0z(i) + τBu(i+ 1); for 0 < i < l̂

and z(0) = y0
(5)

where F0, F1 ∈ R
q̂×q̂ are matrices defined by F0 = M and

F1 = M + τK. The arrangement of equation (3) for all times

yield:

Ez+Nu = f3 (6)

where z ∈ Rl̂q̂ and u ∈ Rl̂p̂. With a similar argument, equation

(4) has the following form:

Jτ
h (z,u) =

1

2
(z− z∗)TQ(z− z∗) +

1

2
uTGu+ (z− z∗)Tg.

(7)

Using Lagrange multipliers [6] for minimizing equation

(7) subject to equality constraint (6) and imposing first order

optimality conditions [7, 8, 9], the following KKT system [3]

with saddle point form [10] is obtained [2, 4, 11]:
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A. Schur’s Equation

In order to simplify the linear system (8), the variables z and

q are solved in terms of the control variable u [12, 4, 10, 13].

Making z = E−1f3 − E−1Nu, q = E−T f1 − E−TQz, and

substituting on the final equation from (8), gives [13, 14, 15]:

Hu = f (9)

where H = G + NTE−TQE−1N and f =
NTE−T (QE−1f3 − f1).

1

Doing this, the reduced Schur Complement [16, 14] Doing

this, the equation system (8) is reduced. This expression is

known as the Schur complement for equation (8) [16].

From this point on, the problem to solve is (9), a linear

equation system, lets say Ax = b for a general form, where

the matrix A (in this case matrix H from equation (9)) is

symmetric positive definite [10, 7, 4].

II. MATHEMATICAL SOLUTION FORMULATION

A. Conjugate Gradient

The Conjugate Gradient method is used to solve a generic

equation Ax = b where A ∈ R
ñ×ñ is symmetric positive

definite and b ∈ R
ñ.

On this work, the iterative algorithm defined in [17] is

applied to the input matrix A and vector b, with error tolerance

ε, initial guess x0 and iteration limit for convergence maxi,

as follows:

Algorithm 1 Conjugate Gradient

Input: A, b, ε, x0,maxi

Output: x
1: r0 ← b−Ax0

2: p0 ← r0
3: i← 0
4: while ri+1 ≥ ε ∧ i < maxi do

5: αi ←
rTi ri
pT
i
Api

⊲ In our implementation, Api is

calculated by Algorithm 2

6: xi+1 ← xi + αipi
7: ri+1 ← ri − αiApi ⊲ In our implementation, Api is

calculated by Algorithm 2

8: βi ←
rTi+1ri

rT
i
ri

9: pi+1 ← ri+1 + βipi
10: i← i+ 1
11: end while

12: if ri+1 < ǫ then

13: return xi ⊲ Convergent

14: else

15: return n.c. ⊲ Not convergent

16: end if

1Recall that u,b ∈ R
l̂p̂, H,G ∈ R

l̂p̂×l̂p̂, N ∈ R
l̂q̂×l̂p̂ and E,Q ∈

R
l̂q̂×l̂q̂ .

B. Using the Conjugate Gradient

In order to use Algorithm 1, the input matrix H must be

previously computed, which requires a great computational

work [5]. To avoid building matrix H, steps 5) and 7) from

Algorithm 1 are performed using Algorithm 2.

Let s be a generic input vector, and matrices G,N,E and

Q as defined in Section I. The value of the product Hs is

found using only matrix-vector operations, to avoid matrix-

matrix operations that require more computational resources

[18]. Algorithm 2 describes these matrix-vector operations [7].

Algorithm 2 Matrix-Vector Product Hs

Input: G,N,E,Q, s
Output: x ⊲ x = Hs = Gs+NTE−TQE−1Ns

1: s1 ← Gs

2: s2 ← Ns

3: s3 ← E−1s2 ⊲ Es3 = Ns, in our implementation, solved

by Algorithm 4

4: s4 ← Qs3 ⊲ s4 = QE−1s2
5: s5 ← E−T s4 ⊲ ET s5 = Qs3, in our implementation,

solved by Algorithm 4

6: x← s1 +NT s5 ⊲ x = Gs+NT s5

The direct implementation of Algorithm 2 can be unviable

since steps 3) and 5) require inverse matrices [7]. To avoid

this, the steps 3) and 5) from the Algorithm 2 can be solved

using an inner Conjugate Gradient. This step will have a high

computational cost because it will be done for each iteration

of the outer Conjugate Gradient.

The idea is to replace steps 3) and 5) from Algorithm 2

using the Parareal method [7].

C. Parareal

The Parareal method [19, 9] is an iterative method used

to solve a time dependant equation, based on a time domain

decomposition [t0, tf ] in k̂ coarse time intervals, each of size

∆T = (tf − t0)/k̂, with T0 = t0 and Tk = t0 + k∆T for

1 ≤ k ≤ k̂. This sets the solution for each instant Tk with

1 ≤ k ≤ k̂ using the multiple-shooting technique [20, 21]

that requires the parallel resolution of the equation z = E−1b

for each (Tk−1, Tk) subinterval. To accelerate each multiple-

shooting iteration, the residual equations are preconditioned by

a coarse time grid discretization, with a time interval ∆T [7].

