
Abstract—Many of current web search engines rely on

inverted index-based data structures as document information

store. Since and inverted index is a map from individual

document words to their respective locations, such data

structure destructs semantic links between the words, and

thus does not support structural user queries. In other words,

such systems can only find the documents that contain user-

specified words. In this paper we propose to create semantic

links between the terms contained in inverted index, and in

such way create a semantic network. This network will

preserve the internal structure of the stored documents, and

will enable the users to perform structural queries. Both

structural-saving indexation and structural user search query

allow to save semantic speech meaning of the text while search

process.

I. INTRODUCTION

oday all popular search engines operate with inverted

index [1],[2],[3], which provides the grounds for high-

quality keyword-based search. The main idea is to create a

mapping from every token to a list of its positions in the

documents, indexed by the search engine. While both page

ranking and linguistic algorithms can offer rather accept-

able results for the users, the very idea of processing non-

linked keywords, extracted from texts, imply non-semantic

search only.

T

Thus, today’s semantic networks, implemented both by

commercial companies and and open communities are not

fully utilized by the search engines. Powerful linguistic and

statistic functions, implemented in modern search engines,

are not used to their full extent.

A. Preserving semantic links

The main idea of the present work is to store not inverted

index, but sentence structure with link to it's source page

position. The base sentence structure consists of three ele-

ments: predicate, subject and object, called a triplet. This

idea is presented in the Figure 1. Each page is parsed to get

linked tokens, constituting the elements to be saved to the

database with sentence links and source page positions. The

tokens form an oriented graph or a semantic network. Sub-

jects in such graph serve as objects for other subjects and

vice versa. This structure is similar to RDF [5] (Resource

Description Framework), which describes knowledge using

a directed graph.

Search process is implemented with RDF queries over the

semantic network. The user enters a triplet in form of three

words, which is searched in database of linked documents

(a semantic network). In the future, the user will be able to

use natural language as a query language. In this case, the

system will be able to process not only triplet words, but

also other syntactic forms. This means that the indexer will

have to process the source documents using an extended

RDF scheme, which would contain also adjectives, adverbs,

and other parts of speech (POS).

A query triplet can be searched in the database using a

simple straightforward comparison or with the methods

used in many popular search engines, such as synonyms

dictionary and TF-IDF1[4].

TF-IDF can be implemented as a coefficient of relevance,

which influences the document position in the resulting list.

Our search algorithm is not intended to replace tradi-

tional inverted index search engines, and can be imple-

mented within an additional module, or serve as a basis for

a specialized fact search engine in a knowledge graph.

Fig 2: Semantic network

1TF-IDF is numerical statistic dimension defining document relevancy in
document collection. Result depends on word frequency in current document
and inverse frequency in other documents.

Semantic sentence structure search engine

Nikita Gerasimov
Nothern (Arctic) Federal

University,
Severnaya Dvina Emb. 17,

Arkhangelsk, Russia; 163002;
Email: n.gerasimov@narfu.ru

Maxim Mozgovoy
The University of Aizu, Tsuruga,

Ikki-machi, Aizu-Wakamatsu,
Fukushima, 965-8580 Japan

Email: mozgovoy@u-aizu.ac.jp

Alexey Lagunov
Nothern (Arctic) Federal

University,
Severnaya Dvina Emb. 17,

Arkhangelsk, Russia; 163002;
Email: a.lagunov@narfu.ru

Fig 1: RDF

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 255–259

DOI: 10.15439/2014F343

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 255

B. Basic search engine functions

Our search engine indexing mechanism (robot or spider)

solves the following problems:

1. Detecting document external links

2. Useful content detection

3. Semantic structure parsing

C. Useful content detection

For useful content detection we used an artificial neural

network, as suggested in [6]. Many of web-pages sources

are divided into separate strings containing HTML markup

and text, despite it doesn't influence to page rendering. Also

we empirically devided HTML tags into two groups: simple

and special. Simple tags collection contains text decorating

tags like “<i><s>”. Special tags set contains the others

one. Our neural network detects whether a given string con-

tains meaningful text or non-meaningful webpage elements.

While exploring HTML documents we found such regu-

larities:

1. Useful content usually is absent at the beginning

and ending of the article.

2. A string is probably useful if the presence of

HTML tags inside the string is low.

3. Longer strings are most probably useful.

We used neural network with thr following input param-

eters:

1. Document string number expressed in percents.

2. A string length expressed in percents. 100% is the

longest document string.

3. Relation between simple HTML tags and text

chars.

4. Relation between special HTML tags and text

chars.

Every parameter except the first one is repeated two more

times: for the previous string, and for the next one. The

characteristics of our neural networks are shown in Table I.

We trained the neural network using 50 English

Wikipedia pages. This method allowed us to quickly get a

content parser, having 83% decision accuracy. As a neural

network engine we used Encog Java library.

D. Database

Our system uses two DBMS: a NoSQL graph-oriented

Neo4J DBMS, and a NoSQL document-based MongoDB. In

order to store tokens with minimal overhead, we employ

tries (see Figure 3).

Tries are supported by Neo4J DBMS that stores all data

as a graph, and provides handy ways to traverse graphs, and

search and retrieve individual vertices.

