
Abstract—A new  method  to  solve  the  inverse  problem  of
electrical capacitance tomography is proposed. Our method is
based on artificial neural network to estimate the radius of an
object present inside a pipeline. This information is useful to
predict  the  distribution  of  material  inside  the  pipe.  The
capacitance data used to train and test the neural network is
simulated  on  Matlab  using  the  electrical  capacitance
tomography  toolkit  ECTsim.  The  provided  accuracy  is
promising and shows efficiency to solve the inverse problem in
a simple manner and on reduced computational time about 120
times  when  compared  to  the  existing  Landweber  iterative
algorithm for tomographic  image reconstruction that  can be
encouraging for dynamic industrial applications.

 Index terms—Electrical  Capacitance Tomography, Inverse
Problem,  Artificial  Neural  Networks,  Gravitational  Flow  of
Solids.

I. INTRODUCTION

LECTRICAL Capacitance Tomography (ECT) is a non-

invasive technique used to image the spatial distribution

of merged materials with different dielectric properties in-

side  a  pipe  [1].  The spatial  distribution  is  determined  by

measuring the capacitances between all pairs of electrodes

placed around the vessel containing the process to be exam-

ined [2]. The provided measurements depend on the electri-

cal  permittivity value of  the combined materials  and their

spread inside the isolated pipe. Studying the relationship be-

tween capacitance records and permittivity distribution and

converting them to an ECT image has been an attractive re-

search era since 1980’s [13, 15, 16]. Researchers are still in-

vestigating  to  improve the performances  of  this  technique

and agree on the complexity of the task due to the difficul-

ties with inverse problem solution, nonlinearity of the sys-

tem and the limited number of obtained capacitances. Typi-

cal  used sensors  are  with N electrodes (e.g.  N=8,  12,  16)

lead to  M capacitance measurements (M= 28, 66, 120) re-

spectively and typical generated 2D ECT image with resolu-

E

tion of 32x32 pixels, which in turn makes the inverse prob-

lem ill-posed. 

  Forward and inverse problems are in fact the two main

tasks in tomography visualization. First one is looking for

the measurement records given permittivity distribution (in

case of ECT tomography) while the later one is nothing else

but  looking for  a relationship of  the measurement (result)

with the source data (cause) that is looking for  the cause,

which   gives  the  measurement.  In  most  cases,  a  forward

problem is solved by numerical methods with the finite ele-

ments method (FEM) being the most popular one. FEM al-

lows calculating the inter-capacitance values relying on the

known permittivity distribution. 

   Typical results of inverse problem solution are the re-

constructed images of ECT sensor space. Depending on type

of  the  applied  reconstruction  algorithm the  image  quality

can vary. Choice of  appropriate reconstruction method for

industrial application is limited by time of calculation in real

time. In the case of iterative reconstruction methods the re-

constructed image is updated iteratively until reaching a sat-

isfactory error  based on the difference between the calcu-

lated and real capacitances. 

   Authors in [4] reviewed various Iterative ECT methods:

Newton–Raphson,  Landweber  iteration  and  Algebraic  Re-

construction Techniques. Evaluation and simulations results

highlighted the superiority of the performances of Landwe-

ber iterative algorithm in terms of lowest capacitance calcu-

lation errors comparing to the other cited algorithms. Artifi-

cial  Neural  Networks  (ANN)  have  been  used  for  solving

both ECT problems since they represent a powerful and ef-

fective tool to dealing with complex and non-linear compu-

tations. The type of the applied neural network differs de-

pending  on  the  purpose  of  investigations.  A  multi-layer

Feed-Forward Network (FFN) was applied to solve the for-

ward problem. The network was trained to predict  capaci-

tance data from different permittivity distributions and then

when integrated with Landweber iteration method provided

a satisfactory quality of reconstructed image [3]. 313 parallel
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of which were applied in [5] to reconstruct different ECT 

image pixels and visualize the oil distribution inside a pipe. 

 
    Large radial basis function (RBF) neural network is 

used in [7], with 66 nodes, representing the measured 

capacitances, in the input layer and 804 neurons in the output 

layer to flow patterns image reconstruction. The 804 outputs 

of the network correspond to the mesh grid elements 

considered to model the ECT phantoms in an earlier step.  