An approximation E−1
n for E−1, is based on n Richardson’s

iterations [22], through the Parareal algorithm, where the

Richardson’s algorithm is used as an external iteration for a

Schur’s complement problem [7, 16, 23]. The matrix En is

used to approximate the solution z by zn = E−1
n b, and the

main interest is that zn = E−1
n b and zn → z as n → ∞, in

practical situations n is bounded [4].

Let m̂ = (Tk − Tk−1)/τ , jk−1 = (Tk−1 − T0)/τ and Zk

be the solution for the instant Tk, defined by solving from

time Tk−1 to Tk using the Finite Difference discretization

scheme on the fine grid [24] (for each time instant, of size

τ ) with initial values Zk−1 in Tk−1 and right hand side vector
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b = [b(jk−1+1)T , . . . , b(jk−1+m̂)T ]T . The solution of each

coarse interval is given by:

F1 ⊗ Zk = F∆
0 ⊗ Zk−1 + Sk (10)

where, ⊗ represents the Kronecker product [25], F∆
0 =

(F0F
−1
1 )m̂−1F0 ∈ R

q̂×q̂ , Z0 = 0, the matrices F0 y F1 as

set in (5) and

Sk =

m̂∑

m=1

(F−1
1 F0)

m̂−m[F0Zk−1 − b(jk−1 +m)] (11)

Imposing continuity, F1⊗Zk−F∆
0 ⊗Zk−1−Sk = 0 on the

instants Tk, for 1 ≤ k ≤ k̂, the system CZ = S is obtained

[9, 7]:








F1

−F∆
0 F1

. . .
. . .

−F∆
0 F1








︸ ︷︷ ︸

C








Z1

Z2

...

Zk̂








︸ ︷︷ ︸

Z

=








S1

S2

...

Sk̂








︸ ︷︷ ︸

S

(12)

The case where the coarse solution in Tk with initial

data Zk−1 ∈ R
q̂ in Tk−1 is obtained after using a Finite

Differences step for the coarse time interval G1Zk = G0Zk−1

is considered, where the matrices G1 = (M + K∆T ) and

G0 = M ∈ R
q̂×q̂ are defined.

A coarse grid propagator based on G0 and G1 is used in

the Parareal algorithm to precondition (12) [9]. The coarse

grid propagation system Zi+1 = Zi +E−1
g Ri is defined as:








Zi+1
1

Zi+1
2
...

Zi+1

k̂








︸ ︷︷ ︸

Zi+1

=








Zi
1

Zi
2
...

Zi
k̂








︸ ︷︷ ︸

Zi

+








G1

−G0 G1

. . .
. . .

−G0 G1








−1

︸ ︷︷ ︸

E
−1
g








Ri
1

Ri
2

...

Ri
k̂








︸ ︷︷ ︸

Ri

(13)

for 0 ≤ i ≤ (n − 1), where the residue Ri =
[

Ri
1
T
, . . . , Ri

k̂

T
]T

∈ R
k̂q̂ in (13) is defined as Ri = S −

CZi, where Zi =
[

Zi
1
T
, . . . , Zi

k̂

T
]T

∈ R
k̂q̂ and Z0 =

[0T , . . . , 0T ]T . Each Ri
j vector stands for the i-th iteration of

the residue, on the Tj time instant. Likewise, each Zi
j vector

stands for the i-th iteration of the solution, on the Tj time

instant.

Now, zn = E−1
n b is defined. Let zn be the nodal represen-

tation of a piecewise linear function zn in the time dimension

with respect to the fine space discretization parameterized

by τ in [t0, tf ]. Because zn ∈ R
(l̂+k̂−1)q̂ is continuous in

each coarse subinterval [Tk−1, Tk], the function zn can be

discontinuous on the points Tk, with 1 ≤ k ≤ k̂ − 1. On

each [Tk−1, Tk] subinterval, zn is defined by solving from the

instant Tk−1 to the instant Tk using the Finite Differences

scheme with fine time intervals τ and initial data Zn
k−1 in

Tk−1. The equation that describes the solution on the fine

intervals, starting from a coarse interval is:

F1z
n(i+ 1) = F0z

n(i)− b(i+ 1); for Tk−1 ≤ t < Tk; y zn(Tk−1) = Zn
k−1.

(14)

The vector zn is obtained computing (14) for 2 ≤ k ≤ k̂.

With this algorithm the steps 3) and 5) from Algorithm 2

can be solved, and therefore it can find the product Hs. In

the program, the input vector s for Algorithm 2 will be each

vector pk from Algorithm 1, used on the outer iteration of the

Conjugate Gradient.