To store RDF-like links we used a NoSQL document-

based DBMS MongoDB to achieve structureless storage

organization, and high speed. In our case, the web spider

saves parsed sentences into the documents, containing doc-

ument index of a predicate, an object, subject, and a link to

a word trailing letter in a trie. This structureless organiza -

tion allows us to add new part-of-speech elements without

restructuring the database. Also this allows us to model any

sentence structure with optional adjectives or participles.

II. STRUCTURE PARSING ALGORITHM

A. Common work algorithm

To get a parsed sentence, the system performs the follow-

ing steps:

1. Anaphora resolution

2. Sentence segmentation

3. Token boundaries identification.

4. Part-of-speech tagging of the tokens array.

5. Syntactic parsing of the POS-tagged sequences.

During components selection we tried to use the subsys-

tems, containing English language and preferentially Rus-

sian language model.

TABLE I.

NEURAL NETWORK CHARACTERISTICS

Layer Neurons count Function

1 Output 1 TanH

2 4 TanH

3 7 TanH

4 11 TanH

5 12 TanH

6 Input 9 Linear

Fig 3: Trie

256 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

B. Anaphora resolution

Anaphora (coreference) resolution systems are less de-

veloped, but there are some systems available:

1. OpenNLP

2. CherryPicker

3. JavaRAP (pronoun coreference system)

4. BART

5. ARKref (rule-based)

6. ARS

According to the recommendations provided in [7], we

have chosen ARKref as a main anaphora resolution module.

ARKref is a deterministic, rule-based system that uses rich

syntactic and semantic information to make antecedent se-

lection decisions.

C. Identifying sentence and token borders; POS tagging

This spider system is implemented as a separate unit with

a separate API. For sentence and token borders identifica-

tion, there are many ready solutions available, and this topic

is widely covered in the literature. For now, our system

works mainly with the English language, but as we might

want to extend the list of supported languages in the future,

we so we selected an extensible open source Java TreeTag-

ger system. TreeTagger is fast, and has low RAM and CPU

consumption with availability of various language models.

TreeTagger can be quickly replaced with any other tok-

enizer.

D. Dependency parsing

Firstly we tried to use Standford NLP Parser as a main

sentence processing instrument, but we faced high RAM

and CPU consumption. Furthermore, Stanford Parser uses

constituency2 grammars that do not reflect well the structure

of languages with relaxed word order, such as Russian. For

such languages dependency grammars are usually consid-

ered more appropriate.

Following the recommendations in [8], we have chosen

MaltParser for best parsing quality from the list of available

parsers.

To train the parsing system to recognize any particular

language, a deeply annotated text corpus (a treebank) is

2Constituency grammar is based on Chomsky's generative grammar.
Parsers based on constituency grammars try to divide sentences into smaller
word groups until the individual tokens are identified. The example of phrase-
structure (constituency) parsing is shown in Figure 4.

needed. For each word in a Treebank, the following data is

required:

1. Word position in the sentence

2. Word

3. Grammatical attributes

4. Head word position

5. Dependency type

MaltParser contains pre-trained models for English,

French, and Swedish. For other languages, it is necessary to

create a malttab training set. For the Russian language, the

treebank is available as a part of “National Russian lan-

guage corpus”

III. IMPLEMENTATION

A. The platform

Our search engine consists of two main parts: the search

indexer (spider) and the web interface. As most of the NLP

software is written in Java, the spider is also written in Java.

Since some of the NLP systems operate with space-consum-

ing language models, some heavy weight modules were sep-

arated from the base system and made available via RPC

API. Thanks to this approach, the system has an ability to

use several servers that process different languages (i.e., it is

horizontally scalable). Such RPC-available modules are: the

anaphora resolution system, the POS tagger, and the depen-

dency parser. For easier development, we have chosen

Apache Thrift RPC framework for every isolated compo-

nent.

As mentioned above, the application stores data in two

databases: graph-based Neo4J and document – based Mon-

goDB. The web interface is written in JavaScript/JQuery

and operates using Java Spring-based REST API. The com-

ponent diagram is shown in Figure 5.

All components are implemented in similar ways, and

each of them uses a multi-threaded RPC framework, and

thus performs multi-threaded text processing.

B. Indexer component

The Indexer component's (“Spider” in the components

diagram) aim is to get the next page from the list of links,

to process it by calling other components’ RPC API and to

save the results into the database. Furthermore, this compo-

nent extracts the links to the new documents to be analyzed,

and adds them to the general links list.

This component works with other modules via RPC

framework Apache Thrift, that is used due to the simplicity

of cross-platform code generation, its lightweight protocol

(as opposed to XML-RPC or SOAP), simple implementa-

tion and multithreading. At the present time, the system

does not support language detection, but the system can op-

erate via RPC with several other processing servers, han-

dling different natural languages. To test the system, we

used English Wikipedia as the data source.