   In our present work we propose to use a Multi-Layer 

Perceptron with one hidden layer to estimate the radius of an 

object present inside the sensor and thus reconstruct the 

tomographic image. Our approach has the advantage to have 

a simple neural network with simplified structure: 66 

capacitances form the input layer and one neuron at the 

output which corresponds to the radius of the phantom. The 
performance rate is set at 0.004 while it was equal to 0.3 in 

[7]. 

II. ECT INVERSE PROBLEM  

Electrical capacitance tomography inverse problem is to, 

by means of appropriate algorithm; determine permittivity 

distribution based on measured capacitances into a form of a 

tomographic image [10, 14]. Fig. 1 shows a schematic of an 

image reconstruction process in ECT 
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Fig. 1.Example of a graph of normalized measured capacitances and 

corresponding reconstructed tomography image following the solving 

of permittivity matrix using the inverse problem method. 

 

Two major characteristic obstacles of inverse problem are: 

its ill-posed and non-linear properties. The first refers to the 

limited number of measured capacitances compared to the 

number of pixels to be reconstructed while the relationship 

between capacitance and permittivity distribution 

nonlinearity is modeled by the Gauss Law, [11, 13, 14] 

(Eq.1): 

 

C =                              (1) 

where Q is the electric charge; V the potential difference 

between two electrodes, (x,y) denotes the permittivity and (x,y)  represents the electrical potential distributions. Γ 
stands for the electrode surface and d an element 

orthogonal to this surface.  

 

A discrete linear approximation of the previous equation 

is formulated as following (Eq. 2):  

 C =  S , (2) 

where C is a vector of measured capacitances, S linearized 

sensitivity matrix and  is a vector of permittivity 

distribution. The problem of image reconstruction is then 

reduced to solving the linear discrete form (2) which is still 

challenging and attracting researchers ‘efforts. The problem 
of image reconstruction is then reduced to solving equation 

(3) represented: 

  =   (3) 

 

The inverse of S does not exist; because S is not a square 

matrix (number of measurements is not equal of number of 

pixels in image). Instead of having its inverse , the 

pseudo-inverse S* must be calculated, for instance, using an 

approximated solution. Other important problem in image 

reconstruction procedure is the dependence of the sensitivity 

matrix on the permittivity distribution, what causes that the 

inverse problem is non-linear. A lot of publications where 

different kind of methods to solve the inverse problem 

(linear, non-linear, directly methods and iterative methods) 

are presented in literature [3]. Depending on computational 

method, the algorithm generates images with different levels 

of quality, in the case of LBP algorithm or much higher 

quality, using iterative or non-linear methods. In the case of 

iterative and non-linear methods, high image quality is 

occupied by long computational time. 

The Landweber iterative algorithm is one of the most 

popular methods in the field of ECT image reconstruction. 

The iteration process, in Landweber algorithm is governed 

by the following formula [8, 14] 

 

                              (4) 

 

where  and  are the estimated permittivity 

distributions at the and iterations respectively, 

S is the calculated sensitivity matrix and  is a relaxation 

parameter of Landweber algorithm. 

 

The method cited above owns the advantages of easy 

implementation and low computational complexity but 

suffers from the numerical optimization point of view as it 

possess a relatively low convergence rate and hardly 

provides a global optimization solution, [12]. 

 

Artificial Neural Network constitutes a competitive 

optimization based- method applied in the same research era 

[3, 17]. 
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III. PROBLEM STATEMENT  

  The extraction of industrial process characteristic 

parameters gives possibility of predicting unwanted incidents 

and feasibility of in depth exploration of dynamic spatial 

temporal phenomena occurring during industrial process 

such as flows [13, 15, 16, 18-20]. Visualization of flow 

processes by means of tomography image reconstruction 

gives a non-invasive tool for extraction of these parameters 

and given sufficient reconstruction time combined with fast 

image processing algorithms can promise on-the-fly flow 

characterization.  

One of the examples of successful ECT application for 

dynamic flow is hopper gravitational discharging process 

[19, 20]. Model of such process is depicted on Fig. 2. where 

the laboratory setup photograph is presented. The mentioned 

type of flow is widely present in a range of branches such as 

pharmaceutical, chemical, food processing, construction and 

others. Processing of 2D reconstructed images allowed 

examination of hopper discharging funnel type of flow 

parameters. The set of parameters such as solids 

concentration in funnel and funnel area size characterize the 

dynamics of hopper flow [18]. This knowledge gives the 

information about correct/incorrect hopper flow. 