III. IMPLEMENTATION

The user defines the spatial discretization size q̂, the fine

time discretization size l̂, the coarse time discretization size k̂,

the initial condition y0 and the target solution y∗.

To help the convergence rate of the outer Conjugate Gradi-

ent, an initial guess u0 is found through:

u0 = NE−TQE−1f3 −NTE−T f1 . (15)

The program implemented on this work uses the main

structure of Algorithm 3.

Algorithm 3 Main

Input: q̂, l̂, k̂, m̂, y0, y
∗

Output: u

1: [M,K,B] = finiteElements(q̂, y0, y
∗) ⊲

Call to the function that does

the space discretization, as

described in Section I
2: [E,Q,N,b] = fineGrid(M,K,B, l̂) ⊲

Call to the function that does

the fine time discretization,

as described in Section I
3: [C,Eg] = coarseGrid(M,K, k̂, m̂) ⊲

Call to the function that does

the coarse time discretiza-

tion, as described in Section

II-C
4: [u0] = preconditioner(G,E,Q,N,b) ⊲

Call to a function that calcu-

lates (15)
5: [u] = cg(ε,u0,maxi, k̂, m̂,G,E,Q,N,b,C,Eg) ⊲ Call

to Algorithm 1

With the defined problem data, the finite elements matrices

are generated. Next, the matrices of the time discretization

are built, and the system (8) can be formulated. The matrices

from the time discretization are considered as the fine grid

matrices, because they have every time instant from the

problem. Afterward, the coarse grid matrices are generated

from the finite elements matrices. The coarse grid matrices are

needed for the application of the Parareal method, as shown

in equations (12) and (13).
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With all the matrices created, the Conjugate Gradient

method is executed to resolve Hu = b. On each Conjugate

Gradient’s iteration i, the product Hpi must be computed as

described in Algorithm 1. To perform the product of matrix

H by a vector, the Algorithm 2 is called. The steps 3) and 5)

form Algorithm 2 are solved using the Parareal method. When

the product Hpi is computed, the outer Conjugated Gradient’s

execution resumes.

For instance, to appreciate the benefits of the Parareal

method, consider a space discretization grid with q̂ = 2×2 = 4
elements, a fine time discretization with l̂ = 10000 time

instants and a coarse time discretization with k̂ = 10 time

instants. As a consequence, each process gets m̂ = 1000 time

instants of the fine grid. For this example, the solution of the

system Ez = b involves 4 · 10 · 1000× 4 · 10 · 1000 equations

and variables, while the approximation Enzn = b is a linear

system of only 4 · 10× 4 · 10 equations and variables.

IV. ALGORITHMS

The pseudocode of the function used for the Parareal

method (Algorithm 4) and its dependences are presented next,

given that its implementation is the main contribution of this

work. Besides, Algorithm 4 shows how the message passing

is managed to maintain a low communication cost among the

parallel processes.

The first pseudocode presented corresponds to the Parareal

method. The same naming conventions as in Section II-C are

used. The input parameters for the Parareal function are:

the vector b = b, the matrix Eg = Eg , the matrix C = C,

the vector of the initial approximated solution Z0, the coarse

intervals count k̂, the fine intervals by coarse interval count m̂
and the error tolerance ε.

The output of the Parareal function is an approximation

to z = z ← E−1b as described on Section II-C. Algo-

rithm 4 calls the functions fineSolver (Algorithm 5) and

marching (Algorithm 6) to be next described in this section.

Algorithm 4 Parareal

Input: b, Eg, C, k̂, m̂, Z0, ε
Output: y

1: S ← fineSolver(b, k̂, m̂) ⊲ Call to Algorithm 5

2: Z ← Z0

3: R← S ⊲ R1 ← S−CZ0, communication of Sk to the

next process

4: while ‖ri‖ > ε do

5: coarse← E−1
g R ⊲ aux← E−1

g Ri

6: Z ← Z + coarse ⊲ Zi+1 ← Zi + aux
7: R← S − C × Z ⊲ Ri+1 ← S−CZi

8: end while

9: y ← marching(b, xi−1, k̂, m̂) ⊲ Call to Algorithm 6

10: return y

Algorithm 5 shows how the jumps vector S is generated

according to equation (11), that saves only the final elements

of the coarse time interval.

Algorithm 5 fineSolver

Input: b, k̂, m̂
Output: S

1: for all k < k̂ do ⊲ parallel loop, distributed in k̂
processes

2: s← ~0
3: for all i < m̂ do ⊲ local loop, calculated on each

process

4: s← F−1
1 (F0s− b(k, i)) ⊲ Equation (10)

5: end for

6: S(k) = s
7: end for

8: return S

With this information the iterative loop of the Parareal al-

gorithm is performed, the loop computes vector Zi iteratively,

as indicated in equation (13), until the solution of the coarse

grid Zn is found, when the required tolerance is reached.