C. Anaphora resolution

The anaphora resolution module operates with raw text

(cleaned from HTML markup), and replaces pronoun or

noun anaphors with their antecedents. As a result, the spi-

Fig 4: Constituency parsing

NIKITA GERASIMOV, MAXIM MOZGOVOY, ALEXEY LAGUNOV: SEMANTIC SENTENCE STRUCTURE SEARCH ENGINE 257

der gets two text versions: the raw text and the text with re -

solved coreferences. The latter document is being processed

in other modules, but both are saved to the database. The

anaphora resolution module is a multithreaded server. The

number of threads is set up in the server configuration.

D. POS tagging and Dependency finder

These components are marked as “POSTagger” and

“DependencyParser” in the components diagram.

Component class diagram for these modules is similar to

the coreference resolution component it uses RPC-server

classes, singleton configuration classes and other.

MaltParser makes output data in the CoNLL format, sim-

ilar to the malttab format.

E. Web interface

The web interface is a web application, written in JavaS-

cipt/JQuery. The current web interface allows the user to in-

put three words: subject, predicate and object, to be sent to

the server via the REST API. The system processes the

query and finds the list of suitable sentences in the database.

REST API is implemented with Java Spring framework.

Using separate processing modules leads to ability of

search query NLP processing. This would allow users to

make queries as usual sentences.

IV. RELATED WORK

[9] also proposed similar semantic network storing ap-

proach. Author offers to store RDF structures like a graph

using object-oriented databases.

[10] describes a system that processes automatic text sen-

tences tagging for further text managing analyzing or

searching.

Our system novelty essence is the approach to process,

store and search text data. The method novelty lies in trans-

formation text into RDF-like semantic network and follow-

ing triplet search over the prepared semantic network index.

V. CONCLUSION

Our research aim was to try to create a semantic-powered

search engine that uses NLP technologies. During the devel-

opment we have analyzed different information retrieval

and NLP instruments and methods, such as syntactic pars-

ing, POS tagging, and coreference analysis.

As the result, we got a semantic sentence-structure search

engine prototype. Currently, the system has the following

limitations:

1. System processes English-language documents

only.

2. The useful content extraction module reliably

parses Wikipedia documents only.

3. The current system operates only with triplets. It

cannot process adjectives or adverbs.

4. The system does not use any synonyms dictionary.

Finally, system searches triplet like three English words

contacted with “AND” boolean operator and it is unusable

in current state as providing search service is very poor con-

cerning to internal Wikipedia search (cause Wikipedia is

used as testing data source). Search engine returns result

with given wittingly right query i.e. known triplet from

known document.

Also sentence parsing system is very poor at the moment.

We parsed part of Wikipedia for system test. The result is

presented in Table 2.

Using synonyms dictionary, a more diverse knowledge-

base as a data source, and coreference resolution improve-

ments should make results better.

Fig 5: Components diagram

TABLE II.

EXPERIMENT RESULTS

Comment Value

Total indexed documents 1401

Total parsed sentences 17226

Average parsed sentences in document 12

Average sentences in document 26

Result 54% of document information is lost

258 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

REFERENCES

[1] S. Ilyinsky, M. Kuzmin, A. Melkov and I. Segalovich, “An efficient
method to detect duplicates of Web documents with the use of inverted
index”, WWW Conference, 2002

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine”, Proceedings of the seventh international conference
on World Wide Web 7, 1998, pp. 107-117

[3] C. D. Manning, P. Raghavan and H. Schütze, “Introduction to
Information Retrieval” Cambridge University Press. 2008 p. 6.

[4] A. Gulin, P. Karpovich, D. Raskovalov and I. Segalovich, “Ranking
algorithms optimisation using machine-learning methods”, Romip
proceedings, 2009

[5] A. Harth and S. Decker, “Optimized Index Structures for Querying
RDF from the Web”, Digital Enterprise Research Institute (DERI),
National University of Galway, Ireland, 2005, p. 2.

[6] S. Edunov, “How to extract useful content from HTML”,
“http://www.algorithmist.ru/2010/11/html-2.html”

[7] Benjamin Chu Min Xian, F. Zahari and D. Lukose, “Benchmarking
ARS: Anaphora Resolution System”, Proceedings of the 11th
International Conference on Knowledge Management and Knowledge
Technologies, 2011, p. 39

[8] A. Gareyshina, M. Ionov, O. Lyashevskaya, D. Privoznov, E.
Sokolova and S. Toldova, “RU-EVAL-2012: Evaluating dependency
parsers for Russian” Proceedings of COLING 2012: Posters, IIT
Bombay, Mumbai, India, pp. 349-360

[9] V. Bonstrom, A. Hinze, H. Schweppe, "Storing RDF as a graph", Web
Congress, 2003. Proceedings. First Latin American , vol., no.,
pp.27,36, 10-12 Nov. 2003

[10] M. Kalender, Jiangbo Dang, "SKMT: A Semantic Knowledge
Management Tool for Content Tagging, Search and Management,"
Semantics, Knowledge and Grids (SKG), 2012 Eighth International
Conference on , vol., no., pp.112,119, 22-24 Oct. 2012

NIKITA GERASIMOV, MAXIM MOZGOVOY, ALEXEY LAGUNOV: SEMANTIC SENTENCE STRUCTURE SEARCH ENGINE 259