 

  
a) b) 

Fig. 2. Photos of the hopper flow model. Photos of the hopper model: a) 

side view of the hopper and the image reconstruction visualisation; b) top 

view of the container with 8 sensor electrodes depicted around the silo. 

 

The so-called funnel flow occurring during the silo 

discharging process not obvious to be analysed in its full 

volume since the non-transparent nature of the process. 

Hence, ECT is the ultimate tool to examine this flow on the 

base of reconstructed image where funnel area, in the center 

of silo, with the smaller material concentration value than 

rest of the sensor space can be observed (Fig. 3) 

 

 

Fig. 3. Basic ECT tomographic image reconstructed for funnel hopper 

flow with characteristic flow areas indicated. 

 

In order to develop the method for calculating these 

characteristic parameters a scheme of data processing was 

proposed. It allows estimating the radius of the object of a 

different permittivity inside a sensor cross-section space. As 

a proof-of-concept study we present a simulation with a 

phantom as useful information to predict the distribution 

inside the vessel knowing the capacitance measurements. A 

uniform distribution inside a circular sensor and a circular 

object is situated at the center of the vessel was assumed for 

calculations as shown in Fig. 4. 

 

 

 

Fig. 4. Phantom considered with circular sensor and circular object in 

the center. 

 

  We present, in the following sections, the ECT inverse 

problem solving by use of Artificial Neural Networks, an 

evaluation of our method by comparing it to Landweber 

iterative approach and mention further works. 
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IV. ARTIFICIAL NEURAL NETWORKS  

   An artificial neural network is a powerful information 

processing tool recognized for its abilities to model complex 

input/output relationships and to learn these relationships 

directly from the data being modeled. They are principally 

designed to mimic the human brain functions in the 

following two ways: they acquire knowledge through a 

learning process, and the knowledge is stored within inter-

neuron connection strengths known as synaptic weights, [6].  
  Two learning approaches are available: the first one is 

supervised and the second is unsupervised. A supervised 

learning, mostly applied, requires a desired output in order to 

learn. To perform the task of learning a training algorithm is 

applied in order to adjust the synaptic weights of the network 

in an orderly fashion so as to generate a model that maps the 

input to the output using historical data. The provided model 

can then be generalized to produce the output when the 

desired output is unknown. In addition to a powerful training 

algorithm, a neural network needs to have an appropriate 

structure to deal with the complexity of the problem to be 

solved. The most commonly used network structure, which 

has been also used in the presented approach, is the Multi-

Layer Perceptron (MLP). An example of a MLP network is 

shown in figure 5.  

  

 

Fig.5. An example of multilayer perceptron network with one hidden 

layer. 

 

The inputs are fed into the input layer and get multiplied 

by interconnection weights as they are passed from the input 

layer to the hidden layer. Within the hidden layer, they get 

summed then processed by a nonlinear function called 

activation function. The data is multiplied by interconnection 

weights then processed one last time within the output layer 

to produce the neural network outputs. A mathematical 

representation of the signal of i−th network output Yi is 

given by the Eq. (5): 

 

    (5) 

 

Where: N—number of inputs, M—number of neurons in the 

hidden layer, wvk j—weight of kth neuron in the hidden layer 

for the j th input, wyik—weight of ith neuron in the output 

layer for the signal yk , which is the output of the kth neuron 

The activation function f (·) may be a simple linear or a 

non-linear function. The most commonly used activation 

functions are: threshold function, sigmoidal function, 

hyperbolic tangent function and radial basis function. In our 

case we used the sigmoidal function in both hidden and 

output layers. Sigmoidal function is mathematically 

expressed as: 

 

          f(z)=                      (6) 

ANN-based inverse model is built on the basis of relations 

between the network input and output vectors. The 

knowledge about the inverse mapping is stored within the 

network structure and network connection weights [6,22]. 

Sixty six values of capacitances C=  [C1,…,C66] constitute 

the network input vector. The approximated values of the 

corresponding radius    are calculated at the network output. 