After finding the coarse solution, the function marching

is called, so that each process can extend its initial coarse

solution to their own fine time intervals zn. Joining the

solution of every process, the approximated general solution

zn is found.

Algorithm 6 marching

Input: b, coarse, k̂, m̂
Output: y

1: for all k < k̂ do ⊲ parallel loop, distributed in k̂
processes

2: z ← coarse(k)
3: for all i < m̂ do ⊲ local loop, calculated on each

process

4: z ← F−1
1 (F0z − b(i, k)) ⊲ Equation (14)

5: y(k, i) = zi
6: end for

7: end for

8: return y

The functions fineSolver and marching are similar,

because both solve the problem on the coarse time intervals.

The fineSolver function finds its fine grid solution to

calculate the final coarse instants (used as a preconditioner

for the Parareal). The function marching finds the fine

grid solution given an initial condition Zn (the coarse grid

solution), to complete the global solution.

As it was mentioned previously, some special attention is

needed when a process requires some data that belongs to

another process. The algorithms were designed to reduce the

data communication between processes. With the proposed

solution, the data communication between processes is needed

only on the Parareal function, when the coarse data grid is

propagated according to equation (13). Next, the experimental

results of the implementation are presented.
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V. NUMERICAL EXPERIMENTS

The results of the experiments using the implementation

of the Parareal method are presented in this Section. The

experiments are based on the reference paper [7], used for

validation.

The hardware used is a cluster of four Dell PowerEdge

R710 nodes, with 2 processors of 4 cores Intel Xeon E5530

of 2.4GHz, Intel 5530 chipset, 8GB DDR3 of 1066 MHz

RAM memory, connected in a Giga-Ethernet (1Gbps) LAN,

as shown in Figure 1.

Fig. 1. Experimental platform

In this set of experiments, there are at most 4 nodes used

and, for simplicity, only the first processor of each node is

used. Therefore, only 4 cores per node are used.

A. Definitions

The optimal control problem to be solved for the experi-

ments is given by the following 2D heat equation:







zt − zxx = v, x ∈ Ω, 0 < t

z(t, 0) = 0, x ∈ ∂Ω, 0 ≤ t

z(0, x) = 0, x ∈ ∂Ω ,

(16)

where Ω = [0, 1] × [0, 1]. The selected target function is

y∗(x1, x2) = x1(1 − x1)e
−x1x2(1 − x2)e

−x2 for t ∈ [0, 1].
The selected problem, the problem sizes and considerations

are used as in the reference paper [7].

As naming conventions for the experiments, pCG(n, p)

represents the execution of the modified Conjugate Gradient,

using the Parareal method, for n nodes, each with p parallel

processes. In all the experiments, a single process is run in

each core. Times values are shown in seconds for all tables.

For each comparative table all tests are remade, so there may

be some time differences in different tables that run the same

setup of pCG(n, p). Those differences are unavoidable [26],

but the variations are small in general, so they are acceptable

anyway.

It should be mentioned that in the conducted experiments,

the peak FLOPS / average FLOPS ratio [27] was not larger

than 1.06 in any experiment.

B. Validation

The implementation of the pCG(n, p) of this work is

compared to the reference work (IFOM) [7]. As [7] is a

theoretical work about Parareal, there is no execution time; on

the contrary, there are only data about the required iterations

needed for the resolution of the problems. The values of Table

I are given in the format itere(iteri), where itere is the

external iteration count (Conjugate Gradient) and iteri is the

inner iteration count (Parareal).

TABLE I
COMPARISION OF ITERATIONS OF [7]’S IMPLEMENTATION AND OUR

IMPLEMENTATION PCG(n, p), FOR INNER TOLERANCE VALUES εi , OUTER

TOLERANCE εo = 10−6 , α = 1, β = 12, γ = 10−5 , INNER GRID SIZE

13× 13, τ = 1/512, k̂ = 32, ∆T/τ = 16 AND n.c. MEANS THAT THE

SYSTEM DOES NOT CONVERGE IN 100 ITERATIONS.

εi IFOM
pCG(1, p)

p = 1 p = 2 p = 4

10
−12 16(586) 16(586) 16(580) 16(578)

10
−10 17(510) 17(510) 17(502) 17(504)

10
−8 18(442) 18(442) 18(414) 18(424)

10
−7 18(362) 18(362) 18(364) 20(404)

10
−6 21(338) 21(338) 21(342) 19(340)

10
−5 24(274) 24(274) 24(280) n.c.

10
−4 28(220) 28(220) 63(312) 43(258)

Table I shows that the iteration count obtained through the

implementation of pCG(1, 1) is consistent with the theoretical

results expected from [7]. Some other tests were also made,

which compare the solutions uIFOM of IFOM and upCG of

pCG(n, p), and the error ǫ = ‖uIFOM − upCG‖/‖uIFOM‖
was smaller than 10−6 on all the cases. Furthermore, checking

the execution of the Parareal solver on pCG(1, 1), the error of

each iteration’s result was less than 10−6.

C. Efficiency

The following concepts are used for the efficiency analysis

of the implementation. Strong Scaling is defined as the varia-

tion of the resolution time as the number of processes changes,

while having a fixed problem size2 [28]. Weak Scaling is

defined as the variation of the resolution time as the number

of processes changes, while having a fixed problem size per

process3 and therefore, the problem size is proportional to the

number of processes [28].
The product c = n · p represents the total processes used,

remembering that n is the amount of nodes used and p is

the amount of processes run per node. Considering the strong

scaling, an increase in the number of processes c, decreases

the problem size in each process. Conversely, considering

the weak scaling, an increase in the number of processes c,
increases the total problem size.

A well recognized metric used to describe the scaling of a

program is the parallelism efficiency. The absolute efficiency

of the parallelism is:

ec =
ts
ctc

(17)

2Related to the Amdahl’s Law[29].
3Related to the Gustafson’s Law [30].
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where ec is the absolute efficiency of the parallelism in c
processes, ts is the execution time of the best known serial

solution and tc is the execution time of the program using c
processes [28]. In this analysis, the best known serial solution

is the one developed on this work, so the equality ts = t1 is

used.

Another metric proposed in this work is the relative ef-

ficiency when the number of processes doubles ǫc, this is

defined as:

ǫc =

{

(ec)
1/log2c, c > 1

1, c = 1
(18)

The only values used for the experiments were ǫ1 = 1,

ǫ2 = e2, ǫ4 = (e4)
1/2, ǫ8 = (e8)

1/3 and ǫ16 = (e16)
1/4.

1) Strong scaling: The absolute efficiency for the strong

scaling is calculated as:

ec =
time(pCG(1, 1))

c · time(pCG(n, p))
. (19)

The problem size for the first test is q̂ = 13×13 and l̂ = 512,

as it is used in [7]. To illustrate the problem size for this

configuration, the dimension of matrix G is 199680×199680
and the dimension of matrix E is 86528× 86528.

TABLE II
TIMES OF PCG(1, p), FOR DIFFERENT INNER TOLERANCE εi VALUES,

OUTER TOLERANCE εe = 10−6 , α = 1, β = 12, γ = 10−5 , INNER GRID

SIZE 13× 13, τ = 1/512, k̂ = 32 AND n.c. MEANS THAT THE SYSTEM

DOES NOT CONVERGE IN 100 ITERATIONS.

εi
pCG(1, p)

p = 1 p = 2 p = 4

10
−12 9.075293 5.867213 4.406441

10
−10 9.0619 5.964406 4.398958

10
−8 8.99508 5.988965 4.353884

10
−7 8.826598 5.693643 4.540562

10
−6 9.293346 6.345327 4.236906

10
−5 9.908053 6.485624 n.c.

10
−4 10.695609 14.248947 7.465788

Table II shows the execution times of the experiments

presented in Table I. Fixing the values of p, it can be noticed

that the time values do not differ greatly until an inner

tolerance of 10−5. When the required precision of the inner

solver (Parareal) is increased, the inner iterations count in-

creases, while the outer iterations count (Conjugate Gradient)

decreases. Although there are less iterations needed for the low

precision cases, the external iterations count increase leads to

greater execution times. For a case with inner tolerance of

10−5, the algorithm does not converge. At the same time,

for lower precision cases the convergence rate of the outer

Conjugate Gradient is lowered.

The inner tolerance value of 10−6 is used as a reference,

because it is coherent with the outer tolerance value of 10−6.

Therefore the base tolerance value of 10−6 is chosen for the

following tests.

To build Table III, the absolute efficiency ec of the paral-

lelism is calculated from the data of Table II, following (19).

TABLE III
EFFICIENCY OF PCG(1, p), FOR DIFFERENT INNER TOLERANCE εi

VALUES, OUTER TOLERANCE εe = 10−6 , α = 1, β = 12, γ = 10−5 ,
INNER GRID SIZE 13× 13, τ = 1/512, k̂ = 32 AND n.c. MEANS THAT THE

SYSTEM DOES NOT CONVERGE IN 100 ITERATIONS.

εi
pCG(1, p)

p = 1 p = 2 p = 4

10
−12 1 0.77339 0.51489

10
−10 1 0.75966 0.51500

10
−8 1 0.75097 0.51650

10
−7 1 0.77513 0.48599

10
−6 1 0.73230 0.54836

10
−5 1 0.76384 n.c.

10
−4 1 0.37531 0.35815

The efficiency values from Table III show that the average

relative efficiency for a single cluster node is approximately

ǫ = 0.73 each time the number of processes doubles.

The next step is to calculate the efficiency for multiple clus-

ter nodes. In order to have a viable test, the spatial grid must

be larger. The total execution times and the relative efficiency

ǫ are calculated with a grid of q̂ = 19×19. Figure 2 is obtained

using the average efficiency of the different inner tolerances

εi = {10
−12, 10−10, 10−8, 10−7, 10−6, 10−5, 10−4}.