An unknown mapping of the input vector to the output vector 

is approximated in an iterative procedure known as neural 

network training [5]. The objective of the learning algorithm 

is to adjust network weights on the basis of a given set of 

input-output pairs for a given cost function to be minimized. 

Back propagation algorithm, a supervised learning network 

algorithm, uses the gradient of the performance function to 

determine how to adjust the weights to minimize 

performance. In back propagation, the error data is 

propagated from the output layer backwards through the 

network. The effected computations allow the update of the 

incoming weights at each layer. In our present approach, 

during the network learning phase the error is propagated 

until a set value of the training error is reached. 

V. EXPERIMENTAL PART 

A. Description 

We treat on our present work the inverse problem which 

aims to determine the material distribution relying on 

measured capacitances. The simulation is done using 

ECTSIM Matlab’s toolbox, [8, 21]. ECTSIM was designed 
to evaluate existing image reconstruction algorithms applied 

on the field of ECT like Landweber algorithm and LBP 

method. Our work can be described on 2 main steps: (1) 

Sensor Modeling and capacitances measurement (2) Image 

Reconstruction using Artificial Neural Network: A multi-

layer Perceptron (MLP) is applied to determine the phantom 

radius). We enclose the experimental part by comparing the 

obtained results with our method with others obtained with 

Landweber algorithm. Computations were performed on PC 

computer with Intel(R) Xeon(R) CPU E5630 @ 2.53GHz 

processor and 24,0 GB RAM. The different algorithms were 

implemented in MATLAB.  

We detail on the following paragraphs the steps mentioned 

above. 
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B. Sensor Modeling and capacitances measurement 

The current work is done under the 2D version of the 

ECTSIM toolbox using the circular sensor model. The 

provided sensor model is composed of four layers: pipe 

layer, electrode layer, insulation layer and the screen layer as 

shown on Fig.3. As the user of the toolbox is able to set the 

different parameters of each layer like thickness, electrical 

permittivity of insulation material and number of electrodes, 

we chose a sensor with 12 electrodes ( N= 12) placed inside 

the pipe ( inner insulator thickness=0), background 

permittivity =1 and elements’ permittivity =3. The field of 
view diameter was set to 84 mm. The sensor field of the view 

was then divided into 96x96 square meshes. For each 

phantom the simulated capacitances is calculated using the 

discrete linear approximation of Gauss Law (Eq.2). 

 

Fig.6. Sensor‘s diagram used for simulation [21]. 
We varied the diameter of the object present inside pipe in 

order to generate the phantoms to train and test the ANN in a 

farther step. 

 

C. Image Reconstruction using Artificial Neural Network 

For the given parameters we generated 320 phantoms 

divided into 241 training examples and 80 test examples. A 

Multi-Layer Perceptron with a single hidden layer is applied 

to estimate the radius of the object inside the pipe. The 

number of nodes in the input layer is given by the number of 

measured capacitances L=  N (N-1)/2 = 66 and one neuron at 

the output layer. The network was trained using the back 

propagation algorithm with a training error set to E= 

1/240=0.004. We made several experiences to determine the 

number of nodes in the hidden layer. Table1 summarizes the 

obtained testing errors with different numbers of hidden 

neurons.  

We consider on the selection of the appropriate structure 

of MLP :  

 Number of iterations at the learning phase  

 Mean Square Error (MSE) during the test process:  

 

                                         (7) 

 Mean testing error: 

              Mean=    

 

 where                                        (8) 

   We designate by R the desired MLP output / desired 

radius,  the estimated radius at the testing phase and n the 

number of testing examples. Table1 summarizes the obtained 

testing errors with different numbers of hidden neurons. 

 

TABLE 1. 

TESTING ERRORS AND NUMBER OF ITERATIONS WITH DIFFERENT MLP 

STRUCTURES 

 

Network  

structure 

Testing error Number of 

iterations 

( learning) 
MSE Mean 

(66-10-1) 0.1670 0.2839 1080885 

(66-20-1) 0.1688 0.3148 1419490 

(66-30-1) 0.1721 0.2846 1815935 

(66-66-1) 0.1832 0.4086 1225485 

 

   The provided results show that minimum testing errors 

MSE=0.1670 and Mean=0.2839 are obtained for a network 

structure with 10 hidden neurons (66-10-1). The maximum 

errors were obtained with 66 neurons in the hidden layer. 