Fig. 2. Average strong scaling (Total time)

The average strong scaling shown in Figure 2 is approxi-

mately ǫ = 0.7 each time the number of processes doubles.

Considering only the times of the solver (without taking into

account the time used to build the matrices and the execution

of the external Conjugate Gradient preconditioner), the main

contribution of this work can be noticed. The Figure 3 shows

the times of the Parareal solver.

On this test, the average relative efficiency on a single

cluster node is approximately ǫ = 0.79, that is higher than

the one calculated on Table III. This indicates that the strong

scaling efficiency increases as the problem size grows.

The next test for the strong scaling is for a big sized

problem, that cannot be solved in a single cluster node,

and that is near the size limit that two nodes can solve.
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Fig. 3. Average strong scaling (considering only the solver)

The values q̂ = 19 × 19 and l̂ = 8192 are chosen. With

these values, the size of matrix E is 2957312 × 2957312
(approximately 3 · 106 × 3 · 106 = 9 · 1012 elements) and

the size of matrix G is 6537216 × 6537216 (approximately

6.54 · 106 × 6.54 · 106 ≈ 4.3 · 1013 elements).

TABLE IV
TIMES OF PCG(1, p), INNER TOLERANCE εi = 10−6 VALUES, OUTER

TOLERANCE εe = 10−6 , α = 1, β = 12, γ = 10−5 , INNER GRID SIZE

19× 19, l̂ = 8192, AND o.o.m.r. MEANS THAT THE SYSTEM RUNS OUT OF

MEMORY DURING THE RESOLUTION OF THE PROBLEM.

k̂
pCG(n, p)

n = 2 n = 4

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

512 o.o.m.r. o.o.m.r. o.o.m.r. 506.84255 263.27448 229.03597
256 958.6446 596.9837 483.9645 436.1471 224.44206 183.52355
128 919.7547 471.1759 529.52744 430.2823 224.12969 183.02848
64 926.5926 529.6313 526.7008 428.6131 229.998 187.0255
32 939.2415 523.5229 557.8653 453.0177 242.8749 199.8105
16 922.1194 559.6586 514.7818 513.2409 272.3714 229.5808

It is not possible to compute the efficiency in a classic

sense for Table IV, given that there is no serial solution that

can solve the proposed problem cases as the system runs out

of memory when the matrices are built in a single node.

Therefore, to obtain the efficiency, the base execution time

may be considered as the one that solves the problem with the

least amount of cluster nodes, and the least amount of cores

of each node. In the tests shown in Table IV, for k̂ = 512 and

m̂ = 16 the base case will be pCG(4, 1) and for all the other

tested conditions of k̂ and m̂, it will be pCG(2, 1).
Considering the data of Table V, the average relative effi-

ciency can be established as ǫ = 0.7 each time the number of

processes doubles.
From the data presented, the general strong scaling obtained

is approximately ǫ = 0.7 each time the number of processes

doubles.
As a noteworthy detail to keep in mind, in general, the

efficiency decays faster when the number of nodes increases

than when the number of processes per node increases. This

occurs because the LAN’s connection to the new nodes adds

latency to the computations and has a lower data transfer rate

than the local bus on each node. In general, the LAN’s data

transfer rate is not enough to keep the same efficiency in

processes on different nodes as compared to processes on a

TABLE V
EFFICIENCY OF PCG(1, p), INNER TOLERANCE εi = 10−6 VALUES,

OUTER TOLERANCE εe = 10−6 , α = 1, β = 12, γ = 10−5 , INNER GRID

SIZE 19× 19, l̂ = 8192, AND o.o.m.r. MEANS THAT THE SYSTEM RUNS

OUT OF MEMORY DURING THE RESOLUTION OF THE PROBLEM.

k̂
pCG(n, p)

n = 2 n = 4

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

512 o.o.m.r. o.o.m.r. o.o.m.r. 1 0.96257 0.55323
256 1 0.80291 0.49520 0.54950 0.53390 0.32647
128 1 0.97602 0.43423 0.53439 0.51296 0.31407
64 1 0.87475 0.43981 0.54046 0.50359 0.30965
32 1 0.89704 0.42091 0.51832 0.48340 0.29379
16 1 0.82382 0.44782 0.44917 0.42319 0.25103

same node. There is also a bus bandwidth from the central

memory in each node that limits the efficiency of increasing

the number of processes per node, as adding more processes

will decrease the bandwidth available for each process after

a certain point. The limit will depend on the equipment

specifications.
2) Weak scaling: The efficiency for the weak scaling is

computed as:

ec =
time(pCG(1, 1))

time(pCG(n, p))
. (20)

Given that the total problem size grows as the number

of used processes c does, there is no need to multiply the

denominator by c = n · p.

To compute the weak scaling, the problem size per process

must be fixed. As a first experimental option, the number

of elements from vector u can be fixed; this is, the size of

the solution found by each process q̂ · m̂ is constant and

the number of coarse intervals k̂ is shifted to obtain several

configurations. Let q̂ = 19 × 19, m̂ = 32 be the fixed size

per process, when the total execution times are measured, the

relative efficiency ǫ is computed. Figure 4 shows the average

of the relative efficiency for the coarse instants per node

k̂/n = {1, 2, 4, 8, 16}.

Fig. 4. Average weak scaling (Total time)

The average weak scaling form Figure 4 is approximately

ǫ = 0.75 each time the number of processes doubles. Consid-

ering only the execution time of the function pCG(n, p), the
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weak scaling is approximately ǫ = 0.85 each time the number

of processes doubles, with an increasing efficiency as the

problem size increases, as it can be observed in Figure 5 (this

is a meaningful improvement with respect to the efficiency

of the whole program, when the scaling efficiency drops to

ǫ = 0.29 for the pCG(4, 4) with k̂ = 256).

Fig. 5. Average weak scaling (considering only the solver)

The problem with the pCG’s preconditioner is that it uses

standard PETSc operations to solve the inverse of matrix E.

In particular for the test pCG(4, 4) with k̂ = 256, the time

to build the matrices is 9.21 seconds, 332 seconds for the

preconditioner and 48.7 seconds for the pCG function. This

clearly shows that solving a single time the inverse of matrix

E by the standard means is much slower than the multiple

solutions done by the pCG function.

The problem with the first consideration for the fixed

problem size is that the matrices involved on the problem have

their size squared compared to the solution vector. Then, as

a second experimental option, the fixed data size per process

is the size of the matrices stored on each process. With this

approach, and setting the parameters q̂ = 19×19 and m̂ = 32,

each execution time is measured, then the relative efficiency

ǫ is computed. The average of the relative efficiency for the

coarse instants per node k̂/n = {1, 2, 4, 8, 16} is shown in

Figure 6.

A detail to have in mind is that to allow the size of the

matrices to be constant, on all the tests, the only possible

combinations of n and p are those that make c = n · p a

perfect square. This occurs because k̂ must be divisible by c
and the matrices’s sizes are proportional to the square of k̂.

Therefore, the number of elementes of matrix E, size(E) will

be set as reference.

Most iterative Krylov subspace methods have a computa-

tional complexity of O(sols · iter) where sols is the solution

size and iter the number of iterations needed for the conver-

gence of the algorithm [31]. The number of iterations using

the Conjugate Gradient method is bounded by 1 ≤ iter ≤ sols
because it can be used as a direct method [32]. The first

experimental option tests the lower iter bound and the second

experimental option tests the upper iter bound, because the

number of iterations needed for the convergence is unknown

before the execution of the solver.

Fig. 6. Average weak scaling (Total time)

Because the number of iterations the solver used to converge

in each experiment is greater than 1 and less than l̂p̂ (equal

to sols), the first experimental option will give a scaling less

than 1, and the second experiment can give a scaling greater

than 1. This can be seen in Figure 6, where in some cases the

scaling is greater than 1.

On average, for the second experimental option, the relative

efficiency of the weak scaling is approximately ǫ = 0.96 each

time the number of processes doubles.

The same process as in the first experimental option is used

for the solver time, Figure 7 shows the weak scaling of the

pCG function.

Fig. 7. Average weak scaling (considering only the solver)

It can be noticed in Figure 7 that most of the resolution

times (not considering the preconditioner) scale on a supraliear

way. In this context, the average relative efficiency is approx-

imately ǫ = 1.09 each time the number of processes doubles.

On both weak scaling considerations, the efficiency lost as

the number of nodes increases is greater than the efficiency

lost as the number of cores used per node increases. This is

expected as it was analyzed on the strong scaling, due to the

data transfer among cores on a single node is faster than the

transfer among cores on different nodes, because the data has

to travel through the switch holding the LAN.

The analysis continues comparing the problem resolution

using or not the Parareal method.
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D. Parareal vs No Parareal

To solve the external Conjugate Gradient, the steps 3) and

5) from Algorithm 2 must be solved by some iterative method.

Three options to solve those steps are compared, a) the

Parareal implementation done for this work b) the PETSc’s

implementation of the Conjugate Gradient, and c) the PETSc’s

implementation of GMRES.

The parameters used for the test are q̂ = 9 × 9, l̂ = 256,

m̂ = 16, while the values k̂ = {16, 32} are considered. The

Conjugate Gradient did not converge for any test case from

this set, therefore only the Parareal and GMRES methods are

compared.

Fig. 8. Acceleration of Parareal vs GMRES (Total time)

The quotient from the resolution time of the GMRES and

the the Parareal methods gives the speed-up for the cases k̂ =
16 and k̂ = 32. Then, the quotient from the cases k̂ = 32 and

k̂ = 16 yield the acceleration obtained as the problem size

doubles. This is presented in Figures 8 and 9.