The use of both Mean Square Error and the Mean Error was 

beneficial to decide the best structure to retain for the 

reconstruction phase since the obtained MSE errors were 

close for the two first structures (66-10-1) and (66-20-1). 

The learning process was the fastest for the given structure 

and was the slowest for the structure (66-30-1) as the smaller 

the network structure is the less numerical complexity we 

have.  

To consider the MLP structure (66-10-1) the appropriate 

structure to solve our handled problem, the process of 

learning and testing the selected was repeated several times 

and results uphold that 10 neurons in the hidden layer are 

sufficient to estimate the radius of the object inside the pipe.  

A second attempt to evaluate the performances of the 

proposed method is to compare the reconstructed images 

from ANN with images reconstructed with Landweber 

algorithm under the ECTsim toolbox. 
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TABLE. 2. 

RECONSTRUCTED IMAGES FROM MLP AND LANDWEBER ALGORITHM 

 

Desired Phantom / Distribution Image reconstructed from MLP 
Image reconstructed from  Landweber/ Time 

elapsed for reconstruction (in s) 

   

 time elapsed for reconstruction  (in s) 0.070273 time elapsed for reconstruction (in s)  10.22 

   

 time elapsed for reconstruction ( s) 0.075846 time elapsed for reconstruction (  s)  9.910792 

   

 time elapsed for reconstruction ( s) 0.082285 time elapsed for reconstruction ( s) 10.112285 
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D. Evaluation of the proposed method 

 

We present in table2. the reconstructed images from MLP 

network and Landweber algorithm for different radius taken 

from the neural network test base. The reconstruction from 

MLP is performed by drawing the circular object with the 

estimated radius. The elapsed time included one iteration to 

estimate the radius from the capacitances fed to the input of 

the MLP with the retained structure (66-10-1) and the time to 

draw the outer circular sensor and the object inside. The 

number of iterations to reconstruct the same object, using 

Landweber algorithm, with the same radius is set equal to 

100.  

The obtained images from the neural network method 

present satisfactory shape with small relative radius 

estimation error. The circular shape is better maintained with 

MLP based method especially in boundaries. Other 

advantage of the proposed methods is better estimation of 

permittivity value for object. In the case of MLP the relative 

permittivity value is much closer to the prepared simulated 

phantom than for Landweber algorithms. Next aspect is the 

time calculation. The phantom reconstruction with MLP 

method is about 120 times faster than with Landweber 

iteration algorithm.  

The relative testing error for different values of radius was 

calculated based on formula: 

 

                                                                            (9) 

 

where R is desired radius and  is the estimated radius. 

   The results are shown in Fig.7. The error is significant, 

for small values of radiuses - about 1 mm. For R<5 mm the 

relative error value is still negative which means that the 

estimated value is bigger than the real value. For 5mm<R< 

15mm, the relative error value becomes positive and the gap 

between the desired and estimated values is smaller. For 

radius values higher than 15 mm the relative testing error is 

near to zero. The high pic of relative error could be referred 

either to the capacitances measurement process (i.e. the 

difficulty to sense the permittivity distribution in a very small 

objects) or to the lack of training examples for this interval 

of radii. Providing more training examples for small objects 

(R<15mm) would improve the performances of our neural 

network. 

 

 
Fig. 7. Relative testing error in term of the object radius. 

 

VI. CONCLUSION  

The aim of the work was to estimate the radius of the 

object present inside a circular cross section ECT sensor 

based on neural network technique. The calculated radius 

was then used to image the distribution of content inside the 

sensor. The different steps for solving the inverse ECT 

problem were depicted. The obtained results are promising 

especially under a simple MLP structure (66-10-1) and back-

propagation training algorithm. The provided accuracy is 

satisfactory and ANN based approach allowed to solve the 

inverse problem in a simple manner and on reduced 

computational time about 120 times when compared to the 

existing Landweber iterative algorithm. Results revealed 

potential to estimate flow patterns such as funnel-type 

hopper flow with reconstruction speed sufficient for on-the-

fly industrial applications. Possibility to estimate more than 

one useful parameter (such as radius and permittivity) and 

generalization of the pattern of phantoms will be the subject 

to further work.  
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