Figures 8 and 9 show that the execution of the Parareal takes

less time than the execution of the GMRES for every problem

size tested, since the acceleration is higher than 1 for every

case. Indeed, when the problem size increases the quotient

from the execution time of the GMRES and the execution

time from the Parareal increases with an average of 2 when

the solution size doubles.

Fig. 9. Acceleration of the Parareal vs GMRES (Solver only)

As hinted, a considerable time difference was expected,

after analysing the strong scaling tests, and for that reason the

problem sizes for the test were small. The acceleration shown

in Figures 8 and 9 are from linear systems where the size of

matrix E are 20736×20736 (when k̂ = 16) and 41472×41472
(when k̂ = 32) respectively.

The main time load for the preconditioner of the external

Conjugate Gradient is the solution of a system Ex = b.
With the execution time of the preconditioner (tprecond), the

resolution time of the system using GMRES (tGMRES) can

be estimaded by tprecond · itercg ≈ tGMRES , where itercg is

the iterations needed for the convergence of the pCG (even

if it uses the Parareal, as the iteration count for the external

Conjugate Gradient is stable for every inner method tested).

The time approximation variation var (of the approximated

value versus the measured value) found from the tests of

this section, calculated by var = |tGMRES − tprecond ·
itercg|/tGMRES , is at most 20%.

To emphasize the time reduction achieved using the Parareal

method, the time of pCG(4, 4) with q̂ = 19 × 19 and l̂ =
8196 is analyzed. In this case, building the matrices takes 9.21
seconds, the external preconditioner takes 332 seconds and the

pCG function takes 48.7 seconds (with 16 iterations). Solving

this pCG(4, 4) case with the GMRES solver would take 332 ·
16− 48.7 = 5263 seconds more (almost one hour and a half

compared to 49 seconds when using the Parareal).

E. Parallelization suitability

When the strong scaling was analyzed, it was found that an

increase in the problem size would give a better parallelization

efficiency on each node.

Extending that idea, on a sufficiently small problem the cost

of creating new processes and the communication costs among

the processes would be higher than the time benefit obtained

with the parallelization. The parallelization is convenient when

the solution of the pCG(1,1) takes longer than every other

analyzed solution of pCG(n, p). The tests are done with grid

sizes that gives problem sizes of approximately twice as big

each time.

Table VI is used to find the convenient problem size for the

parallelization on a single node.

TABLE VI
TIMES OF PCG(n, p), OUTER TOLERANCE εe = 10−6 , INNER TOLERANCE

εi = 10−6 , α = 1, β = 12, γ = 10−5 , l̂ = 512 AND k̂ = 32.

q̂
pCG(n, p)
n = 1

p = 1 p = 2 p = 4

4× 4 1.6396871 2.6615668 2.7016241
7× 7 2.434376 2.5144259 2.447761
9× 9 3.673742 3.319042 2.524157

The convenient minimum problem size on a single node for

matrix E is 41472×41472 elements (q̂ = 9×9 and l̂ = 512).

In a similar fasion, multiple nodes are analyzed on Table VII.

Table VII shows that, in general, the parallelization is

suitable starting on a matrix E of 86528 × 86528 elements

(q̂ = 13× 13 and l̂ = 512).
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TABLE VII
TIMES OF PCG(n, p), OUTER TOLERANCE εe = 10−6 , INNER TOLERANCE

εi = 10−6 , α = 1, β = 12, γ = 10−5 , l̂ = 512 AND k̂ = 32.

q̂
pCG(n, p)

n = 2 n = 4

p = 1 p = 2 p = 4 p = 1 p = 2 p = 4

7× 7 3.012665 2.7350261 2.472511 3.914736 3.915797 3.9322839
9× 9 3.723882 2.760471 2.400935 3.842674 3.819844 4.711632

13× 13 6.70257 4.045551 2.946394 6.058765 4.413698 4.337244

VI. CONCLUSIONS

• The experiments of Section V-D shows that the execution

of the program using the Parareal method is considerably

faster than executions that use the CG or GMRES meth-

ods. Not only it does perform better, but it accelerates for

larger problem sizes.

• The experiments of Section V-C present a relative ef-

ficiency of around ǫ = 0.7 each time the number of

processes doubles for the strong scaling. At the same

time, for the weak scaling, the relative efficiency is

ǫ = 0.75 each time the number of processes doubles for

a constant solution size per process, and ǫ = 0.96 each

time the number of processes doubles for a constant data

size per process.

• The experiments of Section V-C find that for the used

hardware (described in Section V), the parallelization be-

gins to be convenient for solution size of 40000 elements.

In summary, this paper presented a parallel efficient alter-

native in PETSc to solve a parabolic optimal control prob-

lem using the Parareal mthod. Experimental results above

summarized demonstrate the advantages of this proposal over

classical methods as the Conjugate Gradient and GMRES ones

in a computing cluster.
